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Abstract

A simple and effective algebraic isospin projection procedure for construct-
ing basis vectors of irreducible representations of O(5) ⊃ OT (3) ⊗ ON (2) from
those in the canonical O(5) ⊃ SUΛ(2)⊗SUI (2) basis is outlined, which is useful
in dealing with the isovector pairing problem. The expansion coefficients are
components of null-space vectors of the projection matrix. Explicit formulae for
evaluating OT (3)-reduced matrix elements of O(5) generators are derived.
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1 Introduction

The proton-neutron quasi-spin group generated by an O(5) algebra is very useful
in dealing with nucleon pairing problems in a shell model framework [1–5]. Due to
its importance in nuclear spectroscopy, irreducible representations (irreps) of O(5)
have been studied in various ways. The most natural basis for irreps of O(5) may
be the branching multiplicity-free canonical one with O(5) ⊃ O(4), where O(4) is
locally isomorphic to SUΛ(2)⊗SUI(2), of which the construction of the basis vectors
was presented in Refs. [6–8]. The matrix representations of O(5) ⊃ SUΛ(2)⊗ SUI(2)
were provided in Refs. [6–9]. Since the isospin is approximately conserved in the
charge-independent isovector pairing problem, it is more convenient to adopt the
non-canonical O(5) ⊃ OT (3) ⊗ ON (2) basis for this case, where OT (3) is the isospin
group, and ON (2) ∼ UN (1) is related with the number of nucleons in the system.
The main problem is that the reduction O(5) ↓ OT (3)⊗ON (2) is no longer branching
multiplicity-free in general. Basis vectors of O(5) irreps in the O(5) ⊃ OT (3)⊗ON (2)
basis can be either expanded in terms of those in the O(5) ⊃ SUΛ(2) ⊗ SUI(2) or
constructed by using tensor coupling methods directly, for which various attempts
were made [6, 10–15]. A recent survey on the subject with relevant references is
provided in Refs. [16, 17]. Though various procedures for the construction of ba-
sis vectors of O(5) irreps in the O(5) ⊃ OT (3) ⊗ ON (2) were provided in these
works, only cases up to the branching multiplicity three were obtained explicitly
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in the past. Moreover, though there are closed expressions of the expansion coeffi-
cients (overlaps) [13] of the basis vectors of O(5) ⊃ OT (3)⊗ON (2) in terms of those
of O(5) ⊃ SUΛ(2)⊗SUI(2) for any irrep of O(5), a triple sum is involved. Especially,
the basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) obtained in all previous works [6, 10–15]
are non-orthogonal with respect to the branching multiplicity label, of which direct
computation will be CPU time consuming.

2 O(5) in the OT (3) ⊗ ON (2) basis

The generators of O(5) in the O(5) ⊃ OT (3)×ON (2) basis may be expressed as
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T0 = ν0 − τ0, N̂ = ν0 + τ0,

(1)

where {T+, T−, T0} generate the subgroup OT (3), and N̂ generates the ON (2).
N̂ = n̂

2 − Ω, where Ω =
∑

j(j + 1/2) and the sum runs over all single-particle or-
bits considered, and n̂ is the total number operator of valence nucleons, which is used
in the isovector pairing model [1–5]. Moreover, {ν+ = A†

1, ν− = A1, ν0 = n̂π/2−Ω/2}
and {τ+ = A†

−1, τ− = A−1, τ0 = n̂ν/2−Ω/2}, where n̂π and n̂ν are valence neutron
and proton number operator, respectively, generate the SUΛ(2)⊗SUI(2) related to the
quasispin of protons and neutrons with Λ = (Ω− vπ)/2 and I = (Ω− vν)/2, where vπ
and vν are proton and neutron seniority numbers, respectively. The matrix elements
of the double-tensor U introduced in Eq. (1) under the O(5) ⊃ SUΛ(2)⊗SUI(2) basis
were given in Refs. [6–9].

