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Abstract

This contribution addresses momentum distributions in A = 2, 3 systems,

with particular emphasis on high momentum components. The latter carry

information on the short-range nuclear dynamics. We show predictions obtained

with state-of-the-art chiral interactions and compare with those obtained with

traditional, phenomenological or meson-theoretic, potentials. Model dependence

is discussed, along with other aspects such as the impact of three-nucleon forces

on the predictions.

Keywords: Momentum distribution; short-range correlations; chiral nuclear

interactions

1 Introduction

The nuclear force has short-range repulsive and intermediate-range attractive com-
ponents. Naturally, these features strongly limit the validity of a mean-field picture.
Short-range correlations (SRC) refer to the nucleon dynamics at short distances and
are responsible for the high-momentum components of nuclear wave functions.

An additional motivation for studying this important aspect of nucleon dynamics
is provided by the lively experimental program aimed at extracting the SRC infor-
mation via inclusive electron scattering at high momentum transfer or coincidence
experiments involving knock-out of a nucleon pair [1–10].

In this contribution, we will first address high-momentum distributions and SRC in
the deuteron, reviewing and updating one of our previous investigations [11]. We will
then present a subselection of our most recent results [12] for momentum distributions
and SRC in 3He.

We conclude with some thoughts on the meaning and implications of measuring
SRC. In future work, a careful consideration should be given to the approximations
typically applied in order to extract the SRC information from high-momentum trans-
fer electron scattering data.

Proceedings of the International Conference ‘Nuclear Theory in the Supercomput-
ing Era — 2018’ (NTSE-2018), Daejeon, South Korea, October 29 – November 2,
2018, eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2019, p. 64.

http://www.ntse.khb.ru/files/uploads/2018/proceedings/Sammarruca.pdf.

64



Correlations in nuclear matter and nuclei 65

2 High-momentum distributions in the deuteron

Deuteron momentum distributions in the context of SRC were studied in Ref. [11]
using local and non-local realistic two-nucleon (2N) interactions. Those included:
purely phenomenological local potentials, such as the Argonne v18 [13] (AV18) or
the Nijmegen II [14] models, non-local meson-theoretic models, such as the charge
dependent Bonn (CDBonn) potential [15], and state-of-the-art non-local chiral po-
tentials [16–18]. In the study of Ref. [11], it was concluded that predictions of high-
momentum distributions in the deuteron with non-local meson-exchange forces or
state-of-the-art chiral forces are systematically lower than those obtained with the
local AV18 or Nijmegen II potentials.

The analysis of Ref. [11] highlights non-localities in the tensor force as the source
of differences in SRC among the various predictions. We recall that the presence of
non-locality in the tensor force has been determined since a long time to be a desirable
feature in nuclear structure calculations (see, for instance, Refs. [19–21].)

In Fig. 1 we show the deuteron momentum distributions ρ(k), defined as the
Fourier transform squared of the coordinate-space deuteron wave function. On the
left side of the figure, we show the results, with focus on high-momentum components,
obtained with the latest chiral interactions of Ref. [22] from the leading to fifth order
(N4LO). On the right side of the figure, we show for comparison the same quantities
calculated as in Ref. [11] with the older chiral potentials of Refs. [16–18]. We note
that the convergence pattern shows improvement from the use of the new potentials.

We define the integrated probability of SRC in the deuteron as in Ref. [11], i. e.,

a2N(d) = 4π

∫
∞

kmin

ρ(k) k2dk, (1)

where kmin is taken to be 1.4 fm−1. This definition was adopted in Ref. [1], where
the choice of the lower integration limit was suggested by the onset of scaling of
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Figure 1: Left: Momentum distributions in the deuteron predicted with the chiral
potentials of Ref. [22] at LO (dotted), NLO (dash-double dot), N2LO (dash-dot),
N3LO (dash), N4LO (solid). The cutoff is fixed at Λ = 500 MeV. Right: Predictions
taken from Ref. [11] are obtained using the chiral potentials of Refs. [16–18].
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Table 1: Probabilities of SRCs as defined in Eq. (1) and deuteron D-state percent-
age for the chiral interactions considered in the left panel of Fig. 1. The values in
parenthesis, given for comparison, are taken from Ref. [11] and correspond to the
distributions shown in the right panel of Fig. 1. The cutoff Λ is equal to 500 MeV in
all cases.

