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There are many approaches to the many-body problem
(I’m going to focus on low-energy nuclear physics)

• Green’s function Monte Carlo
• Coupled cluster
• Self-consistent Green’s function
• Generator-coordinate/Monte Carlo shell model/
other “beyond mean-field”
• Algebraic methods
• Many-body perturbation theory
• …..
• Configuration-interaction shell model
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€ 

ˆ H Ψ = E Ψ

To get the many-body states, we use 
the matrix formalism (a.k.a configuration-interaction)

€ 

Ψ = cα α
α

∑

€ 

Hαβ = α ˆ H β

€ 

Hαβcβ
β

∑ = Ecα if

€ 

α β = δαβ
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A brief and incomplete history

1949: Goeppert-Mayer and Axel, Jensen & Suess show
spin-orbit splitting explain magic numbers. Single-particle
picture describes many measured magnetic moments.
(Non-interacting shell model)

1956: Edith Halbert and J. B. French perform early 
configuration-interaction (interacting shell model) 
calculations.

1965: Cohen-Kurath empirical interaction for valence p-shell
1977: Whitehead introduces Lanczos method
1980s: Valence sd-shell calcuations
1990s: Valence pf-shell calculations
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What’s all this 
emphasis on valence
shell calculations?

Empirical valence 
shell calculations 

were very successful!

But extending to 
multi-shell spaces 
proved challenging!

Multi-shell 
calculations starting
from valence space 

empirical interactions 
tended to go awry
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A brief and incomplete history

1970 Barrett and Kirson, 1972 Schucan and Weidenmuller:
intruder states can cause perturbative expansions 
to ultimately diverge.

This in particular applies to particle-hole states.

This makes expanding beyond the valence space problematic,
and almost kills the field (except for a stubborn few) for 
twenty years.
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A brief and incomplete history

But….

1970: Barrett and Kirson show that intruder states will 
cause any perturbative expansion to ultimate diverge.

This in particular applies to particle-hole states.

This makes expanding beyond the valence space problematic,
and virtually kills the field for twenty years.

Shell Model

1949-1970
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A brief and incomplete history

1991-1993: Barrett and Vary introduce the no-core 
shell model (cf. PRC 48, 1083 (1993))
Without a core, there is no ”particle-hole” expansion.

Around this same time high-precision phase shift data from
NN scattering became available. 

Fitted to this data, the Argonne potential showed one could
reproduce nuclear data.

Then chiral EFT gave a systematic way to characterize 
nuclear forces

The field lurches back to life!
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Modern many-body calculations

No-core shell model: in harmonic oscillator 
basis, “all” particles active (up to Nmax h.o. excitation
quanta), with high-precision interaction (e.g. chiral EFT,
Daejeon16, etc.) fit to few-body data

e.g. p-shell nuclides up to Nmax = 10 … 22
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Ab initio/ “No-core shell model”: take to infinite limit

Two parameters: h.o. basis frequency W
and model space cutoff Nmax

Naïve expectation: take Nmax -> infinity
Converged results independent of W
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FIG. 1. (Color online) The energy of the ground state (J= 3
2
) for 7Be and 7Li with the JISP16 and NNLOopt interactions as a

function of HO energy. In this figure and the following figures, for 7Li and 7Be, the Nmax value ranges from 8 up to 16. The
increment of Nmax is 2. Extrapolated ground state energies are shown in purple with uncertainties depicted as vertical bars.

atics of the other members of the same band obtained in
NCFC calculations with JISP16 are essential to demon-
strating emergence of collective rotational motion in 7Be.

We present three B(M1) transitions as a function of
the HO energy in Fig. 7 for 7Li and 7Be with a sequence
of Nmax values. The three top graphs display the B(M1)

transitions from the Jπ = 1
2

−

state to the Jπ = 3
2

−

ground state. The three middle graphs and the three
bottom graphs are from the Jπ = 5

2

−

1
state and the

Jπ = 5
2

−

2
state to the ground state, respectively. The

subscript 1 (2) on the 5
2

−

signifies the lower (upper) of

the two states with Jπ = 5
2

−

.

It is noteworthy that the top three graphs have
the same convergence pattern for 7Li and 7Be with
the JISP16 and NNLOopt interactions. Considering
the greatly expanded scales used for these B(M1)
results, one observes that good convergence is actually
attained in all cases shown in Fig. 7. In particular
the convergence at the highest Nmax shown is good
over a fairly large range in !Ω from about 15 MeV to
about 35 MeV. These B(M1)’s as well as the magnetic
dipole moments continue to be among the best converged
of the electromagnetic observables in NCFC calculations.

Features suggestive of the mixing of the two 5
2

−

states,

which were discussed above in connection with the behav-
iors of the excitation energies, are also apparent in the
B(M1) transitions of Fig. 7. The low and the high !Ω

regions of the 7Li transitions from these 5
2

−

states with
the JISP16 interaction, for example, appear to support
the discussions of mixing that were stimulated by the re-
sults for the excitation energies. This mixing is again
seen to decrease with increasing Nmax. In addition, one
may now interpret the results for the B(M1)s from the

two 5
2

−

states in 7Be as suggesting mixing that also de-
creases with increasing Nmax.

In order to better examine the nuclear structure and
the relationship between the different states, we present
the total magnetic moment and the contributions to
the total angular momentum from the orbital motions
of the proton and neutron as well as the contributions
from intrinsic spin in Fig. 8. We follow the procedures
presented in Ref. [32] and define these contributions
though matrix elements of the projections of these
individual contributions on the state’s total angular
momentum, i.e. by matrix elements of the terms on the
right-hand side of the following equation:

J =
1

J + 1
(< !J ·!Lp > + < !J ·!Ln > + < !J ·!Sp > + < !J ·!Sn >).

(5)

From Heng, Vary, Maris: arXiv:1602.00156
Extrapolation via assumed exponential  𝐸 𝑁!"# = 𝐸 ∞ + 𝑎 exp(−𝑐𝑁max )
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Natural orbitals

Natural orbitals arise from diagonalizing the 
(g.s.) one-body density matrix. Widely used in 
quantum chemistry.
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FIG. 4: Infrared basis extrapolations for the 6He ground state
energy (top) and point proton radius (bottom), based on cal-
culations in the harmonic oscillator basis (left) and natural or-
bital basis (right). The extrapolations (diamonds) are shown
along with the underlying calculated results (plain lines) as
functions of ~! at fixed Nmax (as indicated). Experimen-
tal values (circles) are shown with uncertainties. The shaded
bands reflect the mean values and standard deviations of the
extrapolated results, at the highest Nmax, over the ~! range
considered.

spaces. Taking L ! 1, we extract E1 as an estimate
for the true energy. For mean square radii, it is expected
that, letting � ⌘ 2k1L,

r2(L) = r21[1� (c0 + c1�
�2)�3e�� ], (2)

for � � 1, where r1, c0, and c1 are similarly deduced
from calculations in truncated spaces, and r1 provides
an estimate of the true RMS radius.

The extrapolated values for the 6He ground state en-
ergy and proton radius are shown in Fig. 4. We restrict
ourselves to a straightforward application of (1) and (2),
based on three-point extrapolation in Nmax at fixed ~!.
Calculations at low ~! may not provide the assumed ul-
traviolet convergence, while poor infrared convergence at
high ~! leads to an excessively large correction and thus
poor extrapolation.

The extrapolated 6He ground state energies from the
natural orbital NCCI calculations [Fig. 4(b)] are con-
siderably less ~!-dependent than the extrapolated en-
ergies from the harmonic oscillator NCCI calculations
[Fig. 4(a)]. The extrapolations obtained for di↵erent
Nmax are also considerably more consistent (in the fig-
ure, Nmax refers to the highest Nmax in the three-point
extrapolation). The extrapolated ground state energies
obtained with the harmonic oscillator and natural orbital
bases at ~! = 20MeV (chosen close to the variational
energy minimum) and Nmax = 16 are consistent with

each other to within their respective variations, giving
E ⇡ �28.79MeV and E ⇡ �28.80MeV, respectively.

