Nuclear rotation and shape coexistence from first principles

Mark A. Caprio

Department of Physics and Astronomy
University of Notre Dame

Nuclear Theory in the Supercomputing Era
Lanzhou, China June 5, 2023

Physics Letters B 719 (2013) 179-184

Contents lists available at SciVerse ScienceDirect

Physics Letters B ,

Emergence of rotational bands in ab initio no-core configuration interaction calculations of light nuclei

M.A. Caprio ${ }^{\text {a,* }}$, P. Maris ${ }^{\text {b }}$, J.P. Vary ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Physics, University of Notre Dame, Notre Dame, IN 46556-5670, USA
${ }^{\text {b }}$ Department of Physics and Astronomy, Iowa State University. Ames, LA 50011-3160, USA

ARTICLE INFO

Article history:

Received 1 November 2012
Accepted 28 December 2012
Available online 3 January 2013 Editor: W. Haxton

Keywords:

No-core configuration interaction
Nuclear rotation
JISP16

ABSTRACT

The emergence of rotational bands is observed in no-core configuration interaction (NCCl) calculations for the odd-mass Be isotopes $(7 \leqslant A \leqslant 13)$ with the JISP16 nucleon-nucleon interaction, as evidenced by rotational patterns for excitation energies, quadrupole moments, and E2 transitions. Yrast and low-lying excited bands are found. The results demonstrate the possibility of well-developed rotational structure in NCCI calculations using a realistic nucleon-nucleon interaction.

$$
\text { © } 2013 \text { Elsevier B.V. All rights reserved. }
$$

Outline

- Nuclear rotation
- Ab initio nuclear structure No-core shell model
- Ab initio emergence of rotation and shape coexistence

Rotation in a quantum system: Molecules

Adiabatic separation of motion (different energy scales)

- Low-energy rotational excitations $\approx 0.001 \mathrm{eV}$
- Intermediate-energy vibrational excitations $\approx 0.1 \mathrm{eV}$
- High-energy electronic excitations $\gtrsim 1 \mathrm{eV}$

$$
E=\frac{\mathbf{J}^{2}}{2 I}=\frac{\hbar^{2}}{2 I} J(J+1)
$$

rotational
spectrum

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010).

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010).

Cluster molecular structure in light nuclei

Separation of rotational degree of freedom

Factorization of wave function $\left|\psi_{J K M}\right\rangle \quad J=K, K+1, \ldots$

$$
\begin{aligned}
& \left|\phi_{K}\right\rangle \quad \text { Intrinsic structure } \quad(K \equiv \text { a.m. projection on symmetry axis }) \\
& \mathcal{D}_{M K}^{J}(\vartheta) \quad \text { Rotational motion in Euler angles } \vartheta
\end{aligned}
$$

Rotational energy

$$
\text { Coriolis } \underbrace{K=1 / 2)}
$$

$$
E(J)=E_{0}+A[J(J+1)+\overbrace{a(-)^{J+1 / 2}\left(J+\frac{1}{2}\right)}] \quad A \equiv \frac{\hbar^{2}}{2 \mathcal{J}}
$$

Rotational relations (Alaga rules) on electromagnetic transitions

$$
B\left(E 2 ; J_{i} \rightarrow J_{f}\right) \propto\left(J_{i} K 20 \mid J_{f} K\right)^{2}\left(e Q_{0}\right)^{2} \quad e Q_{0} \propto\left\langle\phi_{K}\right| Q_{2,0}\left|\phi_{K}\right\rangle
$$

e.g., D. J. Rowe, Nuclear Collective Motion: Models and Theory (World Scientific, Singapore, 2010).

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010).

O 8					${ }^{13} \mathrm{O}$	${ }^{14} \mathrm{O}$	${ }^{15} \mathrm{O}$	${ }^{16} \mathrm{O}$
N 7					${ }^{12} \mathrm{~N}$	${ }^{13} \mathrm{~N}$	${ }^{14} \mathrm{~N}$	${ }^{15} \mathrm{~N}$
C 6			${ }^{9} \mathrm{C}$	${ }^{10} \mathrm{C}$	${ }^{11} \mathrm{C}$	${ }^{12} \mathrm{C}$	${ }^{13} \mathrm{C}$	${ }^{14} \mathrm{C}$
B 5			${ }^{8} \mathrm{~B}$	$\left[{ }^{9} \mathrm{~B}\right]$	${ }^{10} \mathrm{~B}$	${ }^{11} \mathrm{~B}$	${ }^{12} \mathrm{~B}$	${ }^{13} \mathrm{~B}$
Be 4			TBe	[${ }^{8}$ Bè $]$	${ }^{9} \mathrm{Be}{ }^{-}$	${ }^{10} \mathrm{Be}$	${ }^{11} \mathrm{~B}$ -	${ }^{12} \mathrm{Be}$
Li 3			${ }^{6} \mathrm{Li}$	${ }^{7} \mathrm{Li}$	${ }^{8} \mathrm{Li}$	${ }^{9} \mathrm{Li}$		${ }^{11} \mathrm{Li}$
He 2	${ }^{3} \mathrm{He}$	${ }^{4} \mathrm{He}$		${ }^{6} \mathrm{He}$		${ }^{8} \mathrm{He}$		
H 1	${ }^{2} \mathrm{H}$	${ }^{3} \mathrm{H}$						
, N^{5}								

