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Abstract

We present the results of our detailed calculations of scattering characteris-
tics in e

−

e
+
p̄ (e−e+p) and e

+
e
−He++ systems with zero total orbital momentum

by direct solving the Faddeev–Merkuriev equations in the differential form. We
calculate all possible cross-sections in the low-energy region which admits up
to seven open channels including the rearrangement channels of ground and ex-
cited states of antihydrogen, positronium and helium ion formations. All sharp
resonances of the systems obtained and approved previously by a number of
authors are clearly reproduced in the calculated cross sections. Alternatively,
the exterior complex scaling approach has been used for calculating resonant
energies. It confirmed the existence of reported by other authors broad reso-
nances in the e

+
e
−He++ system. Prominent oscillations of Gailitis–Damburg

type have been found in cross sections for energies above the threshold corre-
sponding to n = 2 state of antihydrogen.

Keywords: Faddeev–Merkuriev equations; positron scattering; antihydrogen

formation; Gailitis–Damburg oscillations

1 Introduction

Study of electron and positron scattering off light atomic targets
(

like (anti)hydrogen

atom and helium cation
)

is of fundamental importance for atomic physics. These
colliding systems represent genuine three-body Coulombic systems with variety of
channels, rich resonant structure of scattering cross sections and the fundamental
rearrangement phenomenon of positronium (electron-positron bound state) formation.
For such a case the solution methods should be capable of representing the solution
for all the asymptotic fragmentations accurately. The Faddeev equations [1] and their
generalization to the long-range Coulomb case, the so-called Faddeev–Merkuriev (FM)
equations [2], were designed especially to fulfill this requirement. This generalization
is based on the Coulomb potential splitting into the interior and the long range tail
parts leading to the mathematically rigorous boundary value problem, which solution
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is strictly equivalent to the solution of the Schrödinger equation [1]. This approach
suits the computationally difficult detailed low-energy elastic and reactive scattering
calculations in three-body Coulomb systems perfectly [3–5].

Here, the formalism of FM equations is used to calculate the S-wave cross sec-
tions in e−e+p̄ (e−e+p) and e+e−He++ systems in the low-energy region for all
open channels. Even though there are many calculations available in the litera-
ture [3, 4, 6–17], there is still some lack of high-precision and detailed results espe-
cially for the e+e−He++ system, which is one of the motivations for performing this
research. Besides, a special emphasis is made on the antihydrogen formation by an-
tiproton impact of positronium which is currently used in experiments on antimatter
at CERN (see Ref. [18] and references therein).

The paper is organized as follows. In Section 2, we give the necessary portion
of the three-body FM equations formalism and briefly describe the respective solu-
tion technique in the case of zero total orbital momentum of the system. Section 3
contains results of calculations of low-energy reactive scattering in e−e+p̄ (e−e+p)
and e+e−He++ systems. The last Section concludes the paper.

We use atomic units throughout the paper. The magnitude of a vector x is denoted
by x, i. e., x = |x|, and x̂ = x/x stands for the unit vector. The set of indices {α, β, γ}
runs over the set {1, 2, 3} enumerating particles and is also used for identifying the
complementary pair of particles since the pair of particles βγ in the partition {α(βγ)}
is uniquely determined by the particle α.

2 Theory and numerical solution

We consider a system of three spinless nonrelativistic charged particles of masses mα

and charges Zα, α = 1, 2, 3. Standard Jacobi coordinates are defined for a parti-
tion α(βγ) as the relative position vectors between the particles of the pair βγ and
between their center of mass and the particle α. In applications, it is convenient to
use the reduced Jacobi coordinates xα,yα which are Jacobi vectors scaled by the
factors

√
2µα and

√

2µα(βγ), respectively, where the reduced masses are given by

µα =
mβmγ

mβ +mγ
, µα(βγ) =

mα(mβ +mγ)

mα +mβ +mγ
. (1)

The reduced Jacobi vectors for different choices of α are related by an orthogonal
transformation,

xβ = cβα xα + sβα yα, yβ = −sβα xα + cβα yα, (2)

where

cβα = −
[

mβ mα

(M −mβ)(M −mα)

]1/2

, sβα = (−1)β−αsgn(α− β)(1 − c2βα)
1/2,

and M =
∑

αmα. In what follows, it is assumed that the β Jacobi vectors are
represented through the α vectors via Eq. (2).

