

Evgeny Epelbaum, Ruhr University Bochum

Workshop in celebration of James' 80th Jubilee IMP CAS, Lanzhou, June 5, 2023

Nuclear chiral interactions: Recent developments

on the occasion of James' 80th birthday

Picture taken by Peter Druck in Skiathos during Lightcone 2013+

10th anniversary of the Low-Energy Nuclear Physics International Collaboration

The first LENPIC meeting took place on July 4, 2013, at Ruhr University Bochum

see: www.lenpic.org

"LENPIC aims to solve the structure and reactions of light nuclei including electroweak observables with consistent treatment of the corresponding exchange currents."

Chiral EFT for nuclear forces back in 2013...

- The Bochum-Bonn and Idaho NN chiral N³LO potentials: Nonlocal regulators, semiquantitative description of NN data
- The leading 3NF (at N²LO) well established and implemented in the partial-wave basis
- Derivation of the N³LO contributions to the 3NF completed in 2011 Bernard, EE, Krebs, Meißner These corrections are <u>parameter-free</u> but involve complicated expressions and rich operator structure ⇒ manual partial wave decomposition not feasible...

Some milestones (LENPIC and beyond)

Partial wave decomposition of the 3NF

 $\langle p'q'\alpha' | V_{3N} | pq\alpha \rangle = \sum \int \underbrace{d\hat{p}'d\hat{q}'d\hat{p}\,d\hat{q}}_{NN}(\vec{p}',\vec{q}',\vec{p},\vec{q}) \, [\text{CG's}] \, Y^{\star}_{l'm'}(\hat{p}') \, Y^{\star}_{\lambda'\mu'}(\hat{q}') \, Y_{lm}(\hat{p}) \, Y_{\lambda\mu}(\hat{q})$

 $|(l \Lambda)L(s 1/2)S(LS)JM_{J}\rangle$ can be reduced to a 5-dimensional integration Golak et al., EPJA 43 (2010)

Still computationally involved (need $\sim 10^5 \times 10^5$ MEs); has been further optimized using the fact that (unregularized) 3NFs are either local (long-range) or polynomial Hebeler et al., PRC 91 (15)

• 3NF beyond N³LO

The strongest contribution to the 2π -exchange NN potential is generated from diagrams involving subleading π N vertices governed by the Δ :

$$\frac{\Delta \text{-less EFT}}{c_{2,3,4}} +$$

This important physics is missing in the N³LO corrections to the 3NF

⇒ worked out N⁴LO corrections Krebs, Gasparyan, EE PRC 85 (12), 88 (13)

Nuclear current operators to N³LO

Worked out electromagnetic, weak and scalar nuclear currents completely up through N3LO

Kölling, EE, Krebs, Meißner, PRC 80 (2009), PRC 84 (2011); Krebs, EE, Meißner, Annals Phys. 378 (2017), Few Body Syst. 60 (2019); Eur. Phys. J. A 56 (2020)

Regularization and cutoff artifacts

Non-locally regularized potentials (EE-Glöckle-Meißner '05, Entem-Machleidt '03, Entem-Machleidt-Nosyk '17)

New LENPIC NN interactions (EE, Krebs, Meißner, EPJA 51 (15), PRL 115 (15), Reinert, Krebs, EE, EPJA 5(18))

$$V_{1\pi}(q) = \frac{\alpha}{\vec{q}^{\,2} + M_{\pi}^{2}} e^{-\frac{\vec{q}^{\,2} + M_{\pi}^{2}}{\Lambda^{2}}} + \text{subtraction}, \qquad V_{2\pi}(q) = \frac{2}{\pi} \int_{2M_{\pi}}^{\infty} d\mu \mu \frac{\rho(\mu)}{\vec{q}^{\,2} + \mu^{2}} e^{-\frac{\vec{q}^{\,2} + \mu^{2}}{2\Lambda^{2}}} + \text{subtractions}$$

+ nonlocal (Gaussian) cutoff for contacts

Both issues solved!

SMS chiral NN potentials

Reinert, Krebs, EE, EPJA 54 (18) 86; PRL 126 (21) 092501

Statistically perfect description of mutually consistent NN scattering data

(own database of 2124 proton-proton + 2935 neutron-proton data below $E_{lab} = 290 \text{ MeV}$)

high-precision "realistic" potentials				ldaho χEFT		Bochum SMS χEFT		
	Nijm I	Nijm II	Reid93	CD Bonn	$N^{4}LO^{+}_{450}$	$\mathrm{N}^{4}\mathrm{LO}_{500}^{+}$	$N^4 LO^+_{450}$	$\mathbf{N}^{4}\mathbf{LO}_{500}^{+}$
	1.061	1.070	1.078	1.042	2.019	1.203	1.013	1.015

Reinert, Krebs, EE, 2021

Resulting neutron-proton phase shifts

Negligible residual cutoff dependence @N⁴LO⁺

Few-N systems and light nuclei to N²LO

P. Maris et al. (LENPIC), Phys. Rev. C 103 (2021) 5, 054001

n Dn

C;

α

Bayesian approach to estimate truncation errors: BUQEYE (Furnstahl et al. '15 - '23), EE et al. '20

Ci Ci

σσ

Regularization again...

- Nuclear potentials are derived using dimensional regularization
- Schrödinger equation is regularized using a cutoff
 - \Rightarrow consistent procedure?

