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Abstract

The Friedrichs—Faddeev model is considered in the case where the kernel
of the potential operator is holomorphic in both arguments on a certain com-
plex domain. For this model, we, first, derive representations for the transition
operator and scattering matrix continued on unphysical energy sheet(s) that ex-
plicitly express them in terms of the same operators exclusively on the physical
sheet. Then the Friedrichs-Faddeev Hamiltonian becomes subject to a complex
deformation. We show that, in the case under consideration, the deformation
resonances (non-real eigenvalues of the deformed Hamiltonian) are nothing but
the scattering matrix resonances, i. e., they represent the poles of the scattering
matrix analytically continued on the respective unphysical energy sheet.

Keywords: Friedrichs—Faddeev model; complex deformation; resonances; un-
physical sheets

1 Introduction

Assume that § is a Hilbert space and let A = (a,b), where —c0 < a < b < 0.
Denote by Lo(A,h) the Hilbert space of h-valued functions of A € (a,b) with the
scalar product

b
() = [ A9,

where (-, )y stands for the scalar product in h. The Hamiltonian of the Friedrichs—
Faddeev model has the form
H=Hy+V (1.1)

with Hy being the operator of multiplication by an independent variable in La(A,b),
(HOf)(/\) = /\f(/\)7 AE Au f € L2(A7 h)u (12)

and V being an integral operator,

b
Wm»:/vaﬂmw. (1.3)
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It is assumed that, for every A\, u € A, the quantity V() ) is a bounded linear
operator on h such that V(\, u) = V(u, \)*, and, in addition, V' is a Hélder continuous

operator-valued function of A, x € A. Furthermore, one requires
Via,p) =V (b,u) =V (A a)=V(\b)=0 in the case of finite a or/and b (1.4)

or imposes suitable requirements on the rate of decreasing of V(A, u) as |\, |u| — oo
in the case of infinite a or/and b.

In its starting form the model (1.1)—(1.4) was introduced by K. Friedrichs [1] who
considered the Hamiltonian

H.= Hy+ €V, € >0, (1.5)

with Hy and V' given by (1.2) and (1.3) in the simplest case of one-dimensional inter-
nal Hilbert space h = C and A = (—1,1). The spectrum of the (self-adjoint) opera-
tor Hy is absolutely continuous and, in this case, coincides with the segment [—1, 1].
Friedrichs studied variation of the continuous spectrum of Hy under the perturba-
tion €V. He has succeeded to prove that, if € is sufficiently small, then the spec-
trum of H. remains absolutely continuous and still fills the segment [—1,1]. In
Ref. [2], Friedrichs has extended this result to the case of arbitrary finite- or infinite-
dimensional Hilbert space h and arbitrary finite or infinite end points a and b. More
precisely, he has proven that, if ¢ > 0 is small enough, then the perturbed opera-
tor (1.5) is unitarily equivalent to the unperturbed one, Hy, and, hence, the spectrum
of H, is absolutely continuous and fills the set A.

O. A. Ladyzhenskaya and L. D. Faddeev have dropped in Ref. [3] the assumption of
smallness of the perturbation V' and studied the model Hamiltonian (1.1)—(1.4) with
not small € at V. However, instead of the smallness, they required compactness of the
values of V(\, ) as operators on b for all A, u € A. Detail proofs for the results of
Ref. [3] are presented by Faddeev in Ref. [4]. As a matter of fact, the paper [4] contains
a complete version of the scattering theory for the model (1.1)—(1.4). Furthermore,
the paper [4] may be viewed as a relatively simple introduction to the approach used
by Faddeev in his celebrated study [5] of the three-body problem. Also notice that
the typical two-body Schrodingrer operator may be reduced to the Friedrichs—Faddeev
model with a = 0, b = +o0o and h = Lo(S?), where S? is the unit sphere in R? (see
Ref. [4]; cf. Ref. [6, Section 3]).

