Successes and challenges of the shell model

Calvin W. Johnson

"This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Award Number DE-FG02-03ER41272 "

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Congratulations James!

SAN Diego State UNIVERSITY

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Congratulations James!

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Congratulations James!

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

There are many approaches to the many-body problem
(I'm going to focus on low-energy nuclear physics)

- Green's function Monte Carlo
- Coupled cluster
- Self-consistent Green's function
- Generator-coordinate/Monte Carlo shell model/ other "beyond mean-field"
- Algebraic methods
- Many-body perturbation theory
- Configuration-interaction shell model

To get the many-body states, we use the matrix formalism (a.k.a configuration-interaction)

$$
\begin{gathered}
\hat{\mathbf{H}}|\Psi\rangle=E|\Psi\rangle \\
|\Psi\rangle=\sum_{\alpha} c_{\alpha}|\alpha\rangle \quad H_{\alpha \beta}=\langle\alpha| \hat{\mathbf{H}}|\beta\rangle \\
\sum H_{\alpha \beta} c_{\beta}=E c_{\alpha} \quad \text { if } \quad\langle\alpha \mid \beta\rangle=\delta_{\alpha \beta}
\end{gathered}
$$

A brief and incomplete history

1949: Goeppert-Mayer and Axel, Jensen \& Suess show spin-orbit splitting explain magic numbers. Single-particle picture describes many measured magnetic moments.
(Non-interacting shell model)
1956: Edith Halbert and J. B. French perform early configuration-interaction (interacting shell model) calculations.

1965: Cohen-Kurath empirical interaction for valence p-shell 1977: Whitehead introduces Lanczos method 1980s: Valence $s d$-shell calcuations 1990s: Valence $p f$-shell calculations

A brief and incomplete history

What's all this emphasis on valence shell calculations?

rt ar hell

1965: Cohen-Kurath empirical interaction for valence p-shell 1977: Whitehead introduces Lanczos method 1980s: Valence $s d$-shell calcuations 1990s: Valence $p f$-shell calculations

A brief and incomplete history

cunner STATE

ll

But extending to

 multi-shell spaces
at's all this

 proved challenging!Empirical valence shell calculations were very successful!

But extending to

 multi-shell spaces proved challenging!
Multi-shell

calculations starting from valence space empirical interactions tended to go awry

Empirical valence shell calculations were very successful!

A brief and incomplete history

1970 Barrett and Kirson, 1972 Schucan and Weidenmuller: intruder states can cause perturbative expansions to ultimately diverge.

This in particular applies to particle-hole states.
This makes expanding beyond the valence space problematic, and almost kills the field (except for a stubborn few) for twenty years.

A brief and incomplete history

 Shell Model
A brief and incomplete history

1991-1993: Barrett and Vary introduce the no-core shell model (cf. PRC 48, 1083 (1993))
Without a core, there is no "particle-hole" expansion.

Around this same time high-precision phase shift data from NN scattering became available.

Fitted to this data, the Argonne potential showed one could reproduce nuclear data.

Then chiral EFT gave a systematic way to characterize nuclear forces

The field lurches back to life!

A brief and incomplete history

1991-1993: Barrett and Vary introduce the no-core shell model (cf. PRC 48, 1083 (1993)) Without a core, there is no "particle-hole" expansion.

Around this same time high-precision phase shift data from NN scattering became available.

Fitted to this data, the Argonne potential showed one could reproduce nuclear data.

Then chiral EFT gave a systematic way to characterize nuclear forces

The field lurches back to life!

Modern many-body calculations

No-core shell model: in harmonic oscillator basis, "all" particles active (up to $\mathrm{N}_{\text {max }}$ h.o. excitation quanta), with high-precision interaction (e.g. chiral EFT, Daejeon16, etc.) fit to few-body data
e.g. p-shell nuclides up to $\mathrm{N}_{\text {max }}=10 \ldots 22$

Ab initio/ "No-core shell model": take to infinite limit
Two parameters: h.o. basis frequency Ω and model space cutoff $\mathrm{N}_{\max }$

Naïve expectation: take $\mathrm{N}_{\text {max }}$-> infinity Converged results independent of Ω

FIG. 1. (Color online) The energy of the ground state ($\mathrm{J}=\frac{3}{2}$) for ${ }^{7} \mathrm{Be}$ and ${ }^{7} \mathrm{Li}$ with the JISP16 and NNLO opt interactions as a function of HO energy. In this figure and the following figures, for ${ }^{7} \mathrm{Li}$ and ${ }^{7} \mathrm{Be}$, the $N_{\text {max }}$ value ranges from 8 up to 16 . The increment of $N_{\max }$ is 2 . Extrapolated ground state energies are shown in purple with uncertainties depicted as vertical bars.