Once the many-body calculation is under control, any
remaining deviation of calculated values from nature may
be attributed to deficiencies in the internucleon interac-
tion. Comparing to the experimental binding energy of
29.27MeV thus indicates that the JISP16 interaction un-
derbinds 6He by ⇠ 0.5MeV.4 (For comparison, the bind-
ing of 4He obtained with JISP16 matches experiment to
within ⇠ 0.003MeV [29].)

The extrapolated proton radii extracted from the
NCCI calculations with the natural orbital basis
[Fig. 4(d)] similarly demonstrate a reduced ~! depen-
dence and Nmax dependence, as compared to the extrap-
olations from the oscillator-basis calculations [Fig. 4(c)].
At the highest calculated Nmax (Nmax = 16), the extrap-
olated rp varies only by ⇠ 0.02 fm across the range of ~!
values shown (~! ⇡ 14MeV to 40MeV), and the Nmax

dependence is comparable. We must emphasize that the
variations in extrapolated values at best provide a rough
guide to how well we can trust these extrapolated values
as reflecting the true radius which would be obtained in
an untruncated many-body calculation. Nonetheless, the
~!-independence and Nmax-independence of the calcula-
tions at the ⇠ 0.02 fm level is reassuring.

Taking the extrapolated proton radius at ~! = 20MeV
and Nmax = 16 as representative gives rp ⇡ 1.82 fm.5

Thus, it would appear that the ab initio NCCI calcu-
lations with the JISP16 interaction, while qualitatively
reproducing the increase in proton radius with the onset
of halo structure in 6He, do yield a quantitative shortfall
of ⇠ 0.12 fm (or ⇠ 6%) for the proton radius of 6He.

IV. CONCLUSION

Describing the nuclear many-body wave function
within truncated spaces is challenging due to the need
to describe, simultaneously, long-range asymptotics and
short-range correlations. Natural orbitals, obtained here
by diagonalizing one-body density matrices from initial
NCCI calculations using the harmonic oscillator basis,
build in contributions from high-lying oscillator shells,
thereby accelerating convergence.

In the present application to the halo nucleus 6He, im-
provement is by about one step in Nmax near the varia-
tional minimum in ~!, and significantly more for other
~! values (Fig. 3). To put these gains in perspective,
we note that an increment in Nmax results in an increase

4
The present extrapolations for the

6
He ground state energy are

consistent with the estimate E = �28.8(1)MeV [30] obtained

from the ad hoc exponential basis extrapolation scheme for the

oscillator basis [29, 43].
5
The present extrapolated result for the

6
He proton radius is

consistent with previous estimates [35] based on the “crossover

point” [43] of successive Nmax curves in a plot such as Fig. 3(b).

From 
Constantinou et al,

arXiv:1605.04976
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NCSM Convergence: Energies

Natural Orbitals
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§ MBPT natural-orbital basis eliminates frequency dependence 
and accelerates convergence of NCSM 
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From R. Roth, talk at TRIUMF, Feb 2018

Egs
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NCSM Convergence: Radii
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Some highlight achievements:
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Some highlight achievements:

• Can get spectra of light nuclei ”from first principles”
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Some highlight achievements:

• Can get spectra of light nuclei ”from first principles”

Maris , Vary, Navratil
PRC 87, 014327 (2013)

chiral 2+3 body forces

P. MARIS, J. P. VARY, AND P. NAVRÁTIL PHYSICAL REVIEW C 87, 014327 (2013)

TABLE I. The 7Be and 7Li ground- and excited-state energies
(in MeV) obtained using the chiral NN and chiral NN + NNN

interactions. The HO frequency of h̄! = 13 MeV and the 8h̄! model
space were used. Our measures of basis-space dependence are given
for the last two significant figures of the quoted theory result. Two
quantities, as explained in the text, are quoted in parenthesis for
excitation energies with the notation: (0.5 × total range of swing
with h̄! at Nmax = 8; difference at h̄! = 13 MeV between Nmax = 6
and 8 results). Only the second quantity is quoted for the magnitude
of the total ground-state energy. The 7Be states labeled “mixed iso”
have large isospin mixing and their basis-space dependence can be
approximated by the dependencies in the corresponding states of 7Li.
Experimental values are from Ref. [29].

Expt. NN NN + NNN

7Be
|Egs( 3

2
− 1

2 )| 37.6004(5) 32.75 36.98(43)
Ex( 1

2
−
1

1
2 ) 0.429 0.233 0.371 (67;24)

Ex( 7
2

−
1

1
2 ) 4.57(5) 5.28 5.14 (21;11)

Ex( 5
2

−
1

1
2 ) 6.73(10) 6.66 7.43 (17;23)

Ex( 5
2

−
2

1
2 ) 7.21(6) 8.12 8.11 (04;18)

Ex( 7
2

−
2

1
2 ) 9.27(10) 10.52 10.98 (25;31)

Ex( 3
2

−
2

1
2 ) 9.9 9.29 10.13 (46;30)

Ex( 1
2

−
2

1
2 ) 10.00 10.91 (49;35)

Ex( 3
2

−
3

1
2 ) 11.57 12.28 (mixed iso)

Ex( 3
2

−
1

3
2 ) 11.01(3) 12.10 12.38 (mixed iso)

7Li
|Egs( 3

2
− 1

2 )| 39.245 34.34 38.60(44)
Ex( 1

2
−
1

1
2 ) 0.478 0.238 0.382 (69;24)

Ex( 7
2

−
1

1
2 ) 4.65 5.36 5.20 (22;12)

Ex( 5
2

−
1

1
2 ) 6.60 6.72 7.50 (16;23)

Ex( 5
2

−
2

1
2 ) 7.45 8.35 8.31 (01;17)

Ex( 3
2

−
2

1
2 ) 8.75 9.58 10.43 (44;28)

Ex( 1
2

−
2

1
2 ) 9.09 10.29 11.18 (47;33)

Ex( 7
2

−
2

1
2 ) 9.57 10.81 11.28 (24;29)

Ex( 3
2

−
1

3
2 ) 11.24 12.25 12.46 (18;28)

resonance width. This may be useful for estimating relative
widths [28].

From the Nmax = 8 curve in Fig. 1 we select the optimal
frequency as h̄! = 13 MeV for examining our results in
greater detail. This adoption sets one of the inputs to the
determination of the basis-space dependence in excitation
energies as just described. We also define the basis-space
dependence of our total ground-state energy as the difference
in total energy at this adopted minimum for the basis-space
increment from Nmax = 6 to 8. As an example, this produces
the estimate of 0.44 MeV for the 7Li ground-state energy which
is quoted in parenthesis next to the eigenvalue in Table I.

We observe a similarity in the Nmax dependence or results
in Figs. 1 and 2. In both cases, our estimated uncertainties
range up to several hundred keV (see Table I). However, in
the absence of a firm trend in Nmax for our results, one should
not take our quoted uncertainties as estimates of numerical
accuracy but rather as characteristics of the dependence of the
results on the presently available basis spaces.

Exp 8hΩ 6hΩ 4hΩ
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FIG. 3. (Color online) Calculated and experimental excitation
energies of 7Li. Dependence on the size of the basis is presented.
The chiral EFT NN and NNN interaction was used. The isospin of
the states is T = 1/2 unless shown otherwise. See the text for further
details.

We show the low-lying spectra of 7Li in Fig. 3 at the
optimum frequency and at the sequence of Nmax truncations
corresponding to the curves in Fig. 1. The energies, radii, and
electromagnetic observables are summarized in Tables I and
II, where we also include the 7Be results. We obtain the same
level ordering for 7Be and 7Li which is also the same for both
NN and the NN + NNN interactions with the exception of
a reversal of the 7/2−

2 and 3/2−
2 levels in 7Be. That is, in 7Be,

the experimental 7/2−
2 and 3/2−

2 levels are reversed compared
to our results and the situation in 7Li. On the other hand, our
NN + NNN ordering is in agreement with experiment for the
nine lowest states in 7Li.

Our calculated spectra for both of the A = 7 nuclei show a
reasonable stability with respect to the frequency change. The
results in Table I (and A = 8 results in Tables III and VI below)
indicate that there are residual differences between theoretical
and experimental energies that are significantly larger than
our quoted basis-space dependence of the calculated results. It
will be interesting to see if the differences between theory and
experiment persist once more accurate calculations become
feasible. If they do, the question becomes whether these
differences are significantly reduced, for example, when a
chiral NNN interaction becomes available that is more
complete than the one currently available [33].