Faddeev’s in-depth study [4] of the Hamiltonian (1.1)—(1.4) is the main reason why
this Hamiltonian is often referred to as the Friedrichs—Faddeev model. In addition,
the double naming allows to distinguish the model (1.1)-(1.4) from another popular
model due to Friedrichs contained in Ref. [2]. The second model from Ref. [2] involves
a 2 X 2 block matrix Hamiltonian and works well, in particular, in the theory of
Feshbach resonances (see, e.g., Refs. [7,8] and references therein). For later results
just on the Friedrichs-Faddeev model and its generalizations, see Refs. [9-13].

In the present work, we adopt the ideas and approach from the previous works
of the author [14,15] in order to study the structure of the T- and S-matrices for
the Friedrichs-Faddeev model continued on unphysical energy sheets neighboring the
physical one. Namely, we obtain representations that explicitly express the continued
T- and S-matrices in terms of the same operators considered exclusively on the phys-
ical sheet (see Lemmas 2.2 and 2.3 below). The obtained representations show, in
particular, that a resonance on an unphysical sheet under consideration corresponds
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to the energy z in the physical sheet where the scattering matrix has the zero eigen-
value.

We perform a complex deformation of the Friedrichs-Faddeev Hamiltonian. (No-
tice that the “usual” complex scaling [16,17] may be understood as a particular case
of the complex deformation, see Ref. [6, Section 3].) A complex discrete spectrum
of the complexly-deformed Hamiltonian is interpreted as resonances. We show that
these resonances are simultaneously the poles of the continued scattering (and T-)
matrix on the unphysical sheet(s), that is, they are resonances in the sense of scatter-
ing theory. Recall that, in general, to prove the equivalence of the scaling resonances
and scattering matrix resonances is a rather hard job (see Ref. [18]). In contrast, in
the case of the Friedrichs—Faddeev model, the proof of such an equivalence is quite
easy and illustrative.

Throughout the article, we denote by o(T') the spectrum of a closed linear opera-
tor T'. Notation T™* is used for the adjoint of T. T is called self-adjoint (Hermitian)
if T* = T. Notations o, (T) and o.(T) are used for the point and continuous spec-
tra of T, respectively. By Ig we denote the identity operator on a vector space K;
the index K is omitted if no confusion arises. Notation C* = {z € C|Imz > 0}
(C~ ={z € C|Imz < 0}) is used for the upper (lower) halfplane of of the complex
plane C.

The present paper represents a conference version of the work [6].

2 Structure of the T- and S-matrices
on unphysical energy sheets

We consider the model (1.1)—(1.4) in the case where for each A, u € (a,b) the value
of V(A ) is a compact operator in . We assume, in addition, that the func-
tion V' (A, ) admits analytic continuation both in A and p onto a domain Q@ C C
containing A. More precisely, we suppose that

V(A 1) is compact and holomorphic in both A\, u € Q, QD (a,b). (2.1)

Also we assume that V(A u) = V(p, A)* for real A\, p € A (which is needed for the self-
adjointness of V). Surely, this implies V/(A, u) = V(u*, \*)* for any A, u € Q such that
their conjugates \*, u* €  and, hence, the domain ) should be mirror-symmetric
with respect to the real axis.

Following Refs. [2,4] one imposes some natural requirements on the rate of de-
creasing of V(\, ) as |A|, |u| — oo in the case of a = —oo or/and b = +oo. To unify
the consideration, we simply assume that

VO, < K@+ A+ u)~ ), g >0 (2.2)

IV + a4 8) = VO, < K1+ A+ [p) " (] + 18]7), 52 > 1/2,
(2.3)

with some K > 0 for any A\, p € Q and any «a, § such that A+a € Q, p+ 5 € Q.
Since V(A, p) is holomorphic in both A €  and p € Q, the requirement (2.3) with
72 < 1 is essential only in the neighborhoods of the finite end points a and/or b.
Otherwise, one may replace 72 with unity.
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We use the standard notations for the resolvents,
Ro(z):=(Ho—=2)"",  R(z):=(H—2)",
and for the transition operator,
T(z) =V —VR(2)V. (2.4)
Since, at least for z ¢ o(Hy) Uo(H),
R(z) = Ro(z) — Ro(2)T'(2)Ro(2), (2.5)

the study of the spectral problem for the perturbed Hamiltonian H = Hy + V is
reduced to the study of the transition operator (T-matrix) T'(z), the kernel of which
is less singular than that of the resolvent R(z).