From Heng, Vary, Maris: arXiv:1602.00156
Extrapolation via assumed exponential $E\left(N_{\max }\right)=E(\infty)+a \exp \left(-c N_{\max }\right)$

Natural orbitals

Natural orbitals arise from diagonalizing the (g.s.) one-body density matrix. Widely used in quantum chemistry.

FIG. 4: Infrared basis extrapolations for the ${ }^{6} \mathrm{He}$ ground state energy (top) and point proton radius (bottom), based on calculations in the harmonic oscillator basis (left) and natural orbital basis (right). The extrapolations (diamonds) are shown along with the underlying calculated results (plain lines) as functions of $\hbar \omega$ at fixed $N_{\max }$ (as indicated). Experimental values (circles) are shown with uncertainties. The shaded bands reflect the mean values and standard deviations of the extrapolated results, at the highest $N_{\text {max }}$, over the $\hbar \omega$ range considered.

From
 Constantinou et al,

arXiv:1605.04976

Harmonic Oscillator

From R. Roth, talk at TRIUMF, Feb 2018

Harmonic Oscillator
Natural Orbitals

From R. Roth, talk at TRIUMF, Feb 2018

Some highlight achievements:

Some highlight achievements:

- Can get spectra of light nuclei "from first principles"

${ }^{9} \mathrm{Be}$

Some highlight achievements:

- Can get spectra of light nuclei "from first principles"

Maris , Vary, Navratil PRC 87, 014327 (2013)
chiral $2+3$ body forces

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Some highlight achievements:

- Can get spectra of light nuclei "from first principles"

Maris et al PRC 90, 014314 (2014)
${ }^{12} \mathrm{C}$ with chiral $2+3$ body forces

Some highlight achievements:

- Can get spectra of light nuclei "from first principles"

Navratil and Ormand, PRC 68, 034305 (2003)
${ }^{10}$ B. with $2+3$ body forces
Here 3-body needed to get correct ordering of spectra

Some highlight achievements:

- Can compute anomalously long lifetime of ${ }^{14} \mathrm{C}$ from first principles: Maris et al, PRL 106202502 (2011) (requires 3-body forces)

Some highlight achievements:

- Can compute scattering/reactions from first principles

FIG. 5. (Color online) Calculated $n-{ }^{4} \mathrm{He}$ differential cross section for neutron laboratory energy of (a) $E_{n}=17 \mathrm{MeV}$, and analyzing power for (b) $E_{n}=17$, (c) 15 , and (d) 19 MeV compared to experimental data from Ref. [36]. The NCSM/RGM results include the ${ }^{4} \mathrm{He}$ ground state and the first $0^{+} 0$ excited state and were obtained by using the $S R G-N^{3} L O N N$ potential with $\Lambda=2.02 \mathrm{fm}^{-1}$ for an HO frequency $\hbar \Omega=20 \mathrm{MeV}$ and basis space size $N_{\max }=17$.

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Some highlight achievements:

- Can compute scattering/reactions from first principles

Navratil, Bertulani, Caurier Phys Lett B 634, 191 (2006)

Fig. 3. The ${ }^{7} \mathrm{Be}(\mathrm{p}, \gamma)^{8} \mathrm{~B}$ S-factor obtained using the NCSM cluster form factors with corrected asymptotics by the WS solution fit. Experimental values are from Refs. [6,7,9].

${ }^{20} \mathrm{Ne}$

${ }^{20} \mathrm{Ne}$

SAN Diego State UNIVERSITY

By looking at the grouptheoretical decomposition, we can even show that the valence-space empirical and ab initio multi-shell wave functions have similar structure!

Maris et al PRC 90, 014314 (2014)
${ }^{12} \mathrm{C}$ with chiral $2+3$ body forces

The Hoyle state in ${ }^{12} \mathrm{C}$ is a problem!

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Haxton and Johnson, PRL 65, 1325 (1990)

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Haxton and Johnson, PRL 65, 1325

There's a similar state

One can think of

 these as alphacluster states

These cluster states are not easy to reproduce in the NCSM.
They may require as much as $30 h \omega$ excitations in a h.o. basis (T. Neff), yet they appear low in the spectrum

$$
\text { T. Neff, J. Phys. Conf. Ser. } 403012028 \text { (2012) }
$$

Journal of Physics: Conference Series 403 (2012) 012028

Figure 6. Decomposition of the ${ }^{12} \mathrm{C}$ ground state and the Hoyle state into $N \hbar \Omega$ components for oscillator constants of 20 MeV (left) and 12 MeV (right).