For a given irrep (v1, v2) of O(5), the basis vectors of O(5) ⊃ SUΛ(2) ⊗ SUI(2)
are denoted as

∣

∣

∣

∣

∣

∣

(v1, v2)
Λ = 1

2 (u1 + u2), I = 1
2 (u1 − u2)

mΛ, mI

〉

, (2)

where mΛ and mI are quantum number of ν0 and τ0, respectively, u1 = v1 − q
and u2 = v2 − p with p = 0, 1, ... , 2v2, and q = 0, 1, ... , v1 − v2.

As can be observed from Eq. (1), the basis vectors of O(5) ⊃ SUΛ(2) ⊗ SUI(2)
given in Eq. (2) are also eigenstates of T0 and N̂ with eigenvalues

MT = mΛ −mI , N = mΛ +mI . (3)

For a given irrep (v1, v2) of O(5), all possible basis vectors of O(5) ⊃ SUΛ(2)⊗ SUI(2)
⊃ UΛ(1) ⊗ UI(1) shown in Eq. (2) restricted by the conditions (3) form a complete
set for the fixed MT and N . Therefore, the basis vectors of O(5) ⊃ OT (3)⊗ON (2)
can be expanded in terms of them with the restriction on the quantum numbers
mΛ = 1

2 (N +MT ) and mI = 1
2 (N − MT ). In constructing the basis vectors

of O(5) ⊃ OT (3)⊗ON (2) for the irrep (v1, v2) of O(5) with fixed N , there is a free-
dom to choose a specific basis vector of O(5) ⊃ OT (3) ⊗ ON (2) with isospin T and
the quantum number of the third component of the isospin MT . Practically, it is
convenient to choose the highest or the lowest weight state of OT (3) with MT = T
or MT = −T . Here, we choose the highest weight state of OT (3) with MT = T as a
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reference state with
∣

∣

∣

∣

(v1, v2)
ζ T = MT ,N

〉

, (4)

where ζ is the multiplicity label needed in the reduction (v1, v2) ↓ (T,N ) of O(5) ⊃
OT (3)⊗ON (2). Thus, the vectors (4) should satisfy

T+

∣

∣

∣

∣

(v1, v2)
ζ T = MT ,N

〉

= 0. (5)

Once the basis vector (4) for the highest weight state of OT (3) with MT = T is
known, the basis vector of O(5) ⊃ OT (3) ⊗ ON (2) for any MT can be expressed in
the standard way as

∣

∣

∣

∣

(v1, v2)
ζ T,MT ,N

〉

=

√

(T +MT )!

(2T )! (T −MT )!
(T−)

T−MT

∣

∣

∣

∣

(v1, v2)
ζ T,MT = T,N

〉

. (6)

In order to find all basis vectors of O(5) ⊃ SUΛ(2) ⊗ SUI(2) with fixed MT > 0
and N in the irrep (v1, v2) of O(5), one suffices to consider possible irreps (Λ, I)
of SUΛ(2) ⊗ SUI(2) embedded in the canonical chain satisfying the condition (3).
According to the restrictions MT = mΛ − mI , N = mΛ + mI and the reduction
rules, we find that the following basis vectors are all possible ones within the O(5)
irrep (v1, v2) with MT ≥ 0 for fixed N :

∣

∣

∣

∣

∣

∣

(v1, v2)
Λ, I

1
2 (N +MT ),

1
2 (N −MT )

〉

(7)

with the restrictions

1
2 |N +MT | ≤ Λ ≤ 1

2 (v1 + v2),
1
2 |N −MT | ≤ I ≤ 1

2 (v1 − v2). (8)

Hence, the basis vectors of O(5) ⊃ OT (3)⊗ ON (2) may be expanded in terms of
vectors (7) as

∣

∣

∣

∣

(v1, v2)
ζ T = MT ,N

〉

=

v1−v2
∑

q=0

Min[v1+v2−q−|N+T |, 2v2]
∑

p=Max[0, q−v1+v2+|N−T |]

c(ζ)p,q

×

∣

∣

∣

∣

∣

∣

(v1, v2)
Λ = 1

2 (v1 + v2 − p− q), I = 1
2 (v1 − v2 + p− q)