From [4, Theorem 3.1] it follows that the kernel T'(A, i, ) is a well-behaved func-
tion of A, u € A and z on the complex plane C punctured at o, (H) and cut along [a, b].
Moreover, T'(\, p, z) is of the same class (2.2), (2.3) as V(\, u) but with 7, and 7
replaced by positive 7] < m; and 95 < 12 which may be chosen arbitrary close to 1
and 72, respectively. The kernel T'(A, i, z) has limits

T\, E+i0), E €A\ o,(H).

In our case, these limits are smooth in A, p € A\ 0,(H). The scattering matrix for
the pair (Hy, H) reads as

Sy (E)=1I,—2riT(E,E,E+1i0), E € (a,b)\o,(H).

Due to requirements (1.4) and (2.3) the point spectrum o, (H) of H represents a finite
set of eigenvalues with finite multiplicities (see Ref. [4]; cf. Ref. [12]).

Recall that the T'(\, u, z) satisfies the following two Lippmann—Schwinger equa-
tions:

b
ﬂmm@=V@m—/ﬂwV®?Tg%@, (2.6)

b
ﬂmm@:V@m—/ﬂwTﬁi?Z@w, (2.7)

z & (a,b), A€ (a,b)
Substituting T'(v, i, z) in the r.h.s. part of Eq. (2.6) by the r.h.s. part of Eq. (2.7),

one obtains

b
T\ p,2) =V(Ap) —/ dv VA V(v 1)

vV —=z

b b VN ) T (v, 02, 2) V(va, 1)
+/a dyl/a dvy =2 =) , z & [a,b]. (2.8)

Since V' (A, p) is analytic in both A, u € Q, one easily concludes from Eq. (2.8) that
the kernel T'(\, p, z) possesses the same holomorphy property. More detail statement
is as follows.
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Proposition 2.1. If z & (a,b) Uo,(H), the function T(\, u, z) is holomorphic in
both A € Q and p € Q. One can replace the interval (a,b) in Egs. (2.6) and (2.7) by an
arbitrary piecewise smooth Jordan contour v C € obtained from (a,b) by continuous
transformation provided that the end points are fived and the point z is avoided during
the transformation (a,b) — .

For the sake of simplicity, in the following we usually assume that the num-
bers a,b € R are finite.

Now consider a smooth Jordan contour v C Q N C* obtained from the inter-
val (a,b) by a continuous transformation with the fixed end points @ and b. From the
Proposition 2.1 it follows that Eq. (2.6) can be equivalently written as

T\, 2) =V (A, ) —/du VAT, pz) (2.9)

~ vV —=z

Ape, zeC\Q,,

where the set 2, C C is confined by (and containing) the segment [a,b] and the
curve 7 (see Fig. 1). By applying to Eq. (2.9) the Faddeev’s approach of Ref. [4], one
can prove that a solution T'(\, i, z) exists and is analytic on z for any

2 &€ op(H)UFU ores(7), (2.10)

where 065 (7y) is a discrete set located inside €),; the overlining in 7 means the closure,
that is, 7 = v U {a} U {b}. Because of the holomorphy of V(A u) in A, € €, the
solution T'(\, p1, 2) remains analytic in A\, u € Q for any z € C satisfying (2.10). The
points of oyes(y) (resonances) correspond to the poles of the solution T'(z), which
residues are finite rank operators. Hence, Eq. (2.9) allows one to pull the argument z
of T'(z) from C* to C~ at least into the interior of the set €2,. Of course, the points
of 0res(7) should be avoided during this procedure.

It turns out, however, that, after such a continuation, the solution T'(\, , 2)
for z € QN C™ is taken on an unphysical sheet of the Riemann energy surface of 7.
This unphysical sheet is attached to the physical sheet along the upper rim of the cut
of C through the interval (a,b) and we denote it by II_. Thus, it is necessary to use
a different notation, say, T"(\, i, z) for the continuation of the kernel of 7" on II_ (in
order to distinguish if from T'(z) at the same z on the physical energy sheet). By the

v Figure 1: Domain  where the kernel V(A i)
is holomorphic both in A and p. The set €2
is bounded by (and contains both) the Jordan
contour v and the segment [a, b].



