Diffractive Production of Vector Mesons: A BLFQ Perspective

Guangyao Chen Jacksonville University

Outlines

- Basis Light Front Quantization
- **QED** in Basis Light Front Quantization
- **QCD** in Basis Light Front Quantization
- □Small-Basis Light Front Quantization
- Diffractive Heavy Quarkonium production

Outlines

- Basis Light Front Quantization
- **QED** in Basis Light Front Quantization
- **QCD** in Basis Light Front Quantization
- □Small-Basis Light Front Quantization
- Diffractive Heavy Quarkonium production

BLFQ Introduced

PHYSICAL REVIEW C 81, 035205 (2010)

Hamiltonian light-front field theory in a basis function approach

J. P. Vary,¹ H. Honkanen,¹ Jun Li,¹ P. Maris,¹ S. J. Brodsky,² A. Harindranath,³ G. F. de Teramond,⁴ P. Sternberg,^{5,*} E. G. Ng,⁵ and C. Yang⁵

IMP, Lanzhou, China

Basis Light-front Quantization

Finding spectrum using light-front Hamiltonian

 $H_{LF}|\psi_h\rangle = M_h^2|\psi_h\rangle, \quad (H_{LF} \equiv P^+ \hat{P}_{LF}^- - \vec{P}_{\perp}^2)$

- Adopting basis according to the symmetry of system
- Advantages:
- Boost Invariant Amplitude
- Parton Interpretation
- Fully relativistic
- Moore's Law

General Procedures of BLFQ Vary et al '10

- Derive LF-Hamiltonian from Lagrangian
- lacksquare Construct basis states $|\alpha\rangle\,$, and truncation scheme
- **D** Evaluate Hamiltonian in the basis
- Diagonalize Hamiltonian and obtain its eigen states and their LF-amplitudes
- **D** Evaluate observables using LF-amplitudes
- Extrapolate to continuum limit

Basis Functions

$$\Box \text{ Fermion}$$

$$\Psi(x) = \sum_{\bar{\alpha}} \frac{1}{\sqrt{2L}} \int \frac{d^2 p^{\perp}}{(2\pi)^2} \left[b_{\bar{\alpha}} \tilde{\Phi}_{nm}(p^{\perp}) u(p,\lambda) e^{-i\mathbf{p}\cdot\mathbf{x}} + d_{\bar{\alpha}}^{\dagger} \tilde{\Phi}_{nm}^*(p^{\perp}) v(p,\lambda) e^{i\mathbf{p}\cdot\mathbf{x}} \right]$$

$$\Box \text{ 2D HO wavefunction in transverse plane}$$

$$\tilde{\Phi}_{nm}^b(p^{\perp}) = (2\pi) \frac{\sqrt{2}}{b} \sqrt{\frac{n!}{(n+|m|)!}} e^{-p^2/(2b^2)} \left(\frac{p}{b}\right)^{|m|} \times L_n^{|m|} \left(\frac{p^2}{b^2}\right) \frac{1}{\sqrt{2\pi}} e^{im\phi}$$

2D HO modes for n=4

Outlines

- □ Basis Light Front Quantization
- **QED** in Basis Light Front Quantization
- Heavy Quarkonium in Basis Light Front Quantization
- Diffractive Heavy Quarkonium Production

LF QED Hamiltonian

QED Lagrangian $\mathcal{L} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + \bar{\Psi}(i\gamma^{\mu}D_{\mu} - m_{e})\Psi$ Derived Light-front Hamiltonian $P^{-} = \int \mathrm{d}^{2}x^{\perp} \mathrm{d}x^{-} F^{\mu+} \partial_{+} A_{\mu} + i\bar{\Psi}\gamma^{+} \partial_{+}\Psi - \mathcal{L}$ $(\mathbf{A}^{+}=\mathbf{0})$ $= \int \mathrm{d}^2 x^{\perp} \mathrm{d} x^{-} \frac{1}{2} \bar{\Psi} \gamma^{+} \frac{m_e^2 + (i\partial^{\perp})^2}{i\partial^{+}} \Psi + \frac{1}{2} A^j (i\partial^{\perp})^2 A^j$ kinetic energy terms $+ e j^{\mu} A_{\mu} + \frac{e^2}{2} j^+ \frac{1}{(i\partial^+)^2} j^+ + \frac{e^2}{2} \bar{\Psi} \gamma^{\mu} A_{\mu} \frac{\gamma^+}{i\partial^+} \gamma^{\nu} A_{\nu} \Psi$ instantaneous instantaneous vertex interaction photon fermion interaction interaction 00000100000