In the reduced Jacobi coordinates, the FM equations for three charged particles [1]
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read
{

Tα + Vα(xα) +
∑

β 6=α

V
(l)
β (xβ , yβ)− E

}

ψα(xα,yα) = −V (s)
α (xα, yα)

∑

β 6=α

ψβ(xβ,yβ).

(3)

Here Tα ≡ −∆xα
− ∆yα

are the kinetic energy operators. In this paper, the po-
tentials Vα represent the pairwise Coulomb interaction Vα(xα) =

√
2µαZβZγ/xα

(β, γ 6= α), although, generally, a short-range (decreasing as 1/x2α or faster as xα → ∞)
potential can also be included in the formalism. The potentials Vα are split into the

interior (short-range) V
(s)
α and the tail (long-range) parts V

(l)
α ,

Vα(xα) = V (s)
α (xα, yα) + V (l)

α (xα, yα). (4)

Equations (3) can be summed up leading to the Schrödinger equation for the wave
function Ψ =

∑

α ψα, where ψα are the components of the wave function given by the
solution of Eqs. (3).

Splitting Eq. (4) for the potentials in general case is done in the three-body con-
figuration space by the Merkuriev cut-off function χα [1],

V (s)
α (xα, yα) = χα(xα, yα)Vα(xα). (5)

This splitting confines the short-range part of the potential to the regions in the three-
body configuration space corresponding to the three-body collision point (particles are
close to each other) and the binary configuration (xα ≪ yα when yα → ∞). The form
of the cut-off function can be rather arbitrary within some general requirements [2,5].
In the paper [19], we have shown, that for the energies below the breakup threshold, it
is practical to confine the cut-off function to the two-body configuration space. Thus
in this paper, for actual calculations we use the cut-off function of the form

χα(xα) = 2/
{

1 + exp
[

(xα/x0α)
2.01

]}

, (6)

where x0α is a parameter. With this smoothed Heaviside step function, the split

potentials V
(s,l)
α become two-body quantities V

(s,l)
α = V

(s,l)
α (xα).

The splitting procedure makes the properties of the FM equations for Coulomb
potentials as appropriate for scattering problems as the standard Faddeev equations
in the case of short-range potentials [4]. With the described above choice of the
short-range part of the potential V (s), the right-hand side of each Eq. (3) is confined
to the vicinity of the three-body collision point [20], which is the key property of
the FM equations. It leads to the asymptotic uncoupling of the set of FM equa-
tions and, accordingly, the asymptotics of each component ψα for energies below the
breakup threshold contains only the terms corresponding to the binary configurations
of pairing α [4, 20].

The total orbital momentum is an integral of motion for the three-particle system.
This makes it possible to reduce the set of FM equations by projecting Eq. (3) onto
a subspace of a given total angular momentum [14]. In this article we consider the
case of zero total orbital momentum of the system. The kinetic energy operator in
the left-hand side of Eq. (3) on the subspace of zero total orbital momentum has the
form

Tα = − ∂2

∂y2α
− 2

yα

∂

∂yα
− ∂2

∂x2α
− 2

xα

∂

∂xα
−
(

1

y2α
+

1

x2α

)

∂

∂zα
(1− z2α)

∂

∂zα
, (7)



140 V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky and S. L. Yakovlev

where zα ≡ cos(x̂α · ŷα). The corresponding projection of the component ψα depends
only on the coordinates Xα = {xα, yα, zα} in the plane containing all three particles.
By choosing the coordinate system appropriately, its asymptotics for energies E below
the three-body ionization threshold can be written as

ψα(Xα) ∼ −φn0ℓ0(xα)

xα yα
Yℓ00(θα, 0) e

−iϑℓ0
(yα,pn0

) δα,α0

+
∑

nℓ

φnℓ(xα)

xα yα
Yℓ0(θα, 0)

√

pn0

pn
Snℓ,n0ℓ0 e

+iϑℓ(yα,pn), (8)

where the set of indices {nℓ} specifies various two-body Coulomb bound states
in the pair α

(

that is, binary scattering channels {α;nℓ}
)

with the wave
function φnℓ(xα)Yℓm(x̂)/xα and the energy εn. Here Yℓm(x̂) stands for the standard
spherical harmonic function. The momentum pn of the outgoing particle is deter-
mined by the energy conservation condition E = p2n + εn. The Coulomb distorted
wave phase ϑℓ(yα, pn) ≡ pnyα− ηn log(2pnyα)− ℓπ/2+σn, where σn = argΓ(1+ iηn)
and the Sommerfeld parameter is defined as ηn ≡ Zα(Zβ + Zγ)

√

2mα(βγ)/(2pn).
Finally, Snℓ,n0ℓ0 are the S-matrix elements.

