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The emergence of rotational bands is observed in no-core configuration interaction (NCCI) calculations
for the odd-mass Be isotopes (7 � A � 13) with the JISP16 nucleon–nucleon interaction, as evidenced by
rotational patterns for excitation energies, quadrupole moments, and E2 transitions. Yrast and low-lying
excited bands are found. The results demonstrate the possibility of well-developed rotational structure in
NCCI calculations using a realistic nucleon–nucleon interaction.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Nuclei exhibit a wealth of collective phenomena, including clus-
tering, rotation, and pairing [1–3]. Collective dynamics have been
extensively modeled in phenomenological descriptions [1,3–5].
Some forms of collectivity may also be obtained microscopically
in the conventional (valence) shell model, e.g., Elliott SU(3) rota-
tion [6,7]. However, observing the emergence of collective phe-
nomena directly from first principles – that is, in a fully ab initio
calculation of the nucleus, as a many-body system in which all the
constituent protons and neutrons participate, with realistic inter-
actions – remains as an outstanding challenge.

Recent developments in large-scale calculations have brought
significant progress in the ab initio description of light nuclei
[8–12]. In ab initio no-core configuration interaction (NCCI) ap-
proaches – such as the no-core shell model (NCSM) [11,13–16], no-
core Monte Carlo shell model (MCSM) [17], or no-core full configu-
ration (NCFC) [18] methods – the nuclear many-body bound-state
eigenproblem is formulated as a matrix diagonalization problem.
The Hamiltonian is represented with respect to a basis of anti-
symmetrized products of single-particle states, generally harmonic
oscillator states, and the problem is solved for the full system of
A nucleons, i.e., with no inert core. In practice, such calculations
must be carried out in a finite space, obtained by truncating the
many-body basis according to a maximum allowed number Nmax
of oscillator excitations above the lowest oscillator configuration

* Corresponding author.

(e.g., Ref. [11]). With increasing Nmax, the results converge towards
those which would be achieved in the full, infinite-dimensional
space for the many-body system.

Computational restrictions limit the extent to which con-
verged calculations can be obtained for the observables needed
for the identification of collective phenomena. In particular, the
observables most indicative of rotational collectivity – E2 ma-
trix elements – present special challenges for convergence in an
NCCI approach [19,20], due to their sensitivity to the large-radius
asymptotic portions of the nuclear wave function. Nonetheless,
some promising suggestions of collective phenomena, e.g., defor-
mation and clustering, have already been obtained in ab initio
calculations [20–25].

In this Letter, we observe the emergence of collective rota-
tion in ab initio NCCI calculations for the Be isotopes, using the
realistic JISP16 nucleon–nucleon interaction [26]. Evidence for rota-
tional band structure is found in the calculated excitation energies,
quadrupole moments, and E2 transition matrix elements. In NCCI
calculations of the even-mass Be nuclei, yrast sequences of angu-
lar momenta 0,2,4, . . . arise with calculated properties resembling
those of K = 0 ground-state rotational bands (see Ref. [27] for a
preliminary report of comparable results for 12C). However, the
most distinctive, well-developed, and systematic rotational band
structures are observed in calculations for odd-mass nuclei. Given
the same range of excitation energies and angular momenta, the
low-lying � J = 1 bands in the odd-mass nuclei provide a richer
set of energy and electromagnetic observables. We therefore focus
here on the odd-mass Be isotopes, specifically, with 7 � A � 13. Af-
ter a brief review of the properties expected in nuclear rotational

0370-2693/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
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Outline

– Nuclear rotation
– Ab initio nuclear structure No-core shell model

– Ab initio emergence of rotation and shape coexistence
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Rotation in a quantum system: Molecules
Adiabatic separation of motion (different energy scales)

– Low-energy rotational excitations ≈ 0.001eV
– Intermediate-energy vibrational excitations ≈ 0.1eV
– High-energy electronic excitations & 1eV

E =
J2

2I
=
~2

2I
J(J + 1)

Figures from A. Beiser, Concepts of Modern Physics, 4th ed.
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1 Elements of nuclear structure

bands can be seen for 168Er in Figure 1.58. The figure shows 70 excited states of
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Figure 1.58: The low-lying states of 168Er arranged into rotational bands. The positive-parity bands are
shown also in Figure 1.59. (The data are taken from Nuclear Data Sheets.)

168Er classified unambiguously into 14 rotational bands. Each band is associated

with a different intrinsic state and a K quantum number.