We present in Table II a selection of results for magnetic
moments, M1 transitions and other properties of the A = 7
nuclei. All electromagnetic observables are evaluated with the
free-space electromagnetic coupling constants. That is, we do
not employ effective charges or effective magnetic moments
for the nucleons.

The results in Table II with NN alone and NN + NNN
interactions are both in reasonable agreement with experiment.
One observes that there is a trend for radii and quadrupole
moments to increase with increasing basis size and/or de-
creasing frequency. This is, in part, a consequence of the
incorrect asymptotics of the HO basis and also our basis-space

014327-4
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Some highlight achievements:

• Can get spectra of light nuclei ”from first principles”

Maris et al PRC 90, 014314 (2014)

12C with chiral 2+3 body forces

Hoyle state
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Some highlight achievements:

• Can get spectra of light nuclei ”from first principles”

Navratil and Ormand, PRC 68, 
034305 (2003)

10B. with 2+3 body forces

Here 3-body needed to get 
correct ordering of spectra

and 22
!1 states when TNI is included, again an improvement

compared to experiment.

E. 11B, 11C

There were no published NCSM calculations for 11B up
to now. Our 11B results with and without the TNI are sum-
marized in Table VI and Fig. 5. We compare results obtained
using three-body effective interaction derived from the AV8!

two-nucleon interaction and from the AV8!!TM!(99) inter-
action in the 4!" basis space using the same optimal fre-
quency as for 10B, i.e., !""15 MeV. All shown calculated
states are 0!" dominated. It is not straightforward to make
a correct correspondence to the experimental T" 1

2 levels, in
particular, above 10 MeV of excitation energy. We follow
Refs. #27,28$ in making assignments in Table VI and Fig. 5.
The T" 3

2 level energies are taken from Refs. #29,30$. As for
10B, in Fig. 5, the two-nucleon interaction excitation energy
results are displayed relative to the 1

2 1
# 1

2 state while in Table
VI the same results are given relative to the 3

2 1
# 1

2 state. Given
the complicated situation in neighboring 10B, it is quite in-
teresting to investigate 11B. Although we have not done a
detailed frequency dependence study as for 10B, our present
calculation suggests that the AV8! NN potential by itself
might produce the incorrect ground state 1

2 1
# 1

2 instead of the
experimentally observed 3

2 1
# 1

2 state. More calculations are
needed to explore this issue but based on our present calcu-

TABLE V. Experimental and calculated energies, in MeV,
ground-state point-proton rms radii, the quadrupole moments, as
well as E2, in e2 fm4 transitions of 10B, 10Be, and 10C, as well as
selected Gamow-Teller transitions. Results obtained using three-
body effective interactions derived from the AV8! and AV8!
!TM!(99) interactions are presented. A HO frequency of !"
"15 MeV was employed. The experimental values are from Refs.
#24,39–41$.

10B Expt. AV8!!TM!(99) AV8!
Basis space 4!" 4!"

!E(3!0)! 64.751 60.567 54.833
rp(3!0)#fm$ 2.30%12& 2.168 2.196
Q3!0 #e fm2$ !8.472(56) !5.682 !5.937
'3!0 #'N

2 $ !1.8006 !1.847 !1.857
!E(1!0)! 64.033 60.227 55.979
'1!0 #'N

2 $ !0.63(12) !0.802 !0.843
Ex(31

!0) 0.0 0.0 0.0
Ex(11

!0) 0.718 0.340 #1.146
Ex(01

!1) 1.740 1.259 1.039
Ex(12

!0) 2.154 1.216 1.664
Ex(21

!0) 3.587 2.775 1.579
Ex(32

!0) 4.774 5.971 4.363
Ex(21

!1) 5.164 5.182 4.553
Ex(22

!0) 5.92 3.987 3.470
Ex(41

!0) 6.025 5.229 4.732
Ex(22

!1) 7.478 7.491 5.741
B(E2;11

!0→31
!0) 4.13%6& 1.959 3.568

B(E2;12
!0→31

!0) 1.71%26& 1.010 0.047
B(E2;12

!0→11
!0) 0.83%40& 3.384 2.311

B(E2;32
!0→11

!0) 20.5%26& 3.543 3.289
10Be AV8!!TM!(99) AV8!

Basis space Expt. 4!" 4!"

!Eg.s.! 64.977 61.387 55.840
rp#fm$ 2.24%8& 2.087 2.113
Ex(01

!1) 0.0 0.0 0.0
Ex(21

!1) 3.368 3.877 3.463
Ex(22

!1) 5.958 6.241 4.706
Ex(11

!1) 8.532 7.582
Ex(31

!1) 9.856 8.190
Ex(23

!1) 9.4 10.036 9.040
10B→10Be Expt. AV8!!TM!(99) AV8!

Basis space 4!" 4!"

B(GT;31
!0→21

!1) 0.08%3& 0.066 0.062
B(GT;31

!0→22
!1) 0.95%13& 1.291 1.554

TABLE V. %Continued.&

10C AV8!!TM!(99) Expt. AV8!
Basis space 4!" 4!"

!Eg.s.! 60.321 56.626 51.141
rp#fm$ 2.31%3& 2.246 2.279
Ex(01

!1) 0.0 0.0 0.0
Ex(21

!1) 3.354 3.913 3.508
Ex(22

!1) 6.133 4.612
Ex(11

!1) 8.437 7.453
Ex(31

!1) 9.773 8.145
Ex(23

!1) 10.049 9.009
10C→10B Expt. AV8!!TM!(99) AV8!

Basis space 4!" 4!"

B(GT;01
!1→11

!0) 3.44 4.331 4.748
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FIG. 4. %Color online& Calculated positive-parity excitation
spectra of 10B obtained in 4!" basis space using three-body effec-
tive interaction derived from the AV8! NN potential and AV8! NN
potential plus TM!(99) three-nucleon interaction, respectively, are
compared to experiment. The HO frequency of !""15 MeV was
used. The experimental values are from Ref. #24$.

PETR NAVRÁTIL AND ERICH W. ORMAND PHYSICAL REVIEW C 68, 034305 %2003&
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Some highlight achievements:

• Can compute anomalously long lifetime of 14C 
from first principles: Maris et al, PRL 106 202502 (2011)
(requires 3-body forces)
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• Can compute scattering/reactions from first principles

Ab INITIO MANY-BODY CALCULATIONS OF . . . PHYSICAL REVIEW C 82, 034609 (2010)
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FIG. 4. (Color online) Calculated n-4He (left panels) and p-4He
(right panels) compared to the R-matrix analysis of experimental
data [35]. The NCSM/RGM calculations that included the 4He ground
state and the 0+0 excited state were performed by using the SRG-
N3LO NN potential with ! = 2.02 fm−1. The HO frequency h̄" =
20 MeV and Nmax = 17 basis space were employed.

Overall, the present results obtained with the SRG-N3LO NN
interaction agree better with the experiment than our earlier
calculations [18,19] with the Vlow k , N3LO, and CD-Bonn
NN potentials. The only exception is the S-wave phase shift,
which is best described by using the CD-Bonn NN potential.
The larger spin-orbit strength of the employed SRG-N3LO
potential with respect to N3LO itself is likely responsible for
the improved agreement.

As our calculated phase shifts agree with the experimental
ones reasonably well above the c.m. energy of 8 MeV, we
expect a similar behavior for cross section and analyzing power
in that energy range. This is indeed the case as shown in Fig. 5,
where the calculated differential cross section and analyzing
power are compared to experimental data from Karlsruhe [36]
with polarized neutrons of En = 17-MeV laboratory energy.
For the cross-sectional experimental data, see also references
in Ref. [36]. The cross section is reproduced remarkably
well at all angles, and the analyzing power is in reasonable
agreement with the data, particularly at backward angles. The
same quality of agreement can be found for all energies far
from the low-lying resonances, as shown in the right panel of
Fig. 5 for the analyzing power at En = 15 and 19 MeV.