1
2 (N + T ), 1

2 (N − T )

〉

, (9)

where the summations should also be restricted by the condition that
v1 + v2 − p − q − |N + T | are even numbers, ζ is the multiplicity label needed in

the reduction (v1, v2) ↓ (N , T ), and {c(ζ)pq ≡ c
(ζ)
pq ((v1, v2),N , T )} are the expansion

coefficients, which must satisfy
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By using the explicit matrix elements of U in the O(5) ⊃ SUΛ(2)⊗ SUI(2) basis
provided in Refs. [6–9], Eq. (10) leads to the following four-term relation to determine

the expansion coefficients {c(ζ)p,q}:

c
(ζ)
p,q+1(−1)2N−2q+2v1

×
[

(1+q)(2v1−q+2)(v1+v2−q+1)(v1+v2−p−q+T+N+1)(v1−v2+T−N+p−q+1)(v1−v2−q)
(v1+v2−p−q)(v1−v2+p−q)

]
1

2

+ c
(ζ)
p+1,q(−1)v1+v2+N−p−q+T

×
[

(1+p)(2v2−p)(v1+v2−p+1)(v1+v2+T+N−p−q+1)(v1−v2+p+2)(v1−v2−T+N+p−q+1)
(v1+v2−p−q)(v1−v2+p−q+2)

]
1

2

+ c
(ζ)
p−1,q(−1)v1−v2+N+p−q−T

×
[

p(2v2−p+1)(v1+v2−p+2)(v1+v2−T−N−p−q+1)(v1−v2+p+1)(v1−v2+T−N+p−q+1)
(v1+v2−p−q+2)(v1−v2+p−q)

]
1

2

+ c
(ζ)
p,q−1

×
[

q(2v1−q+3)(v1+v2−q+2)(v1+v2−T−N−p−q+1)(v1−v2−T+N+p−q+1)(v1−v2−q+1)
(v1+v2−p−q+2)(v1−v2+p−q+2)

]
1

2

= 0.

(11)
Accordingly, one can construct a matrix equation equivalent to Eq. (11),

P
(

(v1, v2),N , T
)

c
(ζ) = Λc(ζ). (12)

Entries of the isospin projection matrix P
(

(v1, v2),N , T
)

can easily be read out from

Eq. (11) and the eigenvector c
(ζ) ≡ c

(ζ)
(

(v1, v2),N , T
)

, which transpose is arranged

as
(

c
(ζ)
)T

= (c
(ζ)
0,0, c

(ζ)
1,0, c

(ζ)
2,0, ... , c

(ζ)
0,1, c

(ζ)
1,1, ...). The components of the eigenvector c

(ζ)

corresponding to Λ = 0 provide the expansion coefficients {c(ζ)p,q} of Eq. (9). Once the
matrix P

(

(v1, v2),N , T
)

is constructed, it can be verified that the number of Λ = 0

solutions of Eq. (12) equals exactly to the number of rows of P
(

(v1, v2),N , T
)

with

all entries zero. Actually, the eigenvectors c(ζ)
(

(v1, v2), T,N
)

belong to the null-space

of P
(

(v1, v2),N , T
)

. Since there are many ways to find null-space vectors of a matrix,
to find solutions of Eq. (12) with Λ = 0 becomes practically easy. Furthermore,
(

c
(ζ′)

)T ·c(ζ) 6= 0 when the multiplicity is greater than 1 mainly because the projection

matrix P
(

(v1, v2),N , T
)

is nonsymmetric. Therefore, the O(5) ⊃ OT (3)⊗ON (2) basis
vectors (9) constructed from the expansion coefficients obtained according to Eq. (11)
are also non-orthogonal with respect to the multiplicity label ζ in general. The Gram–
Schmidt process may be adopted in order to construct orthonormalized basis vectors
of O(5) ⊃ OT (3) ⊗ ON (2). Nevertheless, in the Wolfram Mathematica, the built-in
function NullSpace of a matrix with non-integer entries generates orthonormalized
null-space vectors automatically, with which the Gram–Schmidt orthogonalization
can be avoid. In the following, we use c̃

(ζ) to denote the orthonormalized null-space
vectors of N

[

P
(

(v1, v2),N , T
)]

with respect to the multiplicity label ζ obtained from
the Wolfram Mathematica numerically, where N [P] means to take P with numerical
valued entries with a default precision.