The extent to which the bands of states in 168Er are fitted by the rotor energy for-

mula can be seen in Figure 1.59, which shows how the energies of the positive-parity

states of Figure 1.58 vary with I(I + 1). The slopes of the curves are proportional

to the inverses of the moments of inertia. Thus, to a first approximation, it appears

that all the bands have similar moments of inertia. A possible exception is the

Kπ = 0+ band built on the 1217 keV 0+ state which has a somewhat smaller value

for ~2/2ℑ, i.e., a shallower slope.

Although the energies plotted in Figure 1.59 follow remarkably straight lines

as functions of I(I + 1), the figure also shows a slight, but systematic, curving

to shallower slopes with increasing I. The effect is seen more clearly if transition

energies, rather than excitation energies, are plotted. Figure 1.60 shows a plot of

(4I − 2)/∆EI,I−2 vs. I for ground-state rotational bands of selected nuclei. For

rigid rotors these bands would appear as horizontal lines. The non-rigidity or non-

adiabaticity of these nuclei is dramatically illustrated. Whatever is changing with

increasing angular momentum is changing smoothly.

68

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models
(World Scientific, Singapore, 2010).
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1.7 Low-energy collective structure in doubly-even nuclei
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Figure 1.65: Examples of rotational nuclei from across the entire mass surface with proton and neutron
numbers corresponding to mid-open-shell regions (cf. Figure 1.2). (The data are from Nuclear Data Sheets,
from Ajzenberg-Selove F. (1988), Nucl. Phys. A490, 1, and from Endt P.M. (1990), Nucl. Phys. A521, 1.)

where cos θ = z/R0 and that, to leading order in α, the points at distance

R(θ, ϕ) = R0

[
1 + αY10(θ, ϕ)

]
(1.55)

from the coordinate origin in spherical coordinates, form a sphere centred about

the point in (0, 0,
√

3
4π

αR0) in (x, y, z) coordinates, i.e., a Y10 shape component

is equivalent to a translation of the centre of mass.

1.22 Show that if
EI = E0 +AI(I + 1) +BI2(I + 1)2, (1.56)

then r6 = 22
5
r4 − 33

5
.

1.23 Calculate ℑrigid for the nuclei in Figures 1.60 and 1.65. (Convert the units of
your answers so that direct comparisons can be made.)

1.24 Derive Equation (1.43) from Equations (1.41) and (1.42).

1.25 For Q̄0(αK) = Q̄0 for all K and α, evaluate Equation (1.51) for Q(αKI) with
K = 0, I = 0, 2, 4; K = 2, I = 2, 3, 4; K = 4, I = 4.

1.26 For Equation (1.52) with K = 0, and B(E2;α0Ii → α0If ) = B(E2; I → I − 2) =
BI,I−2, show that B42/B20 = 10/7, B64/B20 = 225/143 and B86/B20 = 28/17.

1.27 From Equations (1.51) and (1.52), derive the relationship

Q(2+1 ) = −2

7

√
16πB(E2; 2+1 → 0+1 ) (1.57)

for the ground state (K = 0) rotational band of a doubly-even nucleus.

75

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational
Models (World Scientific, Singapore, 2010).
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Cluster molecular structure in light nuclei

Yoshiko Kanada-En’yo, Masaaki Kimura, and Akira Ono, PTEP 2012, 01A202 (2012).

PTEP 2012, 01A202 Y. Kanada-En’yo et al.
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Fig. 5. Schematic figures for cluster states suggested in 10Be, 11Be, and 12Be. For the molecular-orbital states,
2α cores and the valence neutrons in the σ orbital are illustrated. The experimental values of the excitation
energies are also shown.

Interestingly, the degree of the 2α-cluster development strongly correlates with the number of
valence neutrons in the σ orbital. Namely, the 2α cluster develops as the neutron number in the
σ orbital increases. This is easily understood because the single-particle energy of the σ orbital
decreases because of the kinetic energy gain in largely distant 2α systems. The enhancement of the
2α cluster with neutrons in the σ orbital is consistent with the arguments in Refs. [34–39]. On the
other hand, as the neutron number in the π orbitals increases, the cluster structure tends to weaken.