A better display of the dependence of our calculated cross
section and analyzing power upon the incident nucleon energy
is provided by Fig. 6, where the p-4He results for these
observables are compared to the data of Ref. [37] at the proton
laboratory energies of Ep = 5.95, 7.89, 9.89, and 11.99 MeV.
As expected from the behavior of the phase shifts described
earlier, for energies relatively close to the resonance region, we
find a rather poor agreement with the experiment, particularly
noticeable in the analyzing power overall and in the cross
section at backward angles. However, starting at about 10 MeV,
the agreement improves substantially, and data are once again
reproduced in a quite satisfactory way at higher energies, as
shown in Fig. 7, where the NCSM/RGM p-4He results are
compared to various experimental data sets [37–40] in the
energy range Ep ∼ 12–17 MeV.
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FIG. 5. (Color online) Calculated n-4He differential cross section for neutron laboratory energy of (a) En = 17 MeV, and analyzing power
for (b) En = 17, (c) 15, and (d) 19 MeV compared to experimental data from Ref. [36]. The NCSM/RGM results include the 4He ground
state and the first 0+0 excited state and were obtained by using the SRG-N3LO NN potential with ! = 2.02 fm−1 for an HO frequency
h̄" = 20 MeV and basis space size Nmax = 17.
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Navratil, Roth, Quaglioni
PRC 82, 034609 (2010)
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• Can compute scattering/reactions from first principles

Navratil, Bertulani, Caurier
Phys Lett B 634, 191 (2006)

194 P. Navrátil et al. / Physics Letters B 634 (2006) 191–194

Fig. 3. The 7Be(p, γ )8B S-factor obtained using the NCSM cluster form factors
with corrected asymptotics by the WS solution fit. Experimental values are from
Refs. [6,7,9].

Table 5
The calculated 7Be(p, γ )8B S-factor, in eV b, at the energy of 10 keV. Two
ways of correcting the NCSM overlap asymptotics, by the Woods–Saxon po-
tential solution fit (WS) and by a direct Whittaker function matching (Whit),
are compared. The asymptotic normalization constants, in fm−1/2, correspond
to the Whittaker function matching case

CD-Bonn 2000

h̄Ω [MeV] Nmax SWS
17 (10) SWhit

17 (10) C1,3/2 C1,1/2

15 6 17.80 16.81 0.647 0.195
15 8 18.87 17.58 0.660 0.206
15 10 19.81 18.33 0.672 0.216
14 10 20.21 18.78 0.680 0.220
13 10 21.02 19.64 0.692 0.234
12 6 21.24 19.75 0.693 0.240
12 8 21.14 19.96 0.696 0.242
12 10 21.66 20.45 0.704 0.247
11 6 22.38 21.30 0.715 0.261
11 8 23.04 21.33 0.715 0.263
11 10 23.06 21.60 0.720 0.262
NCSM S17(10 keV) 22.1 ± 1.0

Fig. 3 shows the astrophysical S-factor for the reaction
7Be(p,γ )8B. We use bound-state wave functions calculated
with the CD-Bonn 2000 interaction in the 10h̄Ω model space
and the HO frequency h̄Ω = 12 MeV. The WS solution fit pro-
cedure was employed to correct the asymptotics of the NCSM
overlap functions. The S-factor contributions from the domi-
nant l = 1, j = 3/2 and j = 1/2 partial waves are drawn by the
dashed lines. The full line is the sum of the two contributions.
The experimental data is a compilation of the latest experiments
for the S-factor. They include direct, as well as some indirect
measurements (Coulomb dissociation). The slope of the curve
corresponding to the total S-factor follows the trend of the data.
Our result is in a very good agreement with the recent direct
measurement data of Ref. [7].

In order to judge the convergence of our S-factor calculation,
we performed a detailed investigation of the model-space-size
and the HO-frequency dependencies. In Table 5, we summarize
our S-factor results at 10 keV. We observe a steady increase of
the S-factor with the basis size enlargement for higher frequen-

cies. Contrary to this situation, the calculation using the HO
frequency of h̄Ω = 11 MeV and the WS solution fit shows that
the S-factor does not increase any more with increasing Nmax.
We also present the S17 and the ANC obtained using the al-
ternative direct Whittaker matching procedure. In general, both
procedures lead to basically identical energy dependence with
a difference of about 1 to 2 eV b in the S-factor with the smaller
values from the direct Whittaker function matching procedure.
Results at h̄Ω = 11 and 12 MeV show very weak dependence
on Nmax, with relative difference between the two methods al-
ways in the range of 5 to 8%. The full range of results is covered
by S17(10 keV) = 22.1 ± 1.0 eV b. We stress that no adjustable
parameters were used in our ab initio calculations of the 8B
and 7Be bound states. Taking into account that the S-factor is
only weakly dependent on the potential model used to obtain
the scattering state, we consider our results as the first ab ini-
tio prediction of the 7Be(p,γ )8B S-factor, in particular of its
normalization.
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Maris et al PRC 90, 014314 (2014)

12C with chiral 2+3 body forces

Hoyle state

The Hoyle state in 
12C is a problem!
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Haxton and Johnson, PRL 65, 1325 
(1990)

There’s a similar state 
in 16O

VOLUME 65, NUMBER 11 PHYSICAL REVIEW LETTERS 10 SEPTEMBER 1990
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mined by the Lanczos algorithm, with about 270 itera-
tions yielding full convergence for the ten lowest-energy
states. In the spirit of BG, the strong interaction was
only allowed to operate within the Ip-2s ld shells. (This
choice also eliminates large 2hro and 4hro lplh ampli-
tudes that could mix into the low-lying states only be-
cause the shell-model interaction does not properly
respect the Hartree-Fock condition. ) The adopted Oh'
Hamiltonian was formed from the Cohen and Kurath
1p-shell interaction, the Brown and Wildenthal 2s1d-
shell interaction, and the Millener and Kurath cross-shell
interaction, with the four single-particle energy splittings
fitted to the isoscalar even-J states. We used the bare
Kuo g matrix for V "". All configurations were al-
lowed to interact through the center-of-mass Hamiltoni-
an H, , and spurious components were removed by add-
ing a large multiple of H, to the potential described
above. The same Hamiltonian was used in a 3hro calcu-
lation of the negative-parity states.

The calculated and experimental isoscalar spectra of
Fig. 1 are in very good agreement. We also show the
spectrum that would result from diagonalizing H in a
2hro model space. This illustrates the importance of the
2t1ro-4hro interaction in reducing the energy splitting
between the ground state and those states that are pri-
marily 2ttro in character (e.g. , the 01+-21+ splitting is
lowered by almost 8 MeV). The quality of the isovector
spectrum is similar to that of Fig. 1, with the lowest five
states in ' F well reproduced. A low-lying 0+1 state
(-16 MeV) not seen experimentally is predicted. The

isovector 0, 1,2,3 group is also nicely reproduced.
The principal diSculty with the isoscalar negative-parity
spectrum is the failure to generate a second 1 0 state
near 9.59 MeV.

Table I shows the OpOh, 2p2h, and 4p4h probabilities
of the first 0+ states in our calculation and in that of
BG. (Note that the 0+ 12.29-MeV state is the correct
analog of the 03+ BG state, since the nearby 0+ state at
12.80 MeV is 73% 4p4h. ) In the schematic model the
OpOh probability summed over the three 0+ states must
give 1, while in the shell model it mixes with the full set
of 0+ states in the 4hro space. As the OpOh fraction in
the first three states is about 50%, the 2p2h and 4p4h
shell-model fractions must be correspondingly larger.
Despite this, the schematic and shell-model results are
not too different: The correspondence for the 6.05-
MeV state, which is primarily a 4p4h state, is very close,
while both calculations conclude that about 70% of the
strength in the 03+ state is 2p2h.