To reduce the computational cost of solving the system of FM equations (3),
several modifications has been done. First, since the potential V3 is repulsive and
the corresponding two-body Hamiltonian does not support any bound state, this
potential is included in the left-hand side of Eqs. (3), thus reducing the number of
these equations from 3 to 2. Formally, it is done by setting χ3 = 0. Secondly,
the asymptotic particle-atom Coulomb potential V eff

α (yα) = 2pnηn/yα is introduced
explicitly in Eqs. (3) for treating the asymptotic Coulomb singularity,

{

Tα + Vα(xα) + V eff
α (yα)− E

}

ψα(Xα) = −V (s)
α (xα)ψβ(Xβ)

−
[

V
(l)
β (xβ) + V3(x3)− V eff

α (yα)
]

ψα(Xα), (9)

where β 6= α = 1, 2. After that the Coulomb singularity can be effectively in-
verted [21]. Another modification is done to make the solutions of Eqs. (3) to be
real functions. This is achieved by using the asymptotic conditions with standing
waves instead of conditions (8).

The FM equations are solved by the spline collocation method [22] in a
box [0, Rx

α]× [0, Ry
α]× [−1, 1] for each component ψα. As a basis set for expanding

the components, we use products of basis functions in the space of quintic Hermite
splines S3

5 (splines of degree 5 with 2 continuous derivatives) in each coordinate. Each
basis function is local and nonzero only on two adjoining intervals of the grid. As a
result, the matrix of the system of linear equations for expansion coefficients is sparse.
It is solved by the Arnoldi iterations in GMRES variant [23] with right precondition-
ing by the discretized version of the operators in the left-hand side of the system of
FM equations. To invert the preconditioner, we use the algorithm which is known
as the “tensor trick” or matrix decomposition method [22, 24, 25]. It provides a fast
diagonalization of the matrix using its tensor product structure. For a more detailed
description of our computational method, we refer the reader to Ref. [21].
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3 Results

3.1 Scattering in e
−

e
+
p̄ and e

+
e
−

p systems

The positron-hydrogen atom scattering is the simplest example of positron-atom scat-
tering process. Many calculations are available in the literature [3, 7, 9–13,15, 16, 18].
The renewed interest in studying reactions involving the positron, electron and
(anti)proton is motivated by experiments on antimatter ongoing at CERN [18]. The
reaction of the antihydrogen production via the antiproton (p̄) impact on positronium
atom (Ps, the bound state of e+ and e−) plays the key role in antimatter formation.
Due to the symmetry of particle charges, the cross sections in e+e−p and e−e+p̄
systems are identical. Below in this section we refer to the e+e−p̄ system.

By solving the FM equations, we have calculated the cross sections for all possible
scattering processes in the e+e−p̄ system in the total energy range between the
energies of the atomic states H̄(n = 1) and H̄(n = 3), i. e., from −0.49973 a.u.
to −0.05553 a.u. with the step in energy of 0.0007 a.u. Within this energy interval, the
elastic scattering, excitation and rearrangement processes leading to the H̄(n = 1, 2)
and Ps(n = 1, 2) atomic states are possible. The energies of these atomic states form
the thresholds for scattering channels. The maximal number of open channels in the
energy interval between the Ps(n = 2) and H̄(n = 3) states equals to 6. The accuracy
of our calculations guarantees that the uncertainties of the obtained cross sections
are less than 1%. A calculation of all cross sections for each energy value from this
interval requires a time of approximately 3 hours on a SMP node with 32 cores and 20
Gb RAM. We have a system of 3,241,020 linear equations and the respective matrix
has 432 nonzero elements in a row.

We compare our results in Table 1 with tabulated results of other authors and
present some additional cross sections for further references. In this Table and in the
text below we use shortcuts H̄(n) and H̄(n, ℓ) for the atomic states with the principal
quantum number n and the orbital momentum ℓ. Some of all possible 36 cross sections
for the collision processes with e−−H̄ and p̄−Ps configurations in the entrance and
final channels are presented in Fig. 1.