Another interesting characteristic of Be isotopes is the breaking of neutron magicity in 11Be and
12Be. The breaking of the p shell for the neutron magic number N = 8 in 11Be is experimentally
known from the unnatural parity 1/2+ ground state, while that in 12Be has been suggested from slow
β decay[56]. These exotic features of 11Be and 12Be can be understood from the molecular-orbital
picture. The ground states of 11Be and 12Be are considered to have dominant intruder configurations
with σ -orbital neutron(s) instead of normal 0�ω configurations. The ground 1/2+ state of 11Be cor-
responds to the π2σ configuration, while 12Be(0+

1 ) is the intruder state π2σ 2 in terms of molecular
orbitals. In the one-center shell-model limit, the π and σ orbitals correspond to the p and sd orbits.
Therefore, in the ground states, 11Be(1/2+

1 ) and 12Be(0+
1 ) have dominant 1�ω and 2�ω configu-

rations, respectively, indicating the vanishing of the N = 8 magic number in 11Be and 12Be. The
breaking of the neutron shell in neutron-rich Be isotopes is caused by the decreasing σ orbital in the
developed 2α structures as discussed in Refs. [8,44,55]. Again, the σ orbital in the 2α structure plays
an important role.

In addition to molecular-orbital structures in such low-lying states, the AMD results for 12Be
suggest molecular resonant states with di-cluster 6He +6 He and 8He + α structures in highly
excited states [44]. This result is consistent with the experimental observations of cluster states
in He + He break-up reactions [57–59] and also with theoretical suggestions by cluster model
calculations [43,45,60].

3.2. Three-body cluster states in 12C, 11B, and 14C

One of the typical examples where cluster and shell features coexist is 12C. The ground state of 12C
is an admixture of 3α-cluster and p3/2-shell closure structures. On the other hand, a variety of 3α-
cluster states have been suggested in excited states in many 3α model calculations since the 1970s
[61]. Recently, Tohsaki et al. have proposed a new concept of cluster structure in the second 0+

state of 12C, where three α clusters are weakly interacting like a gas [62,63]. Because of the bosonic
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Separation of rotational degree of freedom
Factorization of wave function |ψJKM〉 J = K,K + 1, . . .
|φK〉 Intrinsic structure (K ≡ a.m. projection on symmetry axis)

DJ
MK(ϑ) Rotational motion in Euler angles ϑ

Rotational energy
E(J) = E0 + A

[
J(J + 1)+

Coriolis (K = 1/2)︷              ︸︸              ︷
a(−)J+1/2(J + 1

2 )
]

A ≡ ~
2

2J

Rotational relations (Alaga rules) on electromagnetic transitions
B(E2;Ji→ Jf ) ∝ (JiK20|Jf K)2(eQ0)2 eQ0 ∝ 〈φK |Q2,0|φK〉

A

E0

E

1�2 3�2 5�2 7�2 9�2

J

e.g., D. J. Rowe, Nuclear Collective Motion: Models and Theory (World Scientific, Singapore, 2010).
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1.7 Low-energy collective structure in doubly-even nuclei

0 20 40 60 80 100

0 0

200

800

500

1000

1500

1000

1200

1400

1600

1800

2000

2200

01 2 3 4 5 6 7 8 9 10

I

I(I+1)

E
 (

k
e
V

)

168Er Figure 1.59: Plots of the excitation energies
of the low-lying positive-parity states of 168Er
(cf. Figure 1.58) versus I(I+1), cf. Equation
(1.53) to reveal rotational behaviour. Note
the left and right energy scales, with the left-
hand scale applying to all but the ground-
state band.

It is tempting to suppose that nuclei, being liquid-drop like, should stretch under

increasing angular momentum. Indeed, such behaviour would explain the upward

curvature of the plots in Figure 1.60. Remarkably, shape changes are not indicated

by quadrupole moment data and electric quadrupole transition data. Such data

are presented in Figure 1.61 for the same nuclei as shown in Figure 1.60. Within

experimental errors (which are quite large because the measurements are not easy)

the data indicate that the quadrupole moments and E2 transition rates are consis-

tent with a rotor of constant intrinsic quadrupole moment, i.e., the parameter Q̄0

(cf. Equations (1.51) and (1.52)), for each nucleus is a constant. Another possibil-

ity is that the nuclear fluid flows are those of a superfluid and that the degree of

superfluidity decreases with increasing angular momentum due to the Coriolis inter-

action.27 Whatever is changing, the small energy differences between the states of a

rotational band are much more sensitive to minor changes in the intrinsic structure

of the states than are their quadrupole moments.

Some insight into the internal dynamics of a rotating nucleus can be gained by

considering empirical moments of inertia compared to classical rigid-body estimates.