The large intrinsic quadrupole moments that are pos-
tulated in the schematic model provide a simple explana-
tion of the enhancements found in ' 0 E2 transitions.
We can now test whether this physics emerges from the
shell-model and realistic WV interactions. As the shell
model makes no explicit assumption about the single-
particle basis, one must interpret the E2 transition densi-
ty matrices in terms of suitable radial wave functions.
We have used Ginocchio potential wave functions,
which are algebraic and yet closely resemble numerical
finite-well wave functions (such as Woods-Saxon). The
parameters of this potential were adjusted to reproduce
the elastic (e,e') form-factor diA'raction minimum and
the height and location of the second diA'raction max-
imum, as well as the 1pii2 and lp3i2 binding energies.
The single-particle spherical shell model for ' 0 pro-
duces an unbound 113/2 state, and in this respect does
not provide an appropriate basis for interpreting transi-
tion density matrices between bound states. In a de-
formed well this problem need not arise, since the d3/2
amplitudes could be sensibly associated with bound
Nilsson orbitals. We avoid this complication by appeal-
ing to the schematic model, where the sd-shell excita-
tions of ' 0 involve a single bound Nilsson level (No. 6).
This motivates our choice of a single binding energy for
the sd-shell orbits in the Ginocchio well, which we take
as the average of the shell-model 2sii2, 1d~i2, and 1d3/2

0
0 0

TABLE I. Comparison of the shell-model (SM) and BG
OpOh, 2p2h, and 4p4h probabilities for the first three 0+ states

l 6~

expt 4b ~ g.S.
Probability BG SM

02+ (6.05 MeV)
BG SM

0+
BG SM

FIG. 1. A comparison of experiment and the 4hco ' 0
shell-model spectrum of T=O states. The spectrum resulting
from diagonalizing the same Hamiltonian in a 2hco space is
also shown.

OpOh
2p2h
4p4h

0.76 0.42 0.07
0.22 0.45 0.05
0.02 0.1 3 0.88

0.04
0.05
0.90

0.17 0.03
0.73 0.68
0.10 0.30
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mined by the Lanczos algorithm, with about 270 itera-
tions yielding full convergence for the ten lowest-energy
states. In the spirit of BG, the strong interaction was
only allowed to operate within the Ip-2s ld shells. (This
choice also eliminates large 2hro and 4hro lplh ampli-
tudes that could mix into the low-lying states only be-
cause the shell-model interaction does not properly
respect the Hartree-Fock condition. ) The adopted Oh'
Hamiltonian was formed from the Cohen and Kurath
1p-shell interaction, the Brown and Wildenthal 2s1d-
shell interaction, and the Millener and Kurath cross-shell
interaction, with the four single-particle energy splittings
fitted to the isoscalar even-J states. We used the bare
Kuo g matrix for V "". All configurations were al-
lowed to interact through the center-of-mass Hamiltoni-
an H, , and spurious components were removed by add-
ing a large multiple of H, to the potential described
above. The same Hamiltonian was used in a 3hro calcu-
lation of the negative-parity states.

The calculated and experimental isoscalar spectra of
Fig. 1 are in very good agreement. We also show the
spectrum that would result from diagonalizing H in a
2hro model space. This illustrates the importance of the
2t1ro-4hro interaction in reducing the energy splitting
between the ground state and those states that are pri-
marily 2ttro in character (e.g. , the 01+-21+ splitting is
lowered by almost 8 MeV). The quality of the isovector
spectrum is similar to that of Fig. 1, with the lowest five
states in ' F well reproduced. A low-lying 0+1 state
(-16 MeV) not seen experimentally is predicted. The

isovector 0, 1,2,3 group is also nicely reproduced.
The principal diSculty with the isoscalar negative-parity
spectrum is the failure to generate a second 1 0 state
near 9.59 MeV.

Table I shows the OpOh, 2p2h, and 4p4h probabilities
of the first 0+ states in our calculation and in that of
BG. (Note that the 0+ 12.29-MeV state is the correct
analog of the 03+ BG state, since the nearby 0+ state at
12.80 MeV is 73% 4p4h. ) In the schematic model the
OpOh probability summed over the three 0+ states must
give 1, while in the shell model it mixes with the full set
of 0+ states in the 4hro space. As the OpOh fraction in
the first three states is about 50%, the 2p2h and 4p4h
shell-model fractions must be correspondingly larger.
Despite this, the schematic and shell-model results are
not too different: The correspondence for the 6.05-
MeV state, which is primarily a 4p4h state, is very close,
while both calculations conclude that about 70% of the
strength in the 03+ state is 2p2h.

The large intrinsic quadrupole moments that are pos-
tulated in the schematic model provide a simple explana-
tion of the enhancements found in ' 0 E2 transitions.
We can now test whether this physics emerges from the
shell-model and realistic WV interactions. As the shell
model makes no explicit assumption about the single-
particle basis, one must interpret the E2 transition densi-
ty matrices in terms of suitable radial wave functions.
We have used Ginocchio potential wave functions,
which are algebraic and yet closely resemble numerical
finite-well wave functions (such as Woods-Saxon). The
parameters of this potential were adjusted to reproduce
the elastic (e,e') form-factor diA'raction minimum and
the height and location of the second diA'raction max-
imum, as well as the 1pii2 and lp3i2 binding energies.
The single-particle spherical shell model for ' 0 pro-
duces an unbound 113/2 state, and in this respect does
not provide an appropriate basis for interpreting transi-
tion density matrices between bound states. In a de-
formed well this problem need not arise, since the d3/2
amplitudes could be sensibly associated with bound
Nilsson orbitals. We avoid this complication by appeal-
ing to the schematic model, where the sd-shell excita-
tions of ' 0 involve a single bound Nilsson level (No. 6).
This motivates our choice of a single binding energy for
the sd-shell orbits in the Ginocchio well, which we take
as the average of the shell-model 2sii2, 1d~i2, and 1d3/2

0
0 0

TABLE I. Comparison of the shell-model (SM) and BG
OpOh, 2p2h, and 4p4h probabilities for the first three 0+ states

l 6~

expt 4b ~ g.S.
Probability BG SM

02+ (6.05 MeV)
BG SM

0+
BG SM

FIG. 1. A comparison of experiment and the 4hco ' 0
shell-model spectrum of T=O states. The spectrum resulting
from diagonalizing the same Hamiltonian in a 2hco space is
also shown.

OpOh
2p2h
4p4h
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0.73 0.68
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One can think of 
these as alpha-
cluster states
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These cluster states are not easy to 
reproduce in the NCSM.

They may require as much as 30hw
excitations in a h.o. basis (T. Neff),

yet they appear low in the spectrum
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Figure 6. Decomposition of the 12C ground state and the Hoyle state into Nh̄Ω components
for oscillator constants of 20 MeV (left) and 12 MeV (right).

than 8 or 10. It is therefore not surprising that the NCSM calculations for the ground state can
be converged. For the Hoyle state however, the distribution extends over a very large range of
Nh̄Ω. It is therefore clear that the Hoyle state can not be converged in NCSM calculations with
Nmax = 8 or even 10. The situation looks somewhat better for an oscillator parameter of 12 MeV
as shown on the right hand side of Fig. 6. Here the distribution for the Hoyle state peaks at
N = 8 and decays much more rapidly with N . However, standard NCSM calculations will not
be able to reach large enough spaces. Maybe approaches like the importance truncated no-core
shell model [29] or the symmetry adapted no-core shell model [30] will allow the description of
the Hoyle state within the oscillator basis in the future.
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5. Cluster States in 12C
The structure of the second 0+ state in 12C, the famous Hoyle state, is still one of the hottest
topics in nuclear structure. In [23] we investigated the structure of the Hoyle state using the
FMD approach. The model space consisted of configurations obtained by variation and a full
set of three-α configurations. A UCOM interaction with some phenomenological modifications
regarding the strength of the spin-orbit force and the saturation properties of the two-body
interaction was used in that calculation. We compared the results with a microscopic cluster
model using a phenomenological Volkov interaction. These cluster model calculations reproduced
previous results by Kamimura [24] and are also very close to those obtained by Funaki et al. [25].
We found for both models that the Hoyle state has a very dilute, extended three-α structure.
This is illustrated in Fig. 4 where we show the intrinsic FMD basis states that have the largest
overlap with the ground state and the Hoyle state.

We used these wave functions also to calculate the transition form factor from the ground state
to the Hoyle state. This transition form factor can be directly compared to electron scattering
data [23, 26]. The good agreement of calculation and experiment is a strong confirmation for a
spatially extended structure for the Hoyle state.

5.1. Two-body densities
Observables like radii and form factors are scalar quantities that provide information about
the size of the states but they do not provide direct information about the structure of the
states. The old question whether the Hoyle state should be interpreted as a linear chain of
α-particles, a triangular structure or a gas-like structure can therefore not be answered directly
by these experimental observables. There is also the questions of how we should compare the
wave functions obtained in different many-body approaches like the cluster model, the no-core
shell model or as obtained on the lattice [27].