The antihydrogen production cross sections in the energy region between the H̄(2)
and H̄(3) thresholds are studied in detail in a recent work [18]. These cross sections
are compared with our results in Fig. 2. The resonances manifest themselves in Figs. 1
and 2 as peaks in some of the calculated cross sections. The resonance energies found
by different methods [26–29] are known with a good accuracy. We mark their positions
in the figures by vertical dashed lines. All resonances are clearly seen in the calculated
cross sections. The p̄+Ps(1, s) → p̄+Ps(1, s) and e− + H̄(2, s) → e− + H̄(2, p) cross
sections as well as the e− + H̄(2, s) → e− + H̄(2, s) cross section not shown in the
figure, have sharp minima which also look like resonances but do not coincide with any
of the known resonance positions. We agree with the interpretation of these minima
suggested in Ref. [10] where they were associated with the Ramsauer–Townsend effect.

A special attention should be paid to the oscillations of the cross sections just above
the H̄(2) threshold in Fig. 2. We give more detailed plots of the p̄+Ps(1) → e−+H̄(1)
and p̄ + Ps(1) → e− + H̄(2) cross sections in the energy region above this threshold
in Fig. 3. Prominent oscillations of both cross sections and their character suggest to
associate these oscillations with the phenomenon predicted in Refs. [30,31]. According
to Refs. [30,31], the energy position En of the nth maximum of the oscillations follows
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Table 1: Our results for scattering cross sections in the e−e+p̄ system in comparison with that of other authors
(energies are given relative to the H̄(1) threshold at −0.49973 a.u.).

E, a.u. 0.27026 0.28140 0.32017 0.36145 0.385 0.40 0.415 0.42

σe−+H̄(1)→e−+H̄(1) 0.0353 0.0417 0.0634 0.0836 0.0944 0.100 0.105 0.107

[10] 0.0651 0.0844 0.100
[3] 0.0372 0.0429 0.0649 0.0866 0.090 0.096 0.099 0.101
[9] 0.0431 0.0650 0.0856

σe−+H̄(1)→p̄+Ps(1) 0.00412 0.00430 0.00487 0.00562 0.00565 0.00572 0.00575 0.00574
[10] 0.00490 0.00567 0.00581
[3] 0.00410 0.00439 0.00487 0.00557
[9] 0.00422 0.00481 0.00554

σp̄+Ps(1)→p̄+Ps(1) 3.49 7.06 9.87 8.31 7.11 6.44 5.82 5.62
[10] 9.87 8.32 6.45
[3] 3.500 7.060 9.866 8.312 7.09 6.44 5.83 5.63
[9] 6.936 9.868 8.332

σp̄+Ps(1)→e−+H̄(1) 0.0272 0.0191 0.0111 0.0091 0.00806 0.00763 0.00724 0.00709

[3] 0.0274 0.0195 0.0111 0.0091 0.00815 0.00780 0.00729 0.00715

σe−+H̄(1)→e−+H̄(2,s) 0.000662 0.00137 0.00206 0.00228

σe−+H̄(1)→e−+H̄(2,p) 0.000399 0.000236 0.000421 0.000582

σe−+H̄(2,s)→p̄+Ps(1,s) 1.26 0.576 0.477 0.475

σe−+H̄(2,s)→e−+H̄(1,s) 0.0249 0.0217 0.0212 0.0212
σp̄+Ps(1)→e−+H̄(2,s) 0.0476 0.0484 0.0581 0.0631

σp̄+Ps(1)→e−+H̄(2,p) 0.0390 0.0484 0.0512 0.0519
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Ps(2,s)-Ps(1)

Figure 1: Cross sections in the e−e+p̄ system. Vertical solid lines show the bi-
nary thresholds, vertical dashed lines mark resonances positions. We use the nota-
tion Ps(n1, ℓ1)−H̄(n2, ℓ2) to specify the reaction p̄+Ps(n1, ℓ1) → e− + H̄(n2, ℓ2) and
similar notations for other reactions.

the rule

log(En − Eth) = An+B, (10)

where A and B are constants and Eth is the threshold energy. We plot the respective
quantities for the p̄ + Ps(1) → e− + H̄(1) and p̄ + Ps(1) → e− + H̄(2) cross section
oscillations near the threshold in panels (c)–(e) in Fig. 3. Clearly, the linear spacing of
log(En−Eth) is nearly perfect in both cases of rearrangement cross sections except for
the last points. The latter probably indicate the range of validity of approximations
made in Ref. [30,31] leading to Eq. (10). As for the p̄+ Ps(2) → e− + H̄(n ≤ 2) cross
section behavior shown in the right panel of Fig. 2, we obviously cannot make such
a quantitative analysis as of the above threshold oscillations. Nevertheless, we can
agree with Ref. [18] that there is an oscillation at the energy close to −0.06194 a.u.,
which was also found earlier in Ref. [32]. It should be noted that the elastic cross
section oscillations for the Ps−p scattering above the Ps(2) threshold were also found
recently in Ref. [33].