The classical rigid-body moment of inertia for a nucleus of mass A is 2
3MA2〈r2〉,

whereM is the mass of a nucleon and 〈r2〉 is the mean-square radius of the deformed

nucleus. Using a typical value of 〈r2〉 for a strongly deformed nucleus, one estimates

27The similarity between the force on a charged particle in a magnetic field and the Coriolis
force on a particle in a rotating frame of reference was noticed many years ago and led Mottelson
B.R. and Valatin J.G. (1960), Phys. Rev. Lett. 5, 511, to predict that a breakup of nucleon pairs
should occur in rotational nuclei at high rotational angular momenta similar to the destruction of
superconductivity in the Meissner effect.

69

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models
(World Scientific, Singapore, 2010).
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Yrast and excited bands in 10BeRESONANT α SCATTERING OF 6He: LIMITS . . . PHYSICAL REVIEW C 87, 054301 (2013)

resonance strength exists in the energy region covered in the
present study. There is a minor peak structure at 2.5 MeV. It
is difficult to judge whether this is due to a resonance or to a
statistical fluctuation, particularly without the corresponding
information from an angular distribution. In the former case,
it would be possible that it originates from the 10.15-MeV 4+
state with nearly the same resonance energy. A fit with a Voigt
function [50] was made to estimate the possible partial width

8Be. Three different backgrounds, namely linear, quadratic,
and exponential functions, were tested. The resonance energy
was set to the result from the elastic channel (2.56 MeV) and
varied within the error (0.15 MeV), while the experimental
resolution was fixed to 0.25 MeV rms, which arises from
the uncertainty in reaction energy (0.1 MeV) and that in
vertex determination (0.2 MeV). The resulting 
8Be/
 value
is 0.09(5) and this gives an upper limit of 
8Be/
 ∼ 0.15 for
this possible decay branch.

V. DISCUSSION

The present study identified a 4+ state with a large α
decay width 
α/
 = 0.49(5) at 9.98(15) MeV in 10Be. The
observed state most likely corresponds to the known 4+ level
at 10.15(2) MeV [31,32] given the observed excitation energy
and spin-parity. In previous studies [24,32,33], this state is
considered the 4+ member of a rotational band built on the
second 0+ state at 6.1793(7) MeV [51]. The excitation energies
of 10Be states are plotted against J (J + 1) in Fig. 11. The
linear extrapolation from the 0+

2 state and the 2+ state at
7.542(1) MeV [51] indeed nicely agrees with the 10.15-MeV
state in energy. The large moment of inertia from the narrow
level spacing of the band members is well explained by the
σ -type molecular orbital structure from both cluster-model
calculations [16,21,22] and microscopic calculations based
on the antisymmetric molecular dynamics (AMD) method
[15,24]. In this picture, the valence neutrons are delocalized
over the two clusterized α cores and the extension along the
α cores’ axis gives strong deformative characteristics to 10Be.
The large decay width for α emission indicates a high degree of
clusterization in this 4+ state and supports this type of cluster
structure. An α spectroscopic factor of 3.1(2) is estimated in a
recent analysis of the measured partial width [61]. This value
is as large as the spectroscopic factors of about 1.5 for the
ground-state band members of 8Be with well-developed two
α clusters [61,62].

In addition to the 0+
2 state, theoretical studies [15,16,22,24]

predict a π -type cluster structure for the 0+ ground state, in
which valence neutrons are extending perpendicular to the
axis of the two α cores. Given the 2+ state at 3.37 MeV, the
4+ state of the 0+

g.s. band is anticipated at around 11 MeV as
seen in the linear extrapolation shown in Fig. 11. In previous
studies [24,33], the 4+ state at 11.76(2) MeV is considered
the most likely candidate for the 4+ member of the 0+

g.s. band
because of its excitation energy and spin-parity. In the present
study, however, there was no resonance observed around Ex =
11.8 MeV (Ec.m. = 4.4 MeV). This is in stark contrast with
the significant resonance strength of the 4+ state of the 0+

2
band at 10.2 MeV. The α decay width of the 11.8-MeV

+1)J(J
0 10 20

B
e 

[M
eV

]
10

 in
 

x
E

0

5

10

15

FIG. 11. (Color online) Plot of Ex vs J (J + 1) for 10Be. The
band members of the ground and the second 0+ states are shown by
the circles and squares, respectively. The linear extrapolation using
the 0+ and 2+ states is shown for each band. The horizontal lines
at J = 4 denote predicted level energies of the 4+ member of the
ground state band from the β-γ constraint AMD method [24] (solid
line), the variational AMD method [15] (dashed line), the four-body
cluster model [21] (dotted line), the molecular orbital model [16]
(dot-dashed line), the semimicroscopic algebraic cluster model [18],
(double-dot-dashed line), and the multicluster generator coordinate
method [19] (triple-dot-dashed line). The data of Refs. [16,21] were
obtained from the calculated values with respect to the threshold
energy of 2α + 2n at 8.386 MeV. The shaded area denotes the
energy domain covered by the present study.