The CPU time cost and memory space needed for a computer to solve the null-
space problem (12) depend mainly on the number of terms d(N , T ) needed in the
expansion (9), which equals to the number of columns of P

(

(v1, v2),N , T
)

. Generally,
it would take the CPU time on the order of O(d3) with a unit inversely proportional
to the CPU frequency, and the memory space on the order of O(d2) bytes. When v1
and v2 are integers, for example, we observe form Eq. (9) that the maximal number
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of terms occurs in the T = N = 0 case. In such extreme case, the upper bound of
the number of terms involved in the expansion can be estimated as

d(N = 0, T = 0) ≤
v1−v2
∑

q=0

Min[v1+v2−q, 2v2]
∑

p=Max[0, q−v1+v2]

1 = (1 + v1 − v2)(2v2 + 1), (13)

which shows that Max[d(N , T )] ≤ d(N = 0, T = 0) increases with v1 linearly and
with v2 quadratically.

3 Matrix elements of the isovector pairing
operators in the O(5) ⊃ OT (3) ⊗ ON (2) basis

Once the orthonormalized expansion coefficients {c̃(ζ)} are obtained according to
the isospin projection shown in the previous section, one can easily calculate matrix
elements of O(5) generators {A†

µ, Aµ, Tµ,N} (µ = −1, 0, 1) given in Eq. (1) in
the OT (3)⊗ON (2) basis. Since the matrix elements of {Tµ, N} are well-known,
depend only on T or N , and are irrelevant to the irrep of O(5) and the multiplicity
label ζ, only the formulae of matrix elements of the isovector pairing operator A†

µ

and Aµ in the O(5) ⊃ OT (3)⊗ON (2) basis will be provided.

In the O(5) ⊃ OT (3) ⊗ ON (2) basis, the pair creation operators A+
µ with

{A+
1 = −A†

1, A+
0 = A†

0, A+
−1 = A†

−1} and the pair annihilation operators Aµ with
{A1 = A−1, A0 = −A0, A−1 = −A1} are T = 1 irreducible tensor operators of OT (3)
satisfying the following conjugation relation [18]:

Aµ = (−1)1−µ
(

A+
−µ

)†
. (14)

These T = 1 irreducible tensor operators shift N by one unit, while A†
1 = ν+,

A†
0 = U 1

2

1

2

, and A†
−1 = τ+ in the O(5) ⊃ SUΛ(2)⊗ SUI(2) basis shown in Refs. [6–9].

Using the Wigner–Eckart theorem for matrix elements of O(5) ⊃ OT (3)⊗ON (2), we
have

〈

(v1, v2)
ζ′ T ′M ′

T ,N ′

∣

∣

∣

∣

A+
µ

∣

∣

∣

∣

(v1, v2)
ζ T MT ,N

〉

= δN ′,N+1〈TMT , 1µ|T ′ M ′
T 〉

〈

(v1, v2)
ζ′ T ′,N + 1

∥

∥

∥

∥

A+

∥

∥

∥

∥

(v1, v2)
ζ T,N

〉

, (15)

where 〈TMT , 1µ|T ′ M ′
T 〉 is the Clebsch–Gordan coefficient of OT (3), and

〈

(v1, v2)
ζ′ T ′,N ′

∥

∥

∥

∥

A+

∥

∥

∥

∥

(v1, v2)
ζ T,N

〉

is the OT (3)-reduced matrix element. In the calculation, we ensure that T ′ is al-
ways involved in the OT (3) coupling T ⊗ 1, and M ′

T = MT + µ is always satisfied.
By using Eq. (9) and the expressions of A†

µ in terms of the generators of O(5) in
the SUΛ(2)⊗ SUI(2) basis shown in Eq. (1), the left-hand-side of Eq. (15) can be