IMP, Lanzhou, China

1st Application: Electron g-2

X. Zhao et al., PLB 737, (2014) 65, H. Honkanen et al., PRL 106, (2011), 061603 With wavefunction renormalization

Less than 0.1% deviation from Schwinger result
 Largest calculation with basis dim > 28 billion

2nd Application: Positronium with strong coupling

• Positronium spectrum at N_{max}=K=19,

 μ is a fictitious photon mass to regulate Coulomb singularity [P. Wiecki et al., PRD 91, 105009, 2015]

IMP, Lanzhou, China

Basis Light-Front Quantization (BLFQ) Positronium in QED at Strong Coupling ($\alpha = 0.3$) Systematic removal of regulators (b = HO momentum scale)

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015)

Positronium in QED at Strong Coupling Covariant Basis Light-Front Quantization (BLFQ)

P. Wiecki, Y. Li, X. Zhao, P. Maris and J.P. Vary, Phys. Rev. D 91, 105009 (2015); & to be published

Outlines

Basis Light Front Quantization
 QED in Basis Light Front Quantization
 QCD in Basis Light Front Quantization
 Small-Basis Light Front Quantization
 Diffractive Heavy Quarkonium production

1st QCD Application: Heavy Quarkonium

• Effective Hamiltonian in the $q\bar{q}$ sector Y. Li et al., PLB 758,118, 2016

$$H_{\text{eff}} = \underbrace{\frac{\vec{k}_{\perp}^2 + m_q^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\bar{q}}^2}{1 - x}}_{\text{LF kinetic energy}} + \underbrace{\kappa^4 x (1 - x) \vec{r}_{\perp}^2 - \frac{\kappa^4}{(m_q + m_{\bar{q}})^2} \frac{\partial}{\partial x} \left(x (1 - x) \frac{\partial}{\partial x} \right)}_{\text{confinement}} + \underbrace{\frac{V_g}{v}}_{\text{exchange}}$$

where
$$x = p_q^+/P^+$$
, $\vec{k}_\perp = \vec{p}_{q\perp} - x\vec{P}_\perp$, $\vec{r}_\perp = \vec{r}_{q\perp} - \vec{r}_{\bar{q}\perp}$.

Confinement

transverse holographic confinement [S.J.Brodsky, PR584, 2015] longitudinal confinement [Y.LI, PLB758, 2016]

One-gluon exchange with running coupling

$$V_g = -\frac{4}{3} \frac{4\pi\alpha_s(Q^2)}{Q^2} \bar{u}_{\sigma'} \gamma^\mu u_\sigma \bar{v}_s \gamma_\mu v_{s'}$$

- Basis representation
 - valence Fock sector: $|q\bar{q}\rangle$
 - basis functions: eigenfunctions of H₀ (LF kinetic energy+ confinement)

Mass Spectroscopy – fixed α

Y. Li et al., PLB 758,118, 2016

Mass Spectroscopy – running α

Y. Li et al., PRD 96, 016022, 2017

rms deviations: 31 – 38 MeV

Light-front Wavefunction: a complete solution Y. Li et al., PLB, 2016, PRD 2017

IMP, Lanzhou, China

Decay Constants

Y. Li et al., PRD 96, 016022, 2017

Derived from obtained LFWFs (no fitting)