state is estimated less than 20 keV and is much smaller than

α = 145(15) keV deduced for the 10.2-MeV state. Such
a difference is unexpected as both 4+ states belong to the
rotational bands of the clusterized 0+ states. Nearly the same
spectroscopic amplitudes of 6He + α are predicted for these
4+ states in the microscopic 2α + 2n four-cluster model [21].
The present result does not agree with this prediction. The
small spectroscopic amplitude of the 4+ member is also unlike
the ground state 0+ band of 8Be, despite what appears to
be a similar moment of inertia. The α spectroscopic factors
are predicted to be equally large in all 0+, 2+, and 4+ states
in 8Be [62], which is supported by the folding potential model
that well describes the level energies and widths of these
states [63].

There are two possible scenarios to account for the hindered
strength of the 4+ member of the 0+

g.s. band. First is the
possibility that the 4+ state at 11.8 MeV does not belong
to the 0+

g.s. band, and the real band member exists outside the
energy window of the present study (Ec.m. = 2–6 MeV or
Ex = 9.4–13.4 MeV). This scenario implies an unusual level
spacing for the ground state band. On the contrary, regardless
of the framework, most theoretical studies [15,16,18,19,21,24]
predict the 4+ state of the 0+

g.s. band in the energy range
Ex = 10–13 MeV (Fig. 11), the region anticipated from the
proportionality to J (J + 1). The second scenario is that the

054301-11

From D. Suzuki et al., Phys. Rev. C 87, 054301 (2013). Orbital schematics from
Y. Kanada-En’yo, H. Horiuchi, and A. Doté, Phys. Rev. C 60, 064304 (1999).

π

σ
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H. G. BOHLEN et al. PHYSICAL REVIEW C 75, 054604 (2007)

FIG. 7. (Color online) Band structure of 10Be states up to angular
momenta of J = 4. Four bands are shown: the ground-state band
(black circles), a K = 2+

2 band (open diamonds), the K = 1−
1 band

(red sqares), and the K = 0+
2 molecular band (blue filled diamonds).

Other known states at 9.56 MeV (2+
4 ) and 10.55 MeV (3−

2 ) are plotted
as single points (two filled triangles).

of two neutrons and two α-particles represented by Gaussian
density distributions at a variable distance Dα to reproduce the
slope parameter, very different values for the distance Dα are
obtained, 2.7 fm for the Kπ = 0+

1 band and 5.9 fm for the 0+
2

band. Yet the deformation parameter for the 10Be ground-state
band obtained from inelastic scattering is β2 = 1.13 [17], it is
one of the largest values observed.

A Kπ = 2+
2 band is predicted by many theoretical models

[4–6,8,13,14,16], with only two members: 2+
2 and 3+

1 . The
band head is localized in the region between excitation energies
of 4.5 MeV and 7.0 MeV. The experimental members of this
band can be identified with the known 2+

2 state at 5.96 MeV
as the band head and the (3+) state at 9.40 MeV ([22] and
this work). The value a(Kπ = 2+

2 ) = 570 keV for the slope
parameter is almost the same as for the ground-state band. The
Kπ = 2+

2 band is displaced in parallel by about 2.59 MeV
to higher excitation energies with respect to the ground-state
band. But its structure is different, as one can see, e.g., from
the QMC calculations [14] (see Sec. III D1). The ground-state
band is strongly populated in the two-proton pick-up reaction
12C(12C,14O), whereas this is not the case for the Kπ = 2+

2
band.