78 Feng Pan, K. D. Launey and J. P. Draayer

expressed in terms of expansion coefficients c̃(ζ) and the matrix elements of O(5) gen-
erators in the SUΛ(2)⊗SUI(2) basis. In the following, we list nonzero OT (3)-reduced
matrix elements of A† derived in this way:

〈

(v1, v2)
ζ′ T + 1,N + 1

∥

∥

∥

∥

A+

∥

∥

∥

∥

(v1, v2)
ζ T,N

〉

= −1

2

∑

q,p

c̃(ζ
′)

p,q (N + 1, T + 1) c̃(ζ)p,q(N , T )

×
√

(v1 + v2 − p− q −N − T )(v1 + v2 − p− q +N + T + 2),

〈

(v1, v2)
ζ′ T,N + 1

∥

∥

∥

∥

A+

∥

∥

∥

∥

(v1, v2)
ζ T,N

〉

=
√

T+1
8T

∑

q,p c̃
(ζ)
q,t (N , T )

(

c̃
(ζ′)
p,q−1(N + 1, T ) (−1)2N−2q+2v1+1

×
[

q(2v1−q+3)(v1−v2+p−q+N−T+2)(v1+v2−p−q+T+N+2)(v1−v2−q+1)(v1+v2−q+2)
(v1−v2+p−q+1)(v1−v2+p−q+2)(v1+v2−p−q+1)(v1+v2−p−q+2)

]
1

2

+ c̃
(ζ′)
p−1,q(N + 1, T )(−1)v1+v2+N−p−q+T

×
[

p(2v2−p+2)(v1−v2+p−q−N+T )(v1+v2−p−q+T+N+2)(v1−v2+p+1)(v1+v2−p+2)
(v1−v2+p−q+1)(v1−v2+p−q)(v1+v2−p−q+1)(v1+v2−p−q+2)

]
1

2

+ c̃
(ζ′)
p+1,q(N + 1, T )(−1)v1−v2+N+p−q−T

×
[

(p+1)(2v2−p)(v1−v2+N−T+p−q+2)(v1+v2−T−N−p−q)(v1−v2+p+2)(v1+v2−p+1)
(v1−v2+p−q+1)(v1−v2+p−q+2)(v1+v2−p−q)(v1+v2−p−q+1)

]
1

2

+ c̃
(ζ′)
p,q+1(N + 1, T )

×
[

(q+1)(2v1−q+2)(v1−v2−T+N+p−q)(v1+v2−T−N−p−q)(v1−v2−q)(v1+v2−q+1)
(v1−v2+p−q)(v1−v2+p−q+1)(v1+v2−p−q)(v1+v2−p−q+1)

]
1

2

)

for T ≥ 1
2 , and

〈

(v1, v2)
ζ′ T − 1,N + 1

∥

∥

∥

∥

A+

∥

∥

∥

∥

(v1, v2)
ζ T,N

〉

=
1

2

√

2T + 1

2T − 1

∑

q,p

c̃(ζ
′)

p,q (N + 1, T − 1)c̃(ζ)p,q(N , T )

×
√

(v1 − v2 + p− q −N + T )(v1 − v2 + p− q +N − T + 2) (16)

for T ≥ 1. The other non-zero reduced matrix elements of A can be obtained by the
conjugation relation:
〈

(v1, v2)
ζ′ T ′,N ′

∥

∥

∥

∥

A
∥

∥

∥

∥

(v1, v2)
ζ T,N

〉

= (−1)T
′−T+1

√

2T + 1

2T ′ + 1

〈

(v1, v2)
ζ T,N

∥

∥

∥

∥

A+

∥

∥

∥

∥

(v1, v2)
ζ′ T ′,N ′

〉

. (17)

4 Applications to the isovector pairing model

In the spherical shell model, we consider n valence nucleons with J = 0 and T = 1
pairing interactions in p single-particle orbits. In general, the spherical shell model
is the mean-field plus the isovector pairing interaction Hamiltonian may be written
as [5]