Model a2N(d) PD

LO 0.046 (0.047) 0.0729 (0.0757)

NLO 0.015 (0.015) 0.0340 (0.0313)

N2LO 0.026 (0.022) 0.0449 (0.0417)

N3LO 0.024 (0.030) 0.0415 (0.0451)

N4LO 0.024 (0.026) 0.0410 (0.0414)

electron scattering cross section, which should signal the dominance of scattering
from a strongly correlated nucleon. The absolute per-nucleon SRC probability in
a nucleus A can be deduced if the absolute per-nucleon probability in 3He and the
deuteron are calculated or estimated. More precisely,

a2N(A) = a2(A/
3He) a2N(

3He) and a2N(
3He) = a2(

3He/d) a2N(d), (2)

where a2(A1/A2) is the SRC probability for nucleus A1 relative to nucleus A2. The
probability in the deuteron was taken to be equal to 0.041± 0.008 in Ref. [2]. We list
in Table 1 the integrated probabilities a2N(d) defined in Eq. (1), calculated integrating
the curves of Fig. 1 (left panel). As an additional, related information, we also show
the corresponding D-state percentage. In fact, deuteron D-state probabilities are
larger with stronger short-range central and tensor components of the nuclear force
which, for the non-local chiral interactions and, generally, for non-local interactions,
are softer than for the local AV18 potential. The values in parenthesis correspond to
the distributions displayed on the right of Fig. 1, i. e., obtained with the older chiral
potentials of Refs. [16–18]. As the table shows, there are huge variations between
the LO and the NLO cases, and still large differences between the NLO and N2LO.
Variations at higher orders indicate a clear convergence pattern, definitely improved
by the use of the newest potentials. Finally we notice that the deuteron integrated
probabilities a2N(d) display significant model-dependence, as the corresponding values
obtained with the AV18 and the CDBonn potentials are 0.042 and 0.032, respectively.

3 Momentum distributions in 3He

In this Section, we show and discuss a subselection of results from Ref. [12] for mo-
mentum distributions in 3He. We refer the reader to Ref. [12] for an extensive and
detailed presentation of the formalism as well as additional predictions.

Note that the Hyperspherical Harmonics (HH) method is used to solve the A = 3
quantum mechanical problem. This method has the great advantage of being ap-
plicable in both coordinate- and momentum-space, with no restriction on the choice
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Figure 2: The 2N momentum distributions nnp/pp(krel,Kc.m. = 0) in 3He calculated
using the AV18, AV18/UIX, CDBonn and CDBonn/TM 2N and 3N interaction mod-
els. The thin and thick lines essentially overlap.

of the nuclear potential model, which can be local or non-local. The starting point
are the so-called Jacobi coordinates, which are defined in the coordinate space as in
Refs. [23, 24].

We first explore the model-dependence of the 2N momentum distributions, by
comparing predictions based on the CDBonn potential without or with the Tucson–
Melbourne (TM) [25] three-nucleon (3N) force with those based on the AV18, without
or with the UIX 3N force [26]. In Fig. 2 we show results for the nnp/pp(krel,Kc.m. = 0),
namely, we have selected the “back-to-back” (BB) configuration for the nucleon pair.
We observe that the results with CDBonn/TM and those with AV18/UIX are sub-
stantially different from each other, especially in the high-krel tails, confirming con-
sistency with our earlier observations about the deuteron. Furthermore, the 3N force
contributions are barely appreciable on the logarithmic scale of the plot.

We now turn our attention to the 2N momentum distributions obtained with the
2N chiral potentials without or with the 3N forces, obtained as discussed in Ref. [12].
We begin with studying the order-by-order pattern, using the Λ = 500 MeV cutoff
as an example. The results obtained with the other values of Λ display a similar
behavior. In Fig. 3 we show the BB np momentum distribution nnp(krel,Kc.m. = 0)
obtained using only the 2N force at LO, NLO, N2LO, N3LO and N4LO. The figure
reveals that the LO curve has a distinctly different behavior at small krel compared
with the other curves, which suggests that the asymptotic part of the wave function
at LO is significantly different than at the higher orders. Figure 4 displays the same
predictions but for the pp pair, also BB. As we can see, similar remarks apply to
the pp case as well. We also observe that the N3LO and N4LO curves are very similar
up to krel ≃ 2.2 fm−1, indicating satisfactory order-by-order convergence at least in
the region where the distributions still have non-negligible size.
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Figure 3: The np momentum distributions nnp(krel,Kc.m. = 0) in 3He calculated
using only 2N chiral interactions with Λ = 500 MeV. The different chiral orders are
labelled as in the text. In the inset we show the small krel range (krel ≤ 1 fm−1) on
a linear scale.