	Two-nucleon force	Three-nucleon force	Four-nucleon force	
LO (Q ⁰)	XH	—		
NLO (Q ²)	XAAMI	—	—	
N²LO (Q³)	현점	H+ HX X	_	
N³LO (Q⁴)	X44¥-	↓ ↓ ↓	₩₩₩-	
N⁴LO (Q⁵)	K	₩ 	┼┿┼┦┝╌╳┤┉	

Regularization again...

Faddeev equation for 3N scattering:

If $V_{2\pi}^{3N}$ were calculated with a cutoff, the problematic divergence would cancel exactly. This issue affects all loop contributions beyond N²LO to 3NF and currents. In contrast, NN forces are not affected (at a fixed M_{π}).

⇒ Re-derive nuclear forces & currents using SYMMETRY PRESERVING cutoff regularization

Hermann Krebs, EE: Work in progress using Gradient Flow Regularization

Example: gradient flow reg. of the 4NF

Hermann Krebs, EE, in preparation

Consider e.g. the contribution to the 4NF at N³LO involving a 4π -vertex:

Unregularized expression: EE, PLB 639 (2006) 456; EPJA 34 (2007) 197

$$V_{4N} = \frac{g_A^4}{2(2F_\pi)^6} \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \ \vec{\sigma}_2 \cdot \vec{q}_2 \ \vec{\sigma}_3 \cdot \vec{q}_3 \ \vec{\sigma}_4 \cdot \vec{q}_4}{\left(\vec{q}_1^2 + M_\pi^2\right) \left(\vec{q}_2^2 + M_\pi^2\right) \left(\vec{q}_3^2 + M_\pi^2\right) \left(\vec{q}_4^2 + M_\pi^2\right)} \left[\left(\vec{q}_1 + \vec{q}_2\right)^2 + M_\pi^2 \right]$$

+ 3-pole terms + all permutations

Applying the gradient flow regularization method consistent with the 2NF yields: Hermann Krebs, EE, preliminary

$$V_{4N} = \frac{g_A^4}{2(2F_\pi)^6} \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \ \vec{\sigma}_2 \cdot \vec{q}_2 \ \vec{\sigma}_3 \cdot \vec{q}_3 \ \vec{\sigma}_4 \cdot \vec{q}_4}{(\vec{q}_1^2 + M_\pi^2) (\vec{q}_2^2 + M_\pi^2) (\vec{q}_3^2 + M_\pi^2) (\vec{q}_4^2 + M_\pi^2)} \Big[(\vec{q}_1 + \vec{q}_2)^2 + M_\pi^2 \Big] \\ \times \Big(4 e^{-\frac{\vec{q}_2^2 + M_\pi^2}{\Lambda^2}} e^{-\frac{\vec{q}_3^2 + M_\pi^2}{\Lambda^2}} e^{-\frac{\vec{q}_4^2 + M_\pi^2}{\Lambda^2}} - 3 e^{-\frac{\vec{q}_1^2 + M_\pi^2}{2\Lambda^2}} e^{-\frac{\vec{q}_2^2 + M_\pi^2}{2\Lambda^2}} e^{-\frac{\vec{q}_3^2 + M_\pi^2}{2\Lambda^2}} e^{-\frac{\vec{q}_4^2 + M_\pi^2}{2\Lambda^2}} \Big) \\ + 3\text{-pole terms + all permutations}$$

Off-shell ambiguities of NN forces

Off-shell effects cannot be observed in QFT. How does this work out in xEFT?

Off-shell ambiguities of nuclear forces

$$\Rightarrow \ \delta H = U^{\dagger}HU - H = \sum_{i} \gamma_{i} \left[\left(H_{kin} + V_{1\pi}^{(0)} + V_{cont}^{(0)} + \mathcal{O}(Q^{2}) \right), T_{i} \right] + \mathcal{O}(\gamma_{i}^{2})$$

induce N⁴LO 3NFs with enhanced LECs ($m_{N} \sim \Lambda_{b}^{2}/Q \gg \Lambda_{b}$) \Rightarrow contribute at N⁸LO
induce off-shell NN contact interactions; setting $D_{1S0}^{\text{off}} = 0$ requires choosing $\gamma_{i} \sim m_{N}/\Lambda_{b}$

Implications see also Girlanda, Marcucci, Kiebsky, Viviani, PRC 102 (20)

- if power counting works, taking any natural-size D_i^{off} should yield similar NN fits
- if setting $D_i^{\text{off}} = 0$, some N⁴LO 3NFs depending on 3 LECs must be promoted to N³LO

— alternatively, D_i^{off} in V_{NN} can be fixed from 3N data at N³LO (they become redundant at N⁴LO)

Off-shell ambiguities of nuclear forces

Sven Heihoff et al., work in progress

Extended the SMS N⁴LO⁺ potential ($D_i^{\text{off}} = 0$) with 26 potentials: $D_S^{\text{off}} = \{-3,0,3\}, D_{\epsilon_1}^{\text{off}} = \{-1,0,1\}$

Consistently with power counting, nearly phase shift equivalent: $\chi^2_{datum} = 1.010...1.014$

Sensitivity of Nd elastic scattering observables

Sven Heihoff et al., work in progress

— emulating 3N scattering results works efficiently using interpolation in D_i^{off}

- getting ready to incorporate consistently regularized 3NFs@N³LO once available

LENPIC: Productive decade & exciting future ahead

Happy Birthday, James!