Ĥ =
∑

j

ǫjnj −GπA
†
+1A+1 −GπνA

†
0A0 −GνA

†
−1A−1, (18)
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where ǫj is the single particle energy of the j-orbit, Gπ > 0, Gν > 0, and Gπν > 0 are
proton-proton (pp), neutron-neutron (nn), and neutron-proton (np) pairing interac-

tion strengths, respectively, nj =
∑

mmt
a†jm,mt

ajm,mt
is the valence nucleon number

operator in the j-orbit, and a†jm,mt
(ajm,mt

) is the creation (annihilation) operator
for a valence nucleon in the state with angular momentum j, angular momentum
projection m, and isospin projection mt = 1/2, − 1/2. When Gπ = Gν = Gπν = G,
the isospin is a good quantum number. In this isospin conserving-case, the Hamilto-
nian (18) is exactly solvable [18,19]. Since neutron and proton single-particle energies
in the j-orbit are the same, it is expected that Gπ = Gν = G may be approximately
satisfied, while, in general, Gπν 6= G and the Bethe ansatz method used in Ref. [18,19]
will no longer be useful. In such a case, the Hamiltonian (18) may be diagonalized
in the O(5) ⊃ OT (3)⊗ON (2) basis [20–23]. For the sake of simplicity, in the follow-
ing, we consider the degenerate case with ǫj = ǫ ∀ j when the first term in Eq. (18)
becomes a constant for a fixed number of nucleons n, and is neglected. Thus, the
Hamiltonian can be expressed as

ĤP = −GA+ · A, (19)

where Gπ = Gν = Gπν = G is assumed. The Hamiltonian (19) is OT (3) invariant
and can be expressed as

ĤOT (3) = ĤP = −GA+ · A = −1

2
G
(

C2

(

O(5)
)

− N̂ (N̂ − 3)−T ·T
)

, (20)

which is diagonal in the O(5) ⊃ OT (3)⊗ON (2) basis:

ĤOT (3)

∣

∣

∣

∣

(v1, v2)
ζ T,MT ,N

〉

= −1

2
G
(

v1(v1 + 3) + v2(v2 + 1)−N (N − 3)− T (T + 1)
)

∣

∣

∣

∣

(v1, v2)
ζ T,MT ,N

〉

. (21)

In this case, the labels of the O(5) irrep (v1, v2) are related to the seniority of nu-
cleons v and the reduced isospin t with v1 = Ω − v/2 and v2 = t, where v and t
indicate that there are v nucleons coupled to the isospin t, which are not included in
the J = 0 and T = 1 pairs. One can also directly calculate matrix elements of A+ · A
in the O(5) ⊃ OT (3)⊗ON (2) basis using the matrix elements of A+ provided in the
previous Section,

〈

(v1, v2)
ζ T,MT ,N

∣

∣

∣

∣

A+ · A
∣

∣

∣

∣

(v1, v2)
ζ T,MT ,N

〉

=
∑

ζ′T ′

∣

∣

∣

∣

〈

(v1, v2)
ζ T,N

∥

∥

∥

∥

A+

∥

∥

∥

∥

(v1, v2)
ζ′ T ′,N − 1

〉∣

∣

∣

∣

2

, (22)

where the relation (17) is used to check that the results shown in the previous Section
are indeed valid.

Moreover, besides the OT (3) isospin dynamical symmetry limit case shown above,
there is the well known SUΛ(2)⊗SUI(2) quasispin dynamical symmetry limit for any
value of Gπ and Gν when Gπν = 0, where Λ and I are the quasi-spin of the proton
and neutron pairing, respectively. In this case, the pairing interaction part of Eq. (18)

ĤSUΛ(2)⊗SUI(2) = −GπA
†
+1A+1 −GνA

†
−1A−1 (23)
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is diagonal in the O(5) ⊃ SUΛ(2)⊗ SUI(2) basis,

ĤSUΛ(2)⊗SUI(2)