Radiative Transitions

Y. Li et al., PRD 98, 034024, 2018

Derived from obtained LFWFs (no fitting) Y. Li et al., PRD 96, 016022, 2017

Heavy-light system

S. Tang, et al., PRD, 104, 016002, 2020

Heavy-Light systems

	N_f	κ (GeV)	m_c (GeV)	m_b (GeV)	m_s (GeV)	rms (MeV)	$N_{\text{max}} = L_{\text{max}}$
D_{s} (cš)	3	0.800	1.603	-	0.647	40 (9 states)	32
B_s (bš)	4	1.067	-	4.902	0.647	37 (4 states)	32

$$\kappa = \sqrt{(\kappa_{b\bar{b}/c\bar{c}}^2 + \kappa_{s\bar{s}}^2)/2}$$
, with $\kappa_{s\bar{s}} = 0.54 \text{ GeV}$

Decay constants calculated with $N_{max} = 8$ for D_s , $N_{max} = 32$ for B_s , corresponding to UV cutoffs:

$$\Lambda_{\rm UV} \triangleq \kappa \sqrt{N_{\rm max}} \approx m_q + m_a$$

Mass spectrum of heavy-light systems. States under open flavor threshold confirmed by experiments.

Light Mesons

W. Qian, et al., PRC, 102, 055207, 2020

J. Lan, et al., PLB, 825, 136890, 2022

Outlines

- Basis Light Front Quantization
 QED in Basis Light Front Quantization
 QCD in Basis Light Front Quantization
- □Small-Basis Light Front Quantization
- Diffractive Heavy Quarkonium production

Motivation

- Goals: simple-function charmonium LFWFs with few parameters!
- i. Approximation to QCD.
- ii. Retain more symetries.
- iii. Matching the NR limit.
- iv. Emphsis on decay width.

• We designed LFWFs for $\eta_{\rm c}$, J/ ψ , ψ ' and ψ (3770).

Basis functions

• LF holography/Basis LF Quantization Hamiltonian.

$$\begin{split} H_0 = & \frac{\vec{k}_{\perp}^2 + m_q^2}{x} + \frac{\vec{k}_{\perp}^2 + m_{\bar{q}}^2}{1 - x} \\ & + \kappa^4 x (1 - x) r_{\perp}^2 - \frac{\kappa^4}{(m_q + m_{\bar{q}})^2} \partial_x (x(1 - x) \partial_x) \; , \end{split}$$

- i. Two parameters: m_q and κ .
- ii. One-gluon interactions were treated perturbatively.
- The basis function representation.

$$\begin{split} \tilde{\psi}_{ss'/h}^{(m_j)}(\vec{r}_\perp, x) &= \sqrt{x(1-x)} \sum_{n,m,l} \psi_h^{(m_j)}(n,m,l,s,s') \\ \tilde{\phi}_{nm}(\sqrt{x(1-x)}\vec{r}_\perp) \chi_l(x) \;, \end{split}$$

Teramond and Brodsky, '09

Li et al., PLB 758, 118 (2016)

IMP, Lanzhou, China

Basis functions

• Small basis for charmonium states:

 $\psi_{\text{LF}-1S} = \psi_{0,0,0}$.

 $\psi_{\text{LF}-1P0} = \psi_{0,0,1}$,

 $\psi_{\rm LF-1P\pm 1} = -\psi_{0,\pm 1,0} \; .$

$$\psi_{\text{LF}-2S} = \sqrt{\frac{2}{3}}\psi_{1,0,0} - \sqrt{\frac{1}{3}}\psi_{0,0,2}$$

$$\psi_{\text{LF}-1D0} = \sqrt{\frac{1}{3}}\psi_{1,0,0} + \sqrt{\frac{2}{3}}\psi_{0,0,2}$$

$$\psi_{\rm LF-1D\pm 1} = -\psi_{0,\pm 1,1} ,$$

$$\psi_{\text{LF}-1D\pm 2} = \psi_{0,\pm 2,0}$$
.

J/ψ as a 1⁻⁻ state

- We assume a 100% LF-1S state for J/ψ .
- Matching J/ψ decay constant to the PDG value:

• We fix m_c and κ using the J/ψ decay constant.