From the Kπ = 1−
1 odd-parity band with the members

(discussed here up to J = 4): 1−
1 , 5.96 MeV; 2−, 6.26 MeV;

3−, 7.37 MeV; 4− 9.27 MeV, only the states with natural

parity, 1− and 3−, are well populated in the 12C(12C,14O)
reaction, whereas the 2− state could not be identified in the
spectrum and the 4− state only indirectly by unfolding the
angular distribution of the peak at 9.5 MeV. As mentioned
already in Sec. III B, the structure of this band is described
by a main configuration of 9Beg.s. ⊗ ν(2s1d)1 [30,31]. The
excitation energies in this band do not very well follow a
linear dependence on J (J + 1). A mean value for the slope
parameter of a(1−

1 ) = 250 keV is obtained.
The three band heads of the Kπ = 0+

2 , 1−
1 , and 2+

2 bands
are weakly bound states with binding energies with respect to
the neutron threshold (Sn = 6.812 MeV) of only 0.633 MeV,
0.852 MeV and 0.854 MeV, respectively. The structure of these
band heads is well illustrated for example by the calculations
within the microscopic four-cluster model of Koji Arai (Fig. 3
in Ref. [8]), where the correlation discussed above between the
slope parameters a(Kπ ) and the extention of the form factors
is visible.

IV. CONCLUSIONS

The two-proton pick-up reaction 12C(12C,14O) has been
used at an incident energy of 211.4 MeV to study the structure
of states of 10Be up to 12 MeV excitation energy. Spin-
parity assignments have been obtained from the characteristic
shapes of the observed angular distributions and two new
assignments could be made. The states at 10.55 MeV and
11.8 MeV excitation energy have been firmly assigned as 3−
and 4+, respectively, and the latter has been identified as the
4+ member of the ground-state band. The coupled-channels
calculations describe the pronounced structures and the cross
sections of the experimental angular distributions consistently
with spectroscopic products for the two-proton pickup of about
the same strength for most of the cases.

The natural-parity members of the 1−
1 band at 5.96 MeV

have been populated with good cross sections, which are also
quantitatively described using two reaction steps for the main
transition branch, first the inelastic excitation to the 3−

1 state of
12C, and second, the pickup of the proton pair. Experimental
cross sections for the 2+

2 state at 5.96 MeV are an order of
magnitude smaller than for the 1−

1 state. The 2+
2 state forms

together with the tentatively assigned (3+) state at 9.4 MeV a
Kπ = 2+ band.
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Outline

– Nuclear rotation
– Ab initio nuclear structure No-core shell model

– Ab initio emergence of rotation and shape coexistence
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Goal of ab initio nuclear structure
First-principles understanding of nature Nuclei from QCD
Can we understand the origin of “simple patterns in complex nuclei”?

i.e., emergent collective correlations

Ab initio?
Adapted from B. Schwarzschild, Physics Today 63(8), 16 (2010).
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Nucleon interactions Shell structure
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Solution of Schrödinger equation in a basis
Hamiltonian

Ĥ = −
~2

2m
d2

dx2 + V(x)
Eigenproblem

Ĥψ(x) = Eψ(x)
Expand wave function in basis (unknown coefficients ak)

ψ(x) =

∞∑
k=1

akϕk(x)

Matrix elements of Hamiltonian

Hij ≡ 〈ϕi | Ĥ |ϕj〉 =

∫
dxϕ∗i (x)Ĥϕj(x)

Reduces to matrix eigenproblem
H11 H12 · · ·

H21 H22 · · ·

...
...



a1
a2
...

 = E


a1
a2
...


x

yH
xL

One particle in one dimension
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Many-body problem in an oscillator basis
No-core configuration interaction (NCCI) approach

a.k.a. no-core shell model (NCSM)

“0��”

“2��”

Harmonic oscillator orbitals
⇒ “Slater determinant” product basis

Distribute nucleons over oscillator shells
Organize basis by # oscillator excitations Nex

relative to lowest Pauli-allowed filling
Nex = 0,2, . . . (“0~ω”, “2~ω”, . . .)

Basis must be truncated: Nex ≤ Nmax

Convergence towards exact result with increasing Nmax. . .

B. R. Barrett, P. Navrátil, and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).



M. A. Caprio, University of Notre Dame

Convergence of NCCI calculations
Results for calculation in finite space depend upon:

– Many-body truncation Nmax

– Single-particle basis scale: oscillator length b (or ~ω)

b =
(~c)

[(mNc2)(~ω)]1/2

Convergence of calculated results signaled by independence of Nmax & ~ω
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Dimension explosion for NCCI calculations
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Convergence of NCCI calculations
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Convergence of NCCI calculations
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Outline

– Nuclear rotation
– Ab initio nuclear structure No-core shell model

– Ab initio emergence of rotation and shape coexistence
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Rotational bands in 7–12Be from NCCI calculations
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M. A. Caprio, P. Maris, and J. P. Vary, Phys. Lett. B 719, 179 (2013).
P. Maris, M. A. Caprio, and J. P. Vary, Phys. Rev. C 91, 014310 (2015).