∣

∣

∣

∣

∣

∣

(v1, v2)
Λ, I

mΛ,mI

〉

=
(

−Gπ

(

Λ(Λ + 1)−mΛ(mΛ + 1)
)

−Gν

(

I(I + 1)−mI(mI + 1)
)

)

∣

∣

∣

∣

∣

∣

(v1, v2)
Λ, I

mΛ,mI

〉

, (24)

where Λ = (Ω−vπ)/2 and I = (Ω−vν)/2 and vπ (vν) is the proton (neutron) seniority,
mΛ = nπ/2 − Ω/2, mI = nν/2 − Ω/2 and nπ (nν) is the number of valence protons
(neutrons), which shows that the Hamiltobian (23) is still block diagonal with respect
to the O(5) irrep labeled by (v1, v2), though the interpretation of (v1, v2) in terms of v
and t is no longer appropriate in this case due to the fact that the isospin symmetry
is broken.

For other values of the pairing interaction strengths, the pairing interaction part of
the Hamiltobian (18) can be only diagonalized in any basis of O(5) and the eigenstates
may be expanded in terms of either the basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) or
those of O(5) ⊃ SUΛ(2) ⊗ SUI(2). The parameter rectangle of the pure isovector
pairing Hamiltonian is illustrated in Fig. 1, which shows that the pure isovector
pairing Hamiltonian may be diagonalized in the O(5) ⊃ OT (3)⊗ON (2) basis, except
the Gπν = 0 case indicated by the left leg of the rectangle with the SUΛ(2)⊗ SUI(2)
quasispin dynamical symmetry.

5 Summary

In this talk, a simple and effective algebraic isospin projection procedure for construct-
ing basis vectors of the irreducible representations of the non-canonical

Figure 1: The parameter rectangle of the isovector pairing Hamiltonian, where the
left leg marked by the solid line represents the Hamiltonian with arbitrary values
of Gπ and Gν and Gπν = 0 corresponding to the SUΛ(2) ⊗ SUI(2) quasispin dy-
namical symmetry, and the vertex marked by the solid dot represents the Hamil-
tonian with Gπ = Gν = Gπν corresponding to the OT (3) isospin dynamical symme-
try. The Hamiltonian for other values of the parameters shown by the other area
of the rectangle may be diagonalized in either the O(5) ⊃ SUΛ(2) ⊗ SUI(2) or
the O(5) ⊃ OT (3)⊗ON (2) basis.
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O(5) ⊃ OT (3)⊗ON (2) basis from those of the canonical O(5) ⊃ SUΛ(2)⊗SUI(2) ba-
sis is presented. The main content of this talk is based on our recent work [24], where
more detailed results are provided. It is shown that the expansion coefficients can
be obtained as components of the null-space vectors of the projection matrix, where
there are only four nonzero elements in each row in general. There are currently
available well-optimized algorithms for computing the null-space vectors of a matrix,
for example, the Wolfram Mathematica providing the null-space vectors which are or-
thonormalized. Hence, an evaluation of the expansion coefficients of the orthonormal
basis vectors of O(5) ⊃ OT (3) ⊗ ON (2) in terms of the basis of the canonical chain
becomes straightforward. The advantage of this work lies in the fact that the basis
vectors of O(5) ⊃ OT (3) ⊗ ON (2) thus obtained are orthonormalized with respect
to the O(5) ↓ OT (3) ⊗ ON (2) branching multiplicity label ζ for any irrep of O(5).
Explicit formulae for evaluating OT (3)-reduced matrix elements of O(5) generators
are derived.

For the general non-degenerate case of the Hamiltonian (18) when there are p
non-degenerate orbits, one needs to diagonalize the Hamiltonian in the

⊗p

i=1 Oi(5)
subspace, where the matrix elements of the isovector pairing operators provided in
this talk are useful. Thus, one can further analyze the isospin symmetry breaking
effects in the Hamiltonian (18) with Gπ 6= Gν 6= Gπν as was done for the specific
cases in Refs. [20–23], which is also helpful for understanding the np-pairing effect
in N ∼ Z nuclei [25].
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