M. Li et al., EPJC 82, 1045, 2022

IMP, Lanzhou, China

$\eta_{\rm c}$ as a 0^-+ state

• $\eta_{\rm c}$ predominantly LF-1S+LF-2S and LF-1P.

$$\psi_{\eta_c} = C_{\eta_c, 1S} \psi_{\text{LF}-1S, 0-+} + C_{\eta_c, 2S} \psi_{\text{LF}-2S, 0-+} \\ + C_{\eta_c, 1P} \psi_{\text{LF}-1P, 0-+} .$$

• Basis coeffecients are determined using the diphoton decay width $\Gamma(\eta_c \rightarrow \gamma \gamma)$.

ψ' as a 1⁻⁻ state

• A mix of LF-1S and LF-2S states for ψ' .

$$\begin{split} \psi_{\psi'}^{(m_j=0)} = & C_{\psi',1S}^{(m_j=0)} \psi_{\text{LF}-1S,1--}^{(m_j=0)} + C_{\psi',2S}^{(m_j=0)} \psi_{\text{LF}-2S,1--}^{(m_j=0)} , \\ \psi_{\psi'}^{(m_j=1)} = & C_{\psi',1S}^{(m_j=1)} \psi_{\text{LF}-1S,1--}^{(m_j=1)} + C_{\psi',2S}^{(m_j=1)} \psi_{\text{LF}-2S,1--}^{(m_j=1)} , \\ \psi_{\psi'}^{(m_j=-1)} = & C_{\psi',1S}^{(m_j=-1)} \psi_{\text{LF}-1S,1--}^{(m_j=-1)} + C_{\psi',2S}^{(m_j=-1)} \psi_{\text{LF}-2S,1--}^{(m_j=-1)} \end{split}$$

 Basis coeffecients are determined using the dilepton decay constant.

$$\left|f_{\mathcal{V}}\right|_{m_j=0}$$
 = $\left|f_{\mathcal{V}}\right|_{m_j=\pm 1}$ = $f_{\mathcal{V},\text{experiment}}$.

IMP, Lanzhou, China

ψ (3770) as a 1⁻⁻ state

• A mix of LF-1S, LF-2S, LF-1D states for ψ (3770), LF-1D is dominating.

$$\begin{split} \psi_{\psi(3770)}^{(m_{j}=0)} = & C_{\psi(3770),1S}^{(m_{j}=0)} \psi_{\text{LF}-1S,1--}^{(m_{j}=0)} \\ &+ C_{\psi(3770),2S}^{(m_{j}=0)} \psi_{\text{LF}-2S,1--}^{(m_{j}=0)} \\ &+ C_{\psi(3770),1D}^{(m_{j}=0)} \psi_{\text{LF}-1D,1--}^{(m_{j}=0)} , \end{split}$$

• Basis coeffecients are determined by requiring orthogonality between ψ' and $\psi(3770)$.

LFWFs by design

IMP, Lanzhou, China

Masses calculated from small-basis LFWFs should be regarded as Estimated!

M. Li et al., EPJC 82, 1045, 2022 Y. Li et al., PLB 758, 118 (2016)

IMP, Lanzhou, China

The charge radii

• Defined in terms of the slope of the charge form factor at zero momentum transfer.

$$\langle r_h^2 \rangle = -6 \frac{\partial}{\partial Q^2} G_0(Q^2) \Big|_{Q \to 0}$$

/ · · · /					
(fm ²)	$\langle r_{\eta_c}^2 \rangle$	$\langle r_{J/\psi}^2 \rangle$	$\langle r_{\psi'}^2 \rangle$	$\langle r^2_{\psi(3770)} \rangle$	
this work	0.098	0.046	0.154	0.138	
BLFQ [27]	0.029(1)	0.0402(2)	0.13(0)	0.13(0)	

- J/ψ , ψ' and $\psi(3770)$ radii consistent with BLFQ calculations.
- A large size $\eta_{c}!$

M. Li et al., EPJC 82, 1045, 2022 Li et al., PLB 758, 118 (2016)

Parton Distribution Functions (PDFs)

IMP, Lanzhou, China

Outlines

Basis Light Front Quantization
 QED in Basis Light Front Quantization
 QCD in Basis Light Front Quantization
 Small-Basis Light Front Quantization
 Diffractive Heavy Quarkonium production

Proton at High Energy

Our knowledge of proton is rapidly evolving

□ Proton at high energy?