Fermionic molecular dynamics calculation with Argonne V18 potential

See also: S. Shen, D. Lee, et al, Nat. Commun. 14 (2023) 2777 (arXiv:2202.13596) for similar results on the lattice

${ }^{12} \mathrm{C}$ Hoyle state main FMD configurations.

These cluster states are not easy to reproduce in the NCSM.
They may require as much as $30 h \omega$ excitations in a h.o. basis (T. Neff), yet they appear low in the spectrum

So basically we have the intruder state problem all over again!

One can phenomenologically reproduce spectra for example, by adjusting single particle energies

${ }^{16} \mathrm{O}$ Haxton \& CWJ, PRL 65 (1990) 1325

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

One can phenomenologically reproduce spectra for example, by adjusting single particle energies

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

One can phenomenologically reproduce spectra or by adjusting the strength of an $\mathrm{SU}(3)$ Casimir

Expt NCSpM Expt. NCSpM Expt. NCSpM
Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

$$
\begin{aligned}
H_{\gamma}= & \sum_{i=1}^{A}\left(\frac{\mathbf{p}_{i}^{2}}{2 m}+\frac{m \Omega^{2} \mathbf{r}_{i}^{2}}{2}\right)+\frac{\chi}{2} \frac{\left(e^{-\gamma Q \cdot Q}-1\right)}{\gamma} \\
& -\kappa \sum_{i=1}^{A} l_{i} \cdot s_{i} .
\end{aligned}
$$

Expt NCSpM
Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Furthermore, the islands of inversions and halo nuclei
 form a similar challenge to standard shell-model pictures

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDY: ${ }^{11}$ LI

${ }^{11} \mathrm{Li}$ makes for an excellent case study:

- Example of "island of inversion"
- Halo or extended state
- Small enough to be tackled numerically
- Testbed for techniques

CASE STUDY: ${ }^{11}$ LI

SAN Diego State UNIVERSITY

One proton outside a filled shell

+ filled neutron shell

One proton outside a filled shell

+ neutron 2p-2h

"island of inversion"

CASE STUDY: ${ }^{11}$ LI

San Difgo State UNIVERSITY
${ }^{11}$ Li makes for an excellent case study
(The following results are preliminary)

3/2- g.s. is a halo state and on an island of inversion

CASE STUDY: ${ }^{11} \mathrm{LI}$

${ }^{11} \mathrm{Li}$ makes for an excellent case study

Calculations with Entem-Machleidt N3LO chiral (no 3-body) at $\mathrm{h} \Omega=20 \mathrm{MeV}$.

Also computed with natural orbitals

CASE STUDY: ${ }^{11}$ LI

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDY: ${ }^{11}$ LI

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDY: ${ }^{11}$ LI

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDY: ${ }^{11}$ LI

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDY: ${ }^{11}$ LI

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDY: ${ }^{11}$ LI

CASE STUDY: ${ }^{11}$ LI

SAN Diego State UNIVERSITY

Grouptheoretical Decomposition

Elliot SU(3)

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDY: ${ }^{11}$ LI

SAN Diego State UNIVERSITY

Grouptheoretical
Decomposition

Symplectic Sp(3,R)

CASE STUDY: ${ }^{29} \mathrm{~F}$

${ }^{29} \mathrm{~F}$ is an analog of ${ }^{11} \mathrm{Li}$

One proton outside a filled shell

+ filled neutron shell

One proton outside a filled shell

+ neutron $2 \mathrm{p}-2 \mathrm{~h}$

"island of inversion"

CASE STUDY: ${ }^{29} \mathrm{~F}$

SAN Diego State UNIVERSITY
${ }^{29} \mathrm{~F}$ is an analog of ${ }^{11} \mathrm{Li}$

$\mathrm{N}_{\text {max }}=4$, natural orbitals

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDY: ${ }^{29} \mathrm{~F}$

SAN Diego State UNIVERSITY
${ }^{29} \mathrm{~F}$ is an analog of ${ }^{11} \mathrm{Li}$

$\mathrm{N}_{\max }=4$, natural orbitals

CASE STUDY: ${ }^{29} \mathrm{~F}$

SAN Diego State UNIVERSITY

Group-
theoretical
Decomposition

Symplectic Sp(3,R)

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDY: ${ }^{29} \mathrm{~F}$

SAN Diego State UNIVERSITY

Grouptheoretical decomposition

SU(4)

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

CASE STUDIES: ${ }^{11}$ LI, ${ }^{29} \mathrm{~F}$

I suggest ${ }^{11} \mathrm{Li},{ }^{29} \mathrm{~F}$ as case studies for other methods (coupled cluster, IM-SRG, symmetry adapted, lattice, etc.).