The BB 2N momentum distributions nnp(krel,Kc.m. = 0) and npp(krel,Kc.m. = 0)
calculated with and without 3N interaction, at different chiral order and for different
values of the cutoff Λ, are shown in Figs. 5 and 6, respectively. The cutoff depen-
dence is negligible below krel ≃ 2.2−2.5 fm−1, and increasingly strong above that.
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Figure 4: Same as Fig. 3 but for the pp pair.
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Figure 5: The npmomentum distributions nnp(krel,Kc.m. = 0) in 3He calculated using
only 2N (solid lines) and 2N+3N (dashed lines) chiral interactions, at different chiral
order and for three values of the cutoff Λ = 450, 500, 550 MeV. In all panels, the lines
from bottom to top correspond to the lower to higher values of Λ. Our approach to
the construction of the leading 3N force is described in Ref. [12].

Furthermore, the 3N force contributions are visible only for krel ≥ 3.0−3.5 fm−1.
Note, however, that above krel ≃ 2.5 fm−1 all momentum distributions are so small
that the differences are of no practical relevance.

As noted for the deuteron case, the momentum distributions calculated with chi-
ral interactions die out at a faster rate than those obtained with phenomenological
potentials, a feature which may be expected given the softer nature of chiral forces.
While this is a correct observation within the spectrum of interactions considered
here, it is important to note that the chiral nature of an interaction does not neces-
sarily bring the additional softness. To support this statement, we refer to Ref. [27],
where predictions for single-nucleon and 2N momentum distributions in A ≤ 16 are
shown. In that work, it is concluded that, when local chiral interactions are employed,
the resulting momentum distributions are consistent with those obtained from local
phenomenological potentials. In fact, the local 2N chiral interactions (at N2LO) ap-
plied in Ref. [27] and developed in Refs. [28, 29] predict a D-state probability for the
deuteron ranging between 5.5 and 6.1%, values which are typical for the “hardest”
local potentials.

Therefore, once again, the local vs non-local nature of the 2N force (by far the
largest contribution to our predicted momentum distributions), is a major factor in
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Figure 6: Same as Fig. 5 but for the pp pair.

determining the theoretical momentum distributions in nuclei and, particularly, their
short-range part.

4 Conclusions and outlook

We have discussed predictions for the 2N momentum distributions in the deuteron
and 3He. Our predictions are based on the state-of-the-art chiral 2N potentials, in-
cluding (or not) the leading chiral 3N force. Also, for the purpose of comparison,
we have considered older potentials plus an appropriate 3N force, either fully phe-
nomenological or based on meson theory. One of the main motivations was to explore
the short-range few-nucleon dynamics as predicted by these diverse interactions. One
of our findings is that, regardless the 2N force model, the contribution from the 3N
forces is weak.

We find a significant model dependence, especially in the high-momentum tails
of the momentum distributions, with both phenomenological and chiral potentials.
We have explored the cutoff dependence and found that it can be significant. This is
the case, though, in the region where the momentum becomes larger than the cutoff
values themselves.

Although potentials based on chiral EFT may be expected to produce weaker
SRC than purely phenomenological or meson-exchange ones, the local vs non-local
nature of the underlying 2N force appears to be a major factor in the observed
model dependence. We find this to be an important issue, extensively debated in
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the literature of the 1990’s [19–21] and now re-emerging along with new stimulating
discussions around electron scattering measurements.

The 2N potentials considered here have an established success record with low-
energy predictions, such as the structure of light and medium-mass nuclei as well as
the properties of nuclear matter. But, as shown above, they differ considerably in
their high-momentum components. Note that there is no physical reason why the
off-shell behavior of, say, AV18, should be preferable as compared to other potentials.
In fact, on the fundamental grounds, the off-shell behavior is not an observable. High
momentum transfer reactions are easier to analyze using one-body currents of the
impulse approximation, suitable with harder 2N potentials, whereas the use of soft,
non-local potentials, complicates the currents necessary to describe high momentum
transfer experiments [30]. One should carefully consider, for instance, to which extent
analyses of quasielastic electron scattering in terms of external radiation graphs [30],
without gauge-invariance preserving terms, may cause a sensitivity to the (otherwise
unobservable) off-shell behavior.
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