Yrast and excited bands in ${ }^{10} \mathrm{Be}$

From D. Suzuki et al., Phys. Rev. C 87, 054301 (2013). Orbital schematics from Y. Kanada-En'yo, H. Horiuchi, and A. Doté, Phys. Rev. C 60, 064304 (1999).

H. G. Bohlen et al., Phys. Rev. C 75, 054604 (2007).

Fig. 6.24. Normal and anomalous levels of the triaxial rotor (Preston, 1975).
R. F. Casten, Nuclear Structure from a Simple Perspective, 2ed. (Oxford, 2000).

Outline

- Nuclear rotation
- Ab initio nuclear structure No-core shell model
- Ab initio emergence of rotation and shape coexistence

Goal of $a b$ initio nuclear structure

First-principles understanding of nature Nuclei from QCD
Can we understand the origin of "simple patterns in complex nuclei"?
i.e., emergent collective correlations

Quarks

Nucleon-nucleon interactions

Quantum manybody problem

Nuclear structure

Nuclear reactions
$\begin{aligned} & \mathrm{y}=2028 \\ & \text { Ab initio? }\end{aligned}$
$\xrightarrow[\text { Neutron number }(M)]{ }$

Adapted from B. Schwarzschild, Physics Today 63(8), 16 (2010).

Many-particle Schrödinger equation

$$
\begin{aligned}
& \sum_{i=1}^{A}\left(-\frac{\hbar^{2}}{2 m_{i}} \nabla_{i}^{2}\right) \Psi+\frac{1}{2} \sum_{i, j=1}^{A} V\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right) \Psi=E \Psi \\
& \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \ldots, \mathbf{r}_{A}\right)=?
\end{aligned}
$$

Solution of Schrödinger equation in a basis

Hamiltonian

$$
\hat{H}=-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)
$$

Eigenproblem

$$
\hat{H} \psi(x)=E \psi(x)
$$

Expand wave function in basis (unknown coefficients a_{k})

$$
\psi(x)=\sum_{k=1}^{\infty} a_{k} \varphi_{k}(x)
$$

Matrix elements of Hamiltonian

$$
H_{i j} \equiv\left\langle\varphi_{i}\right| \hat{H}\left|\varphi_{j}\right\rangle=\int d x \varphi_{i}^{*}(x) \hat{H} \varphi_{j}(x)
$$

Reduces to matrix eigenproblem

$$
\left(\begin{array}{ccc}
H_{11} & H_{12} & \cdots \\
H_{21} & H_{22} & \cdots \\
\vdots & \vdots &
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right)=E\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots
\end{array}\right)
$$

Many-body problem in an oscillator basis

No-core configuration interaction (NCCI) approach a.k.a. no-core shell model (NCSM)

Harmonic oscillator orbitals

\Rightarrow "Slater determinant" product basis Distribute nucleons over oscillator shells Organize basis by \# oscillator excitations N_{ex} relative to lowest Pauli-allowed filling $N_{\text {ex }}=0,2, \ldots$ (" $0 \hbar \omega$ ", " $2 \hbar \omega$ ", ...)
Basis must be truncated: $N_{\mathrm{ex}} \leq N_{\max }$

Convergence towards exact result with increasing $N_{\text {max }}$..