- 3D tomography
- Saturation
- Spin

Exclusive Diffractive Processes

Girst observed at HERA

- 15% events are diffractive
- Characterized by rapidity gap
- X_{probed} $(Q^2 + M_X^2) / W^2$

Ultra-Peripheral Collisions

- Photon-nuclear interaction
- WW formalism for Photon flux ~ Z²
- x_{probed} up to 10⁻⁵ at LHC

Electron-Ion Collider

A collider with versatile range of kinematics and beam polarizations, as well as beam species, wide energy variability and high luminosity, the next QCD frontier: 3D tomography of proton, spin, saturation, etc.

Exclusive process in the dipole picture

□Photon LFWF: pQED Dipole cross section □Vector meson LFWFs $\Box_{\mathcal{A}_{T,L}^{\gamma^*p\to Ep}}(x,Q,\Delta) = \mathrm{i} \int d^2 \vec{r} \int_0^1 \frac{dz}{4\pi} \int d^2 \vec{b} \, (\Psi_E^*\Psi)_{T,L}$ $\Box \text{Probing gluon density at small-} x e^{-i[\vec{b} - (1-z)\vec{r}] \cdot \vec{\Delta}} \frac{d\sigma_{q\bar{q}}}{d^2\vec{b}}$ A. Mueller, '90 $\sigma \sim [xg(x_{IP},Q^2)]^2$ A. Mueller, 90 N. Nikolaev, '91 K. Golec-Biernat el al., '99

J/ψ production at HERA

IMP, Lanzhou, China

HERA: cross-section ratio

GC et al., PLB 769, 477, 2017

ZEUS, 2016. H1, 2006.

J/ Ψ from pp/Pb-Pb UPC

GC et al., PLB 769, 477, 2017

ALICE, 2013. CMS, 2016. LHCb, 2018

J/Ψ from UPC

GC et al., PLB 769, 477, 2017 M. Li et al., EPJC, 82, 1045, 2022 ALICE, 2013. CMS, 2016.

$\Upsilon(1s)$ from pp UPC at LHC

GC et al., PRC 100, 025208, 2019

LHCb, 2015

Cross section ratio

GC et al., PLB 769, 477, 2017

ZEUS, 2016.

Cross section ratio, Upsilons

GC et al., PRC 100, 025208, 2019

Future Opportunities

- Extended to higher Fock Sector LFWFs, with increasing computing power.
- □Higher excited states available at EIC, LHeC, Electron-ion collider in China (EicC).

Higher Excited States at EIC

Preliminary

Summary

- The BLFQ framework can solve the hadron system efficiently.
- The BLFQ approach naturally provides LFWFs of mesons.
- We can check BLFQ LFWFs at Future nuclear collision facilities, such as EIC.

Happy Birthday, James!

Backup Slides

Basis Function

• Transverse:

$$\phi_{nm}(\vec{k}_{\perp}) = \kappa^{-1} \sqrt{\frac{4\pi n!}{(n+|m|)!}} \left(\frac{k_{\perp}}{\kappa}\right)^{|m|} \exp(-k_{\perp}^2/(2\kappa^2))$$
$$L_n^{|m|}(k_{\perp}^2/\kappa^2) \exp(im\theta_k) ,$$

• Longitudinal:

$$\begin{split} \chi_l(x) &= \sqrt{4\pi(2l+\alpha+\beta+1)} \sqrt{\frac{\Gamma(l+1)\Gamma(l+\alpha+\beta+1)}{\Gamma(l+\alpha+1)\Gamma(l+\beta+1)}} \\ & x^{\beta/2}(1-x)^{\alpha/2} P_l^{(\alpha,\beta)}(2x-1) \;, \end{split}$$