In case of FMD or the cluster model the individual basis states can be easily interpreted
in terms of the intrinsic structure as shown in Fig. 4. However the eigenstates are linear
combinations of many basis states and the non-orthogonality of the basis states might question
the validity of the obtained picture.

To remedy this situation we propose to use two-body densities to analyze the structure of the
12C eigenstates. In Fig. 5 we show the diagonal part of the two-body density integrated over the
center-of-mass coordinates and summed over all spin-isospin channels which can be expressed
as

ρ(2)(r) =
〈

Ψ
∣

∣

∑

i<j

δ(r̂i − r̂j − r)
∣

∣Ψ
〉

. (4)

The two-body density ρ(2)(r) tells us about the probability to find a pair of nucleons at a
given distance r. In the case of 12C where we expect an intrinsic α-cluster structure the two-body
density should directly reflect the correlations between the α-clusters. The two-body density
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Figure 4. (Left) Intrinsic FMD basis state that has the largest overlap with the ground state.
(Right) The four intrinsic FMD basis states that have the largest overlaps with the Hoyle state.
The basis states are not orthogonal.
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See also: S. Shen, D. Lee, et al,
Nat. Commun. 14 (2023) 2777
(arXiv:2202.13596 ) for similar 
results on the lattice

12C Hoyle state main FMD configurations.
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These cluster states are not easy to 
reproduce in the NCSM.

They may require as much as 30hw
excitations in a h.o. basis (T. Neff),

yet they appear low in the spectrum

So basically we have the 
intruder state problem all 

over again! 
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mined by the Lanczos algorithm, with about 270 itera-
tions yielding full convergence for the ten lowest-energy
states. In the spirit of BG, the strong interaction was
only allowed to operate within the Ip-2s ld shells. (This
choice also eliminates large 2hro and 4hro lplh ampli-
tudes that could mix into the low-lying states only be-
cause the shell-model interaction does not properly
respect the Hartree-Fock condition. ) The adopted Oh'
Hamiltonian was formed from the Cohen and Kurath
1p-shell interaction, the Brown and Wildenthal 2s1d-
shell interaction, and the Millener and Kurath cross-shell
interaction, with the four single-particle energy splittings
fitted to the isoscalar even-J states. We used the bare
Kuo g matrix for V "". All configurations were al-
lowed to interact through the center-of-mass Hamiltoni-
an H, , and spurious components were removed by add-
ing a large multiple of H, to the potential described
above. The same Hamiltonian was used in a 3hro calcu-
lation of the negative-parity states.

The calculated and experimental isoscalar spectra of
Fig. 1 are in very good agreement. We also show the
spectrum that would result from diagonalizing H in a
2hro model space. This illustrates the importance of the
2t1ro-4hro interaction in reducing the energy splitting
between the ground state and those states that are pri-
marily 2ttro in character (e.g. , the 01+-21+ splitting is
lowered by almost 8 MeV). The quality of the isovector
spectrum is similar to that of Fig. 1, with the lowest five
states in ' F well reproduced. A low-lying 0+1 state
(-16 MeV) not seen experimentally is predicted. The

isovector 0, 1,2,3 group is also nicely reproduced.
The principal diSculty with the isoscalar negative-parity
spectrum is the failure to generate a second 1 0 state
near 9.59 MeV.

Table I shows the OpOh, 2p2h, and 4p4h probabilities
of the first 0+ states in our calculation and in that of
BG. (Note that the 0+ 12.29-MeV state is the correct
analog of the 03+ BG state, since the nearby 0+ state at
12.80 MeV is 73% 4p4h. ) In the schematic model the
OpOh probability summed over the three 0+ states must
give 1, while in the shell model it mixes with the full set
of 0+ states in the 4hro space. As the OpOh fraction in
the first three states is about 50%, the 2p2h and 4p4h
shell-model fractions must be correspondingly larger.
Despite this, the schematic and shell-model results are
not too different: The correspondence for the 6.05-
MeV state, which is primarily a 4p4h state, is very close,
while both calculations conclude that about 70% of the
strength in the 03+ state is 2p2h.

The large intrinsic quadrupole moments that are pos-
tulated in the schematic model provide a simple explana-
tion of the enhancements found in ' 0 E2 transitions.
We can now test whether this physics emerges from the
shell-model and realistic WV interactions. As the shell
model makes no explicit assumption about the single-
particle basis, one must interpret the E2 transition densi-
ty matrices in terms of suitable radial wave functions.
We have used Ginocchio potential wave functions,
which are algebraic and yet closely resemble numerical
finite-well wave functions (such as Woods-Saxon). The
parameters of this potential were adjusted to reproduce
the elastic (e,e') form-factor diA'raction minimum and
the height and location of the second diA'raction max-
imum, as well as the 1pii2 and lp3i2 binding energies.
The single-particle spherical shell model for ' 0 pro-
duces an unbound 113/2 state, and in this respect does
not provide an appropriate basis for interpreting transi-
tion density matrices between bound states. In a de-
formed well this problem need not arise, since the d3/2
amplitudes could be sensibly associated with bound
Nilsson orbitals. We avoid this complication by appeal-
ing to the schematic model, where the sd-shell excita-
tions of ' 0 involve a single bound Nilsson level (No. 6).
This motivates our choice of a single binding energy for
the sd-shell orbits in the Ginocchio well, which we take
as the average of the shell-model 2sii2, 1d~i2, and 1d3/2

0
0 0

TABLE I. Comparison of the shell-model (SM) and BG
OpOh, 2p2h, and 4p4h probabilities for the first three 0+ states

l 6~

expt 4b ~ g.S.
Probability BG SM

02+ (6.05 MeV)
BG SM

0+
BG SM

FIG. 1. A comparison of experiment and the 4hco ' 0
shell-model spectrum of T=O states. The spectrum resulting
from diagonalizing the same Hamiltonian in a 2hco space is
also shown.

OpOh
2p2h
4p4h

0.76 0.42 0.07
0.22 0.45 0.05
0.02 0.1 3 0.88

0.04
0.05
0.90

0.17 0.03
0.73 0.68
0.10 0.30
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One can phenomenologically reproduce spectra
for example, by adjusting single particle energies

16O  Haxton & CWJ,  PRL  65 (1990) 1325
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One can phenomenologically reproduce spectra
for example, by adjusting single particle energies

B. Dai, CWJ, et al,  PRC 103, 064327 (2021)

(adjust s.pe.s to fit levels in 15,17O 
relative to 16O)

TENSOR FORCE ROLE IN β DECAYS ANALYZED … PHYSICAL REVIEW C 103, 064327 (2021)

FIG. 3. Shell-model calculations of spectra for carbon isotopes, with the effective interaction derived from the D1S Gogny interaction
without and with the tensor force, indicated by D1S and D1S+T, respectively. The experimental data [33] and calculations using the WBP
interaction [15] are shown for comparisons.

FIG. 4. L decomposition for the g.s. wave functions of 14C
(a) and 14N (b) in the β decay of 14C(0+

g.s. ) → 14N(1+
g.s. ). The symbols

of D1S, D1S+T1 and D1S+T1+T0 indicate the calculations with
the D1S interaction only, the T1 tensor force added and both T1+T0
tensor forces included, respectively.

space beyond the p shell, indicating the importance of cross-
shell matrix elements.

While we have focused on the coupling of different
L components via the tensor forces, another recent analysis fo-
cused on the role of isoscalar pairing [43], which can become
incoherent depending on the relative sign of specific interac-
tion matrix elements (in the case of the 14C GT transition,

FIG. 5. The calculated GT transition strength M(GT) =∑Lmax
L=0 Meff

L (GT) for the 14C(0+
g.s. ) → 14N(1+

g.s. ) decay, with and
without the tensor forces. The experimental transition strength
is extracted by Mexp =

√
(2Ji + 1)Bexp(GT) [2].The insertion

displays the calculated individual effective transition strength Meff
L at

L = 2, 3, 4, separately, showing the cross-shell effects.