Convergence of NCCI calculations

Results for calculation in finite space depend upon:

- Many-body truncation $N_{\text {max }}$
- Single-particle basis scale: oscillator length b (or $\hbar \omega$)

$$
b=\frac{(\hbar c)}{\left[\left(m_{N} c^{2}\right)(\hbar \omega)\right]^{1 / 2}}
$$

Convergence of calculated results signaled by independence of $N_{\max } \& \hbar \omega$

Dimension explosion for NCCI calculations

Dimension $\propto\binom{d}{Z}\binom{d}{N}$
$d=$ number of single-particle states
$Z=$ number of protons
$N=$ number of neutrons

Convergence of NCCI calculations

Convergence of NCCI calculations

Outline

- Nuclear rotation
- Ab initio nuclear structure No-core shell model
- Ab initio emergence of rotation and shape coexistence

Rotational bands in ${ }^{7-12} \mathrm{Be}$ from NCCI calculations

M. A. Caprio, P. Maris, and J. P. Vary, Phys. Lett. B 719, 179 (2013).
P. Maris, M. A. Caprio, and J. P. Vary, Phys. Rev. C 91, 014310 (2015).

Separation of rotational degree of freedom

Factorization of wave function $\left|\psi_{J K M}\right\rangle \quad J=K, K+1, \ldots$

$$
\begin{aligned}
& \left|\phi_{K}\right\rangle \quad \text { Intrinsic structure } \quad(K \equiv \text { a.m. projection on symmetry axis }) \\
& \mathcal{D}_{M K}^{J}(\vartheta) \quad \text { Rotational motion in Euler angles } \vartheta
\end{aligned}
$$

Rotational energy
Coriolis $(\underbrace{K=1 / 2)}$

$$
E(J)=E_{0}+A[J(J+1)+\overbrace{a(-)^{J+1 / 2}\left(J+\frac{1}{2}\right)}] \quad A \equiv \frac{\hbar^{2}}{2 \mathcal{J}}
$$

Rotational relations (Alaga rules) on electromagnetic transitions

$$
B\left(E 2 ; J_{i} \rightarrow J_{f}\right) \propto\left(J_{i} K 20 \mid J_{f} K\right)^{2}\left(e Q_{0}\right)^{2} \quad e Q_{0} \propto\left\langle\phi_{K}\right| Q_{2,0}\left|\phi_{K}\right\rangle
$$

e.g., D. J. Rowe, Nuclear Collective Motion: Models and Theory (World Scientific, Singapore, 2010).

Figure from D. J. Rowe and J. L. Wood, Fundamentals of Nuclear Models: Foundational Models (World Scientific, Singapore, 2010).

${ }^{9} \mathrm{Be}$: NCCI calculated energies and $E 2$ transitions

Yrast and excited bands in ${ }^{10} \mathrm{Be}$

From D. Suzuki et al., Phys. Rev. C 87, 054301 (2013).

Extrapolation: Exponential in $N_{\max }$ (3-point); see P. Maris, J. P. Vary, and A. M. Shirokov, Phys. Rev. C 79, 014308 (2009).

Convergence of bands in ${ }^{10} \mathrm{Be}$ with Daejeon16

M. A. Caprio, P. J. Fasano, A. E. McCoy, P. Maris, J. P. Vary, Bulg. J. Phys. 46, 455 (2019)
(SDANCA19), arXiv:1912.06082.

"Leading" $\mathrm{U}(3)$ irreps for ${ }^{10} \mathrm{Be}$

Intrinsic deformation for irrep (λ, μ) $\beta \propto(Q \cdot Q)^{1 / 2}$
$\propto\left(\lambda^{2}+\lambda \mu+\mu^{2}+3 \lambda+3 \mu+3\right)^{1 / 2}$
$\gamma=\tan ^{-1}\left(\frac{\sqrt{3}(\mu+3)}{2 \lambda+\mu+3}\right)$

Proton-neutron $\mathrm{SU}(3)$ structure $\underbrace{\pi(2,0)}_{\text {prolate }} \times \underbrace{v(0,2)}_{\text {oblate }} \Rightarrow(2,2)$

Elliott model

$H \propto-Q \cdot Q=-6 C(\lambda, \mu)+3 \mathbf{L}^{2}$
M. A. Ca. M. A. Caprio, University of Notre Dame
M. A. Caprio, A. E. McCoy, P. J. Fasano, and T. Dytrych, Bulg. J. Phys. 49, 57 (2022) (SDANCA21).

Summary

Simple patterns in complex nuclei
Can we predict nuclei $a b$ initio?
Schrödinger \Rightarrow Matrix eigenproblem
Challenge: Computational scale explosion
Emergence of rotational patterns
M. A. Caprio, P. J. Fasano, P. Maris, A. E. McCoy, and J. P. Vary, Eur. Phys. J. A 56, 120 (2020).

Coexistence of low-lying bands with different shape