3.2 Scattering in e
+
e
−He++ system

The scattering of positron by positive helium ion is an example of the positron–atomic
target scattering in which the asymptotic Coulomb interaction is present in one of
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Figure 2: Antihydrogen formation
cross sections. Black dots are the re-
sults of Ref. [18].

the configurations. There is a number of respective calculations in a wide energy
region [34–36]. However, to the best of our knowledge, there is lack of published
results of calculations in the low-energy region. In this work, by solving the FM
equations, we have calculated cross sections for all possible scattering processes in
the e+e−He++ system in the entire energy range between the energy thresholds of
the He+(1) and He+(4) states, i. e., from−1.9997 a.u. to −0.12496 a.u. with the step in
energy of 0.0007 a.u. In this energy interval, the elastic, excitation and rearrangement
processes leading to the He+(n = 1, 2, 3) and Ps(n = 1) atomic states are possible. As
in the previous case, the accuracy of our calculations guarantees that the uncertainties
of the obtained cross sections are not exceeding 1%.

The calculated 11 of all 49 cross sections are given in Table 2. The energy depen-
dences of the cross sections for the reactions e+ − He+ → e+ − He+,
e+−He+ → He++ −Ps and He++ −Ps → He++ −Ps, He++−Ps → e+−He+ are
displayed in Fig. 4.

Resonance energies in the e+e−He++ system are far lesser-known, there is a num-
ber of disagreements between the published results, see, e. g., Refs. [37–39] and ref-
erences therein. Most of the authors agree that there are two broad resonances at
the energies of −0.371 a.u. and −0.188 a.u. [38] and one narrow resonance slightly
below the positronium ground state formation threshold at −0.250 a.u. [38, 39]. The
positions of these resonances are marked in Fig. 4 by dashed vertical lines (the dashed
vertical line at−0.250 a.u. almost coincides with the vertical line showing the positron-
ium ground state threshold and is not visible). We do not see a usual singular behavior
of the cross sections in the vicinity of the narrow resonance. However, at the same
time, one can see that the e+ +He+(1) → He++ +Ps(1) cross section does not follow
the well-known law of threshold behavior at the Ps(1) threshold at −0.25 a.u. The



Low-energy scattering in e−e+p̄ and e+e−He++ systems 145

(a)

 0.0072

 0.0074

 0.0076

 0.0078

 0.008

 0.0082

 0.0084

 0.0086

 0.0088

-0.125 -0.12 -0.115 -0.11 -0.105 -0.1 -0.095 -0.09

σ,
 π

a 02

E, a.u.

Ps(1)-H̄(1)

H̄(2)

0.0078

0.0074

E,  a.u.
−0.12 −0.11 −0.10 −0.09

0.0082

0.0086

σ
,
π
a
2 0

(b)

 0.06

 0.065

 0.07

 0.075

 0.08

 0.085

 0.09

 0.095

 0.1

 0.105

-0.125 -0.12 -0.115 -0.11 -0.105 -0.1 -0.095 -0.09

σ,
 π

a 02

E, a.u.

Ps(1)-H̄(2,s+p)

H̄(2)

0.09

0.08

0.07

0.06
−0.09−0.10−0.11−0.12

E,  a.u.

0.10

σ
,
π
a
2 0

(c) Ps(1)→ H̄(1)

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

 0  1  2  3  4  5

lo
g
(E

n
-E

th
)

nn

lo
g
(E

n
−
E

th
) (d) Ps(1)→ H̄(2,s)

-3

-2.8

-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

 0  1  2  3  4  5  6  7

lo
g

(E
n
-E

th
)

nn

lo
g
(E

n
−
E

th
)

(e) Ps(1)→ H̄(2,p)

-3.5

-3

-2.5

-2

-1.5

-1

 0  1  2  3  4  5  6

lo
g

(E
n
-E

th
)

n n

lo
g
(E

n
−
E

th
)

Figure 3: (a), (b) — detailed plots
of the p̄ + Ps(1) → e− + H̄(1)
and p̄+ Ps(1) → e− + H̄(2) cross sec-
tions in the energy region above the
H̄(2) threshold. For these cross sec-
tions, the logarithm of the relative
energy positions of oscillation max-
ima, log(En − Eth), as a function of
their number n are depicted in pan-
els (c)–(e).

cross section should tend to zero linearly as p→ 0 where p is the relative momentum
between the target and the projectile [40], but it grows up to some constant value
instead. This anomalous behavior can be a sign of a resonance. The broad resonances
are not manifested in the cross sections as expected.