CASE STUDIES: ${ }^{11}$ LI, ${ }^{29} \mathrm{~F}$

I suggest ${ }^{11} \mathrm{Li},{ }^{29} \mathrm{~F}$ as case studies for other methods (coupled cluster, IM-SRG, symmetry adapted, lattice, etc.).

We should also look for experimental observables to test our calculations (since the quadrupole moment, in ${ }^{11} \mathrm{Li}$ at least, does not differentiate between states).

So what have we learned?
SAN Diego State UNIVERSITY

The no-core shell model reproduces some features easily but others are very challenging!

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

What are possible strategies for extending the reach of the shell model?

- "Beyond mean-field"/Generator-coordinate-like methods cf. Dao \& Nowacki, PRC 105, 054314 (2023)
* Proton-neutron factorization:
cf. Papenbrock \& Dean, PRC 67, 051303(R) (2003) + CWJ, Gorton, J. Phys. G. 50, 045110 (2023).
* "Symmetry-adapted" approaches

Symplectic Sp(3,R) Symmetry

Collectivity features

Group theory may be a natural framework for cluster physics

Kravvaris \& Volya, PRL 119, 062501 (2017)

FIG. 1. Spectrum of RGM Hamiltonian with the SRG softened N3LO interaction ($\lambda=1.5 \mathrm{fm}^{-1}$) and $\hbar \Omega=25 \mathrm{MeV}$ for a 2α system. Zero on the energy scale is set by the $\alpha+\alpha$ breakup threshold of the corresponding model. Levels are marked by spin and parity and by an absolute binding energy in units of MeV . The α binding energies for the $\alpha[0]$ and $\operatorname{NCSM}(\alpha[4])$ calculations are -26.08 and -28.56 MeV , respectively. The inset shows the relative wave function of the two α clusters.

J-scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller (and denser) still.
example: ${ }^{12} \mathrm{C} \mathrm{N}_{\max }=8$
scheme basis dim
M
6×10^{8}
$\mathrm{J}(\mathrm{J}=4) \quad 9 \times 10^{7}$
SU(3) $\quad 9 \times 10^{6}$
(truncated)
From Dytrych, et al, arXiv:1602.02965

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

J-scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller (and denser) still.
example: ${ }^{12} \mathrm{C}_{\mathrm{max}}=8$
scheme basis dim \# of nonzero matrix elements

M	6×10^{8}	5×10^{11}
$J(J=4)$	9×10^{7}	3×10^{13}
$S U(3)$	9×10^{6}	2×10^{12}

(truncated)
From Dytrych, et al, arXiv:1602.02965

SAN Diego State
UNIVERSITY

J-scheme matrices are smaller but much denser than M-scheme, and "symmetry-adapted" (i.e. SU(3)) matrices are smaller (and denser) still.
example: ${ }^{12} \mathrm{C} \mathrm{N}_{\max }=8$
scheme basis dim \# of nonzero matrix eleme least amount of work!

M	6×10^{8}	5×10^{11} 4 Tb of memory! $\mathrm{J}(\mathrm{J}=4)$ $9 \times 10^{\prime}$	3×10^{13}
$\mathrm{SU}(3)$	9×10^{6}	$2 \times 10 \mathrm{~Tb}$ of memory!	
(truncated)			

From Dytrych, et al, arXiv:1602.02965

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Choice of wave function basis

One chooses between a few, complicated states or many simple states

Celebration for Prof. James Vary, IMP-CAS Lanzhou, June 5, 2023

Choice of wave function basis

Are there ways we can harness the efficiency of M-scheme but still get to larger spaces?
mplicated states

Difficulty

to generate
matrix elements

M-scheme J-scheme SU(3) GCM coupled-cluster (not really diagonalization)

Choice of wave function basis

Are there ways we can harness the efficiency of M-scheme but still get to larger spaces?

That's the question for future research!

M-scheme J-scheme SU(3) GCM (not

Summary:

First principles calculations of nuclear structure have had many successes.

An eternal barrier are intrudersthe alpha cluster states such as the Hoyle state in ${ }^{12} \mathrm{C}$ and the $\mathrm{O}^{+}{ }_{2}$ analog in ${ }^{16} \mathrm{O}$, as well as halo and IoI states

A rich variety of approaches are being pursued.
I propose ${ }^{11} \mathrm{Li}$ and ${ }^{29} \mathrm{~F}$ as important test cases