JISP16 interaction (no Coulomb), NCCI (MFDn), Nmax = 10 or 11, ~ω ≈ 20MeV
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Separation of rotational degree of freedom
Factorization of wave function |ψJKM〉 J = K,K + 1, . . .
|φK〉 Intrinsic structure (K ≡ a.m. projection on symmetry axis)

DJ
MK(ϑ) Rotational motion in Euler angles ϑ

Rotational energy
E(J) = E0 + A

[
J(J + 1)+

Coriolis (K = 1/2)︷              ︸︸              ︷
a(−)J+1/2(J + 1

2 )
]

A ≡ ~
2

2J

Rotational relations (Alaga rules) on electromagnetic transitions
B(E2;Ji→ Jf ) ∝ (JiK20|Jf K)2(eQ0)2 eQ0 ∝ 〈φK |Q2,0|φK〉

A

E0
a Coriolis decoupling

E

1�2 3�2 5�2 7�2 9�2

J

e.g., D. J. Rowe, Nuclear Collective Motion: Models and Theory (World Scientific, Singapore, 2010).
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1 Elements of nuclear structure
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Figure 1.69: The low-lying states of 175Lu arranged into rotational bands. The moments of inertia, ℑ, of the
bands can be estimated from EI = E0 + (~2/2ℑ)I(I + 1) and are similar for all the bands (the irregularities
of the bands built on the 354 and 627 keV states are discussed in the text). (The data are taken from Nuclear
Data Sheets.)

Figure 1.70: The alignment of a single-
particle orbit in a spheroidal potential. Fig-
ures (a) and (b) show equipotential surfaces
for prolate and oblate potentials, respectively.
Figures (c) and (d) show equidensity surfaces
for 1h11/2 single-particle wave functions with
projection of the particle spin along the in-
trinsic symmetry 3-axis, having value Ω =
1/2 in (c) and Ω = 11/2 in (d). The Ω = 1/2
state and the Ω = 11/2 state have lowest
energy in a prolate and an oblate potential,
respectively.
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Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational
Models (World Scientific, Singapore, 2010).
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9Be: NCCI calculated energies and E2 transitions
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Yrast and excited bands in 10Be
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RESONANT α SCATTERING OF 6He: LIMITS . . . PHYSICAL REVIEW C 87, 054301 (2013)

resonance strength exists in the energy region covered in the
present study. There is a minor peak structure at 2.5 MeV. It
is difficult to judge whether this is due to a resonance or to a
statistical fluctuation, particularly without the corresponding
information from an angular distribution. In the former case,
it would be possible that it originates from the 10.15-MeV 4+
state with nearly the same resonance energy. A fit with a Voigt
function [50] was made to estimate the possible partial width

8Be. Three different backgrounds, namely linear, quadratic,
and exponential functions, were tested. The resonance energy
was set to the result from the elastic channel (2.56 MeV) and
varied within the error (0.15 MeV), while the experimental
resolution was fixed to 0.25 MeV rms, which arises from
the uncertainty in reaction energy (0.1 MeV) and that in
vertex determination (0.2 MeV). The resulting 
8Be/
 value
is 0.09(5) and this gives an upper limit of 
8Be/
 ∼ 0.15 for
this possible decay branch.

V. DISCUSSION

The present study identified a 4+ state with a large α
decay width 
α/
 = 0.49(5) at 9.98(15) MeV in 10Be. The
observed state most likely corresponds to the known 4+ level
at 10.15(2) MeV [31,32] given the observed excitation energy
and spin-parity. In previous studies [24,32,33], this state is
considered the 4+ member of a rotational band built on the
second 0+ state at 6.1793(7) MeV [51]. The excitation energies
of 10Be states are plotted against J (J + 1) in Fig. 11. The
linear extrapolation from the 0+

2 state and the 2+ state at
7.542(1) MeV [51] indeed nicely agrees with the 10.15-MeV
state in energy. The large moment of inertia from the narrow
level spacing of the band members is well explained by the
σ -type molecular orbital structure from both cluster-model
calculations [16,21,22] and microscopic calculations based
on the antisymmetric molecular dynamics (AMD) method
[15,24]. In this picture, the valence neutrons are delocalized
over the two clusterized α cores and the extension along the
α cores’ axis gives strong deformative characteristics to 10Be.
The large decay width for α emission indicates a high degree of
clusterization in this 4+ state and supports this type of cluster
structure. An α spectroscopic factor of 3.1(2) is estimated in a
recent analysis of the measured partial width [61]. This value
is as large as the spectroscopic factors of about 1.5 for the
ground-state band members of 8Be with well-developed two
α clusters [61,62].