064327-5

Hoyle state
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One can phenomenologically reproduce spectra
or by adjusting the strength of an SU(3) Casimir

B. Dai, CWJ, et al,  PRC 103, 064327 (2021)

(adjust s.pe.s to fit levels in 15,17O 
relative to 16O)

Hoyle state

From Dreyfuss, Launey, et al,
PLB 727, 511 (2013)
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One can phenomenologically reproduce spectra
or by adjusting the strength of an SU(3) Casimir

B. Dai, CWJ, et al,  PRC 103, 064327 (2021)

(adjust s.pe.s to fit levels in 15,17O 
relative to 16O)

Hoyle state

From Dreyfuss, Launey, et al,
PLB 727, 511 (2013)

512 A.C. Dreyfuss et al. / Physics Letters B 727 (2013) 511–515

Fig. 1. Sp(3,R) irreps (slices) that comprise the spin-zero model space used for the 12C NCSpM calculations. Basis states (λµ) of a slice are built by 2h̄Ω 1p–1h monopole
or quadrupole excitation (Set II) over a bandhead. The symplectic bandhead (Set I) is a SU(3)-coupled many-body state with a given nucleon distribution over the HO shells.
The corresponding HO energy of this nucleon configuration together with the bandhead deformation, (λσ µσ ), serve to label the symplectic irrep.

states) together with low-lying states suggested to have a clus-
ter structure (0+

2 Hoyle state and its 2+ and 4+ excitations), as
well as a third low-lying 0+

3 state in 12C. We focus on excitation
energies and other observables such as matter rms radii, electric
quadrupole moments and E2 transition rates, as well as compare
to wavefunctions obtained by ab initio shell-model calculations us-
ing a realistic NN interaction. With no parameter adjustment, the
present model we find is also extensible to other light nuclei, as
demonstrated [17], for example, for the g.st. rotational band of 8Be
(and its low-lying 0+ states) as well as of 22Ne and 22,24Mg.

Symmetry-adapted shell-model framework. We employ the no-
core symplectic model (NCSpM) for symmetry-preserving interac-
tions with Sp(3,R) the underpinning symmetry [18]. This sym-
metry is found inherent to nuclear dynamics – a result we have
demonstrated in an analysis of large-scale ab initio NCSM applica-
tions for 12C and 16O [19]. The model offers a microscopic descrip-
tion of A nucleons in terms of mixed deformation configurations
and associated rotations [20], directly related to particle relative
(with respect to the center of mass, CM) position and momentum
coordinates, ri and pi , with i = 1, . . . , A. It has been successfully
applied to 20Ne [21] with a 16O core, as wells as to 166Er using
the Davidson potential [22]. It is a microscopic realization of the
Bohr–Mottelson collective model [16], as well as a multiple HO
shell generalization of Elliott’s SU(3) model [15].

The NCSpM utilizes a symplectic basis (for details, see [23]),
which is related – via a unitary transformation – to the three-
dimensional HO (m-scheme) many-body basis used in the NCSM
[24]. The NCSM basis is constructed using HO single-particle states.
It is characterized by the h̄Ω oscillator strength and by the cut-
off in total excitation oscillator quanta, Nmax. Indeed, the NCSpM
employed within a full model space up through Nmax, will coin-
cide with the NCSM for the same Nmax cutoff. It is therefore clear
that the present study, while down-selecting to the most relevant
configurations, provides the first shell-model calculations carried
beyond current NCSM limits. These important configurations are

chosen among all possible symplectic Sp(3,R) irreducible repre-
sentations (irreps) within the model space.

The Sp(3,R) irreps divide the space into ‘vertical slices’ that are
comprised of basis states of definite (λµ) quantum numbers of
SU(3) (Fig. 1) linked to the intrinsic quadrupole deformation [25].
E.g., the simplest cases, (0 0), (λ0), and (0µ), describe spherical,
prolate, and oblate deformation, respectively, while a general nu-
clear state is typically a superposition of several hundred various
triaxial deformation configurations. The basis states are built over
a bandhead (Fig. 1, Set I) by consecutive 2h̄Ω 1p–1h (1-particle–
1-hole) excitations (Fig. 1, Set II), together with a smaller 2h̄Ω
2p–2h (two particles a shell up) correction for eliminating the
spurious CM motion (not shown in the figure). In the NCSpM,
to eliminate the spurious CM motion, we use symplectic gener-
ators constructed in relative coordinates with respect to the CM.
These generators are used to build the basis, the interaction, the
many-particle kinetic energy operator, as well as to evaluate ob-
servables.

For the purposes of this study, we utilize a microscopic many-
body interaction suitable for large-Nmax no-core shell-model ap-
plications. Specifically, along with the usual spin-orbit term, we
employ an elementary form tied to a long-range expansion of the
nucleon–nucleon central force V (|ri − r j |) [26] kept as simple as
possible by considering the most relevant degrees of freedom for a
description of deformed spatial configurations [15,16],

Hγ =
A∑

i=1

(
p2

i

2m
+ mΩ2r2

i

2

)
+ χ

2
(e−γ Q ·Q − 1)

γ

− κ
A∑

i=1

li · si . (1)

This Hamiltonian is given in terms of particle coordinates relative
to the CM, with Q (2M) = ∑A

i=1 q(2M)i = ∑
i
√

16π/5r2
i Y(2M)(r̂i)

the mass quadrupole moment and with 1
2 Q · Q = 1

2
∑

i qi · (
∑

j q j)
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Furthermore, 
the islands of inversions 

and halo nuclei 
form a similar challenge to 

standard shell-model pictures
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CASE STUDY: 11LI
11Li makes for an excellent case study:

• Example of “island of inversion”

• Halo or extended state

• Small enough to be tackled numerically

• Testbed for techniques
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One proton outside a 
filled shell 
+ filled neutron shell

One proton outside a 
filled shell 
+ neutron 2p-2h

“island of inversion”

CASE STUDY: 11LI
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CASE STUDY: 11LI
11Li makes for an excellent case study

(The following results are preliminary)

3/2- g.s. is a halo state and on an island of inversion
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CASE STUDY: 11LI
11Li makes for an excellent case study

Calculations with Entem-Machleidt N3LO chiral 
(no 3-body) at hW = 20 MeV.

Also computed with natural orbitals
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CASE STUDY: 11LI
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CASE STUDY: 11LI
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CASE STUDY: 11LI

Mark Caprio

“The ratio Qp/r2p agrees
very well with experiment!”
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CASE STUDY: 11LI

Mark Caprio

“The ratio Qp/r2p agrees
very well with experiment!”

But let’s dig in deeper
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CASE STUDY: 11LI
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CASE STUDY: 11LI

3/21-

3/22-
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CASE STUDY: 11LI

3/21-

3/22-
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CASE STUDY: 11LI

Mark Caprio

“The ratio Qp/r2p agrees
very well with experiment…

for both 3/2- states!”
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CASE STUDY: 11LI

We can use the shell 
model to dissect the 

wavefunctions 
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CASE STUDY: 11LI

Group-
theoretical
Decomposition

Elliot SU(3)
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CASE STUDY: 11LI

Group-
theoretical
Decomposition

Symplectic
Sp(3,R)
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CASE STUDY: 29F
29F is an analog of 11Li

One proton outside a 
filled shell 
+ filled neutron shell

One proton outside a 
filled shell 
+ neutron 2p-2h

“island of inversion”



Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023 66

CASE STUDY: 29F
29F is an analog of 11Li

Nmax = 4, natural orbitals
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CASE STUDY: 29F
29F is an analog of 11Li

Nmax = 4, natural orbitals
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CASE STUDY: 29F

Nmax = 4

Group-
theoretical
Decomposition

Symplectic
Sp(3,R)
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CASE STUDY: 29F

Nmax = 4 

Group-
theoretical
decomposition

SU(4)
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CASE STUDIES: 11LI, 29F

I suggest 11Li, 29F as case studies for other methods
(coupled cluster, IM-SRG, symmetry adapted, 
lattice, etc.).



Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023 71

CASE STUDIES: 11LI, 29F

I suggest 11Li, 29F as case studies for other methods
(coupled cluster, IM-SRG, symmetry adapted, 
lattice, etc.).

We should also look for experimental observables to 
test our calculations (since the quadrupole moment, in 
11Li at least, does not differentiate between states).
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So what have we learned?