Sample Basis Function

Mirror Parity and Chargeconjugation

TABLE I. Basis states $\psi_{nml}\sigma_{s\bar{s}}$ categorized by the mirror parity $m_{\rm P}$ according to Eq. (17).

m_j	m	$m_{P} = 1$	$m_{\rm P} = -1$
0	0	$\psi_{n,0,l}\sigma_+$	$\psi_{n,0,l}\sigma_{-}$
U	±1	$\frac{1}{\sqrt{2}}(\psi_{n,-1,l}\sigma_{\uparrow\uparrow}-\psi_{n,1,l}\sigma_{\downarrow\downarrow})$	$\frac{1}{\sqrt{2}}(\psi_{n,-1,l}\sigma_{\uparrow\uparrow}+\psi_{n,1,l}\sigma_{\downarrow\downarrow})$
	0	$\psi_{n,0,l}\sigma_{\uparrow\uparrow},\psi_{n,0,l}\sigma_{\downarrow\downarrow}$	$\psi_{n,0,l}\sigma_{\uparrow\uparrow}, -\psi_{n,0,l}\sigma_{\downarrow\downarrow}$
1, -1	±1	$\psi_{n,1,l}\sigma_{\pm}, \mp \psi_{n,-1,l}\sigma_{\pm}$	$\psi_{n,1,l}\sigma_{\pm}, \pm \psi_{n,-1,l}\sigma_{\pm}$
	±2	$\psi_{n,2,l}\sigma_{\downarrow\downarrow},\psi_{n,-2,l}\sigma_{\uparrow\uparrow}$	$\psi_{n,2,l}\sigma_{\downarrow\downarrow}, -\psi_{n,-2,l}\sigma_{\uparrow\uparrow}$

TABLE II. Basis states $\psi_{nml}\sigma_{s\bar{s}}$ categorized by the charge conjugation C according to Eq. (18).

m+l	C = 1	C = -1
even	$\psi_{n,m,l}\sigma_{-}$	$\psi_{n,m,l}\sigma_+,\psi_{n,m,l}\sigma_{\uparrow\uparrow},\psi_{n,m,l}\sigma_{\downarrow\downarrow}$
odd	$\psi_{n,m,l}\sigma_{+},\psi_{n,m,l}\sigma_{\uparrow\uparrow},\psi_{n,m,l}\sigma_{\downarrow\downarrow}$	$\psi_{n,m,l}\sigma_{-}$

J/ψ Decay Constant

$$\begin{split} f_{\mathcal{V}}|_{m_{j}=0} &= \sqrt{2N_{c}} \int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{x(1-x)}} \int \frac{\mathrm{d}^{2}k_{\perp}}{(2\pi)^{3}} \\ \psi_{+/\mathcal{V}}^{(m_{j}=0)}(\vec{k}_{\perp},x) \;, \end{split}$$

$$\begin{split} f_{\mathcal{V}}|_{m_{j}=1} = & \frac{\sqrt{N_{c}}}{2m_{\mathcal{V}}} \int_{0}^{1} \frac{\mathrm{d}x}{[x(1-x)]^{3/2}} \int \frac{\mathrm{d}^{2}k_{\perp}}{(2\pi)^{3}} \\ & \left\{ k^{L}[(1-2x)\psi_{+/\mathcal{V}}^{(m_{j}=1)}(\vec{k}_{\perp},x) - \psi_{-/\mathcal{V}}^{(m_{j}=1)}(\vec{k}_{\perp},x)] \right. \\ & \left. - \sqrt{2}m_{f}\psi_{\uparrow\uparrow/\mathcal{V}}^{(m_{j}=1)}(\vec{k}_{\perp},x) \right\}, \end{split}$$

$\Upsilon(1s)$ in γp at LHC

GC et al., in preparation

Equal time vs. Light-front Quantization

IMP, Lanzhou, China