To check the existence of the broad resonances, we have used another approach
based on the complex rotation method [41] applied to the Schrödinger equation. We
have found these broad resonances; their positions and widths are given in Table 3
and compared with the results of Ref. [38].

The sharp local minimum is seen again in the He+++Ps(1) → He+++Ps(1) cross
section for the direct process with neutral target. As in the previous Subsection, we
associate this minimum with the Ramsauer–Townsend effect.
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Table 2: Scattering cross sections in the e+e−He++ system (energies are given relative to the He+(1) threshold
at −1.9997 a.u.). We use a notation a(b) for a · 10b.

E, a.u. 1.55 1.60 1.65 1.70 1.77 1.80 1.83 1.86

σe++He+(1)→e++He+(1) 0.000855 0.00101 0.00116 0.00133 0.00158 0.00168 0.00178 0.00188
σe++He+(1)→e++He+(2,s) ∼1(-9) ∼1(-8) 2(-7) 6(-7) 2.6(-6) 4.4(-6) 6.9(-6) 1.1(-5)
σe++He+(1)→e++He+(2,p) ∼ 1(-10) ∼1-(8) 3(-7) 2.5(-6) 1.1(-5) 1.8(-5) 2.6(-5) 3.6(-5)
σe++He+(1)→He+++Ps(1) 1(-7) 1(-7) 2(-7) 3(-7)
σHe+++Ps(1)→He+++Ps(1) 20.6 19.6 8.82 3.00
σHe+++Ps(1)→e++He+(2,s) 0.366 0.102 0.0433 0.0199
σHe+++Ps(1)→e++He+(2,p) 0.0944 0.0214 0.00876 0.00584
σe++He+(2,s)→e++He+(2,s) 1.12 3.35 6.64 6.63 5.11 4.59 4.10 3.66
σe++He+(2,p)→e++He+(2,s) 5.34 4.57 2.76 1.35 0.866 0.832 0.820 0.815
σe++He+(3,s)→e++He+(3,s) 9.87 18.4 11.7
σe++He+(3,s)→e++He+(3,p) 15.7 1.62 1.21

Table 3: Energies of broad resonances in the e+e−He++ system and their widths, (Er, Γ) (in a.u.).

Present work (−0.3704, 0.1297) (−0.1857, 0.0395)

[38] (−0.3705, 0.1294) (−0.1856, 0.0393)
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Figure 4: Cross sections in the e−e+He+ system. Vertical solid lines show the bi-
nary thresholds, vertical dashed lines mark resonance positions. We use the notation
Ps(n1, ℓ1)−He+(n2, ℓ2) to specify the reaction He++ +Ps(n1, ℓ1) → e+ +He+(n2, ℓ2)
and similar notations for other reactions.

4 Conclusions

In this paper, detailed calculations of low-energy reactive scattering in the e−e+p̄ and
e+e−He++ systems in the case of zero total orbital momentum have been performed
with the use of the FM equations in the total orbital momentum representation.

The calculated cross sections in the e−e+p̄ system reproduce all known reso-
nant peaks. The Gailitis–Damburg oscillations of the p̄ + Ps(1) → e− + H̄(1) and
p̄+ Ps(1) → e− + H̄(2) cross sections just above the H̄(2) threshold are discovered
and the theory of the energy distribution of the oscillation maxima with respect to
the threshold is verified.

The two known broad resonances [38] in the e+e−He++ system do not contribute
to the cross section. We suggest to explain the anomalous threshold behavior of
the e+ + He+(1) → He++ + Ps(1) cross section by the existence of the narrow
resonance found in Refs. [38, 39].

We have demonstrated that the formalism of FM equations is efficient for calcu-
lating elastic and reactive scattering in three-body atomic systems. The extension of
the current approach to nonzero total orbital momentum case is now in progress.
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