In addition to the 0+
2 state, theoretical studies [15,16,22,24]

predict a π -type cluster structure for the 0+ ground state, in
which valence neutrons are extending perpendicular to the
axis of the two α cores. Given the 2+ state at 3.37 MeV, the
4+ state of the 0+

g.s. band is anticipated at around 11 MeV as
seen in the linear extrapolation shown in Fig. 11. In previous
studies [24,33], the 4+ state at 11.76(2) MeV is considered
the most likely candidate for the 4+ member of the 0+

g.s. band
because of its excitation energy and spin-parity. In the present
study, however, there was no resonance observed around Ex =
11.8 MeV (Ec.m. = 4.4 MeV). This is in stark contrast with
the significant resonance strength of the 4+ state of the 0+

2
band at 10.2 MeV. The α decay width of the 11.8-MeV

+1)J(J
0 10 20
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FIG. 11. (Color online) Plot of Ex vs J (J + 1) for 10Be. The
band members of the ground and the second 0+ states are shown by
the circles and squares, respectively. The linear extrapolation using
the 0+ and 2+ states is shown for each band. The horizontal lines
at J = 4 denote predicted level energies of the 4+ member of the
ground state band from the β-γ constraint AMD method [24] (solid
line), the variational AMD method [15] (dashed line), the four-body
cluster model [21] (dotted line), the molecular orbital model [16]
(dot-dashed line), the semimicroscopic algebraic cluster model [18],
(double-dot-dashed line), and the multicluster generator coordinate
method [19] (triple-dot-dashed line). The data of Refs. [16,21] were
obtained from the calculated values with respect to the threshold
energy of 2α + 2n at 8.386 MeV. The shaded area denotes the
energy domain covered by the present study.

state is estimated less than 20 keV and is much smaller than

α = 145(15) keV deduced for the 10.2-MeV state. Such
a difference is unexpected as both 4+ states belong to the
rotational bands of the clusterized 0+ states. Nearly the same
spectroscopic amplitudes of 6He + α are predicted for these
4+ states in the microscopic 2α + 2n four-cluster model [21].
The present result does not agree with this prediction. The
small spectroscopic amplitude of the 4+ member is also unlike
the ground state 0+ band of 8Be, despite what appears to
be a similar moment of inertia. The α spectroscopic factors
are predicted to be equally large in all 0+, 2+, and 4+ states
in 8Be [62], which is supported by the folding potential model
that well describes the level energies and widths of these
states [63].

There are two possible scenarios to account for the hindered
strength of the 4+ member of the 0+

g.s. band. First is the
possibility that the 4+ state at 11.8 MeV does not belong
to the 0+

g.s. band, and the real band member exists outside the
energy window of the present study (Ec.m. = 2–6 MeV or
Ex = 9.4–13.4 MeV). This scenario implies an unusual level
spacing for the ground state band. On the contrary, regardless
of the framework, most theoretical studies [15,16,18,19,21,24]
predict the 4+ state of the 0+

g.s. band in the energy range
Ex = 10–13 MeV (Fig. 11), the region anticipated from the
proportionality to J (J + 1). The second scenario is that the

054301-11

From D. Suzuki et al., Phys. Rev. C 87, 054301 (2013).

Extrapolation: Exponential in Nmax (3-point); see
P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C
79, 014308 (2009).



M. A. Caprio, University of Notre Dame

Convergence of bands in 10Be with Daejeon16
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M. A. Caprio, P. J. Fasano, A. E. McCoy, P. Maris, J. P. Vary, Bulg. J. Phys. 46, 455 (2019)
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“Leading” U(3) irreps for 10Be

M. A. Caprio, A. E. McCoy, P. J. Fasano, and T. Dytrych, Bulg. J. Phys. 49, 57 (2022) (SDANCA21).
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Summary
Simple patterns in complex nuclei
Can we predict nuclei ab initio?
Schrödinger⇒Matrix eigenproblem
Challenge: Computational scale explosion
Emergence of rotational patterns

M. A. Caprio, P. J. Fasano, P. Maris, A. E. McCoy, and J. P. Vary,
Eur. Phys. J. A 56, 120 (2020).

Coexistence of low-lying bands with different shape
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