The no-core shell model 
reproduces some features 

easily
but others are 

very challenging!
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What are possible 
strategies for extending

the reach of the 
shell model?
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• “Beyond mean-field”/Generator-coordinate-like methods
cf. Dao & Nowacki, PRC 105, 054314 (2023)

* Proton-neutron factorization:
cf. Papenbrock & Dean, PRC 67, 051303(R)  (2003) +
CWJ, Gorton, J. Phys. G. 50, 045110 (2023).

* “Symmetry-adapted” approaches
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Symplectic Sp(3,R) Symmetry

(From K. Launey, LSU)
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8Be, 0gs 
+ 

0ħω: 42.5% 

2ħω: 29.4% 

4ħω: 14.3% 

6ħω: 8.4% 

8ħω: 5.4% 

79
.4
%

2.
9%

2.
0%

1.2
%

1.4
% N3LO

JISP16

N3LO

Launey et al., Prog. Part. Nucl. Phys. 89 (2016) 101
Dytrych et al., Phys. Rev. Lett. 111 (2013) 252501
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Collectivity features
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13 shells 
SA-NCSM (selected model space): 50 million SU(3) states 
Complete model space: 1000 billion states

Ne & Mg isotopes

Grigor Sargsyan, PhD student, LSU
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Group theory may be a 
natural framework for 
cluster physics

Kravvaris & Volya, PRL 119,
062501 (2017)

F lðρÞ ¼
X

n

χnΦnl: ð4Þ

The form of this expansion is determined variationally
using the generalized eigenvalue problem

X

n

HðlÞ
nn0χn0 ¼ E

X

n

N ðlÞ
nn0χn0 ; ð5Þ

where

HðlÞ
nn0 ¼ hΦnljHjΦn0li and N ðlÞ

nn0 ¼ hΦnljΦn0li: ð6Þ

The channel normalization requires
P

nN
ðlÞ
nn0χ

$
nχn0 ¼ 1.

Now, the Hamiltonian is used to establish the reaction
channels dynamically. For two-body reactions, the pro-
cedure amounts to an expansion of the relative motion in a
HO basis, where the expansion index n is the number of
nodes in the relative motion. For large n, which are
associated with large relative separation of the two frag-
ments, the basis channels Φnl become orthogonal and the
matrix elements of the relative motion Hamiltonian are
given by Coulomb and kinetic energy matrix elements that
are known analytically.
In general, these intermediate-range RGM solutions

should be properly matched or combined in the Hilbert
space with the asymptotic ones through other techniques
such as R matrix or CSM. For long-lived resonances, the
continuum coupling is weak and does not modify the
structure; in this limit, the perturbation theory is applicable;
therefore, Fermi’s golden rule and the spectroscopic ampli-
tudes characterize decay and reaction observables.
Let us demonstrate the approach using a well-known

8Be → αþ α example which, due to numerous previous
theoretical studies [7,23,54,55], emerged as a benchmark
for clustering methods. In addition, 8Be is a stark example
of collectivity and rotations in the continuum [3,56] where,
as being well established experimentally in many light
nuclei [6,8,9,57], strongly clustered rotational bands sur-
vive the complexity of many-body dynamics. In the limit
where a channel is constructed from two α particles with
structure limited to α½0', the norm kernel is diagonal and
nonzero only when 2nþ l ≥ 4 and l is even; it can be
computed analytically [58]:

N ðlÞ
nn0 ¼ δnn02ð1 − 22−2n−lÞ: ð7Þ

An example with four quanta in relative motion
(Nc ¼ 2nþ l) is included in Table I. Result (7) highlights
the bosonic nature of the α particle: Only even l are
allowed and with a growing number of quanta in the
relative motion, N ðlÞ

nn ≈ 2.
In Fig. 1, we show the spectrum of the RGM

Hamiltonian (5) computed using the SRG softened N3LO
nucleon-nucleon interaction with a softening parameter

λ ¼ 1.5 fm−1 [59,60]. The results from the corresponding
NCSM calculation 8Be½Nmax ¼ 4' and the experimental
spectrum are included for comparison. The radial part of
the RGM wave function for different values of l is shown
in the inset. The channel states are limited to a maximum
number of relative quanta Nc ≤ 12. Tests with different
Hamiltonians, with different values of ℏΩ, and with various
truncations by oscillator quanta in the relative α − α motion
ðNcÞ, as well as using more complex NCSM configurations
for the α, indicate that this is a generic result. Additional
details and comparisons can be inferred from the data in
Table II.
In comparison to the experiment, the relative energies

and the rotational band states 0þ, 2þ, and 4þ are well
reproduced. The full no-core calculation, which in general
includes cluster channels, naturally leads to a lower
absolute binding energy, but our results suggest that these
states in 8Be are indeed nearly indistinct from αþ α RGM
solutions. This structural information is highlighted by the
large overlaps between parent states Ψ and RGM channels
F l shown in Table II.
For the example in Fig. 1, the validity of expansion (4)

with 2nþ l ¼ Nc ≤ 12 is expected up to about ρ ∼ 4 fm.
Beyond that, the norm kernel transforms into that of

FIG. 1. Spectrum of RGM Hamiltonian with the SRG softened
N3LO interaction (λ ¼ 1.5 fm−1) and ℏΩ ¼ 25 MeV for a 2α
system. Zero on the energy scale is set by the αþ α breakup
threshold of the corresponding model. Levels are marked by spin
and parity and by an absolute binding energy in units of MeV.
The α binding energies for the α½0' and NCSM ðα½4'Þ calculations
are −26.08 and −28.56 MeV, respectively. The inset shows the
relative wave function of the two α clusters.

PRL 119, 062501 (2017) P HY S I CA L R EV I EW LE T T ER S
week ending

11 AUGUST 2017

062501-3
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J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller (and denser) still.

example:  12C Nmax = 8

scheme basis dim      # of nonzero matrix elements
M 6 x 108 5 x 1011

J (J=4) 9 x 107 3 x 1013

SU(3) 9 x 106 2 x 1012

(truncated)

From Dytrych, et al, arXiv:1602.02965
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J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller (and denser) still.

example:  12C Nmax = 8

scheme basis dim      # of nonzero matrix elements
M 6 x 108 5 x 1011

J (J=4) 9 x 107 3 x 1013

SU(3) 9 x 106 2 x 1012

(truncated)

From Dytrych, et al, arXiv:1602.02965
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J-scheme matrices are smaller but much denser than
M-scheme, and “symmetry-adapted” (i.e. SU(3)) 
matrices are smaller (and denser) still.

example:  12C Nmax = 8

scheme basis dim      # of nonzero matrix elements
M 6 x 108 5 x 1011 4 Tb of memory!
J (J=4) 9 x 107 3 x 1013 240 Tb of memory!
SU(3) 9 x 106 2 x 1012 16 Tb of memory!
(truncated)

From Dytrych, et al, arXiv:1602.02965

large dimension

but least amount of  work!
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states

M-scheme      J-scheme    SU(3)  GCM       coupled-cluster

1

1010

108

10 6

(not really diagonalization)
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states

1

1010

108

10 6

(not really diagonalization)
M-scheme      J-scheme    SU(3)  GCM       coupled-cluster

Dimension
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states

1

1010

108

10 6

(not really diagonalization)
M-scheme      J-scheme    SU(3)  GCM       coupled-cluster

Difficulty
to generate
matrix elements

Dimension
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states

1

1010

108

10 6

(not really diagonalization)
M-scheme      J-scheme    SU(3)  GCM       coupled-cluster

Difficulty
to generate
matrix elements

Dimension

Are there ways we can 
harness the efficiency of 
M-scheme but still get to 

larger spaces?
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Choice of wave function basis 

One chooses between a few, complicated states
or  many simple states

1

1010

108

10 6

(not really diagonalization)
M-scheme      J-scheme    SU(3)  GCM       coupled-cluster

Difficulty
to generate
matrix elements

Dimension

Are there ways we can 
harness the efficiency of 
M-scheme but still get to 

larger spaces?

That’s the 
question for 

future research!
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Summary:

First principles calculations of nuclear structure have
had many successes. 

An eternal barrier are intruders—
the alpha cluster states such as the Hoyle state in 12C 
and the 0+2 analog in 16O, as well as halo and IoI states

A rich variety of approaches are being pursued.

I propose 11Li and 29F as important test cases