132 A. K. Motovilov

way, this kernel will coincide with the original one, that is, T'(\, p, 2) = T(\, p, 2),
provided z € C\ (€2, Uo,(H)).

The amazing thing is that the continued equation (2.9) may be solved explicitly.
To show this, let us assume that z € Q, \ (J U 0ves(7)) and perform a two-step
transformation of the contour v (see Fig. 1) in the way shown in Fig. 2.

a b a b

O, O.

Figure 2: Two steps in transformation of the contour v back to (a,b).

By performing such a transformation and computing the residue at v = z, one ob-
tains from Eq. (2.9) the following equation for the unphysical-sheet values T"(\, u, 2)
of T

b !
V(nv)T
T' Oy 2) = VO ) — 201 VN, 2) T (2, 1, 2) — / ay YOI W 2) g 4y

vV —z

A p € Q, zeQNC™.

Adopting the standard terminology of scattering theory one calls the kernel 77 (z, u, z)
“half-on-shell” since its first argument equals the spectral parameter (energy) z.
Similarly, the kernel T"(z,z, z) is called “(completely) on-shell”, whereas the ker-
nel T'(\, p, z) with arbitrary admissible values of A and p is called “off-shell”. Surely,
the adjectives “off-shell”, “half-on-shell”, and “on-shell” may be applied to any func-
tion of the complex arguments A, y, and z.

By transferring all the entries in Eq. (2.11) with the off-shell kernel T” to the Lh.s.
one obtains:

b ’
T/()\,‘LL,Z)—F/ dV V()\5V)T (V,/L,Z) — V

a

M) =2m V(N 2)T (2,1, 2), (2.12)

vV —=z

A€ Q, zeQNnC™.

Meanwhile, for z on the physical sheet we have: (I +V R (z))flv =T(z),z & op(H).
This allows to rewrite Eq. (2.12) in the form

TI()\a 1y Z) = T(Av s Z) — 2mi T()\a 2 Z) T/(Za Hy Z)v (213)

where the absence of the the prime in notation of the entry T'(-, i1, z) means that this
entry is taken for z on the physical energy sheet. Now by setting A = z in Eq. (2.13),
one gets

T (z,p,2) = T(2,p,2) = 2miT(2,2,2) T (2, i, 2). (2.14)

From Eq. (2.14) it follows that
S_(2)T" (2 2) = Tz s 2), (2.15)

where

S_(z):=1Ip + 211 T(z,2,2), zeQNnC™, (2.16)
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is just the scattering matrix for the values of z in the lower half-plane. We emphasize
that the values of z in Eq. (2.16) are taken on the physical sheet. From Eq. (2.15) it
follows that

T (2,1, 2) = S_(2) "' T2, 1, 2), (2.17)

of course, under the condition that the inverse S_(z)~! exists. That is, z in Eq. (2.17)
should be such that S_(z) does not have eigenvalue zero. Combining Egs. (2.13)
and (2.17), one finally obtains

T\, 2) = T\, 2) — 2miT (N, 2,2) S_(2) " Tz, p, 2). (2.18)

All the entries on the r.h.s. part of Eq. (2.18) are taken for the same z as on the Lh.s.
part but on the physical sheet. Thus, the representation (2.18) discloses the structure
of the analytically continued transition operator 7"(z) = T'(z)|;_ on the unphysical
sheet I1_ exclusively in terms of the physical sheet.

An analytic continuation of T(A, p,z) from the lower half-plane C~ to the
part QN CT of the unphysical energy sheet 11, attached to the physical sheet along
the lower rim of the cut (a,b) may be performed exactly in the same way. As a
result, one arrives at the following statement that works for both sheets II, where
the number ¢ = £1 in the subscript is identified with the corresponding sign =+ in the
previous notation Il..

Lemma 2.2. The transition operator T'(z) admits a meromorphic continuation (as
an operator-valued function of the energy z) through the cut along the interval (a,b)
both from the upper, CT, and lower, C™, half-planes to the respective parts

Q_:=QNC and Q :=QNCT

of the unphysical sheets 111 and 1111 attached to the physical sheet along the upper

and lower rims of the above cut. The kernel of the continued operator T(Z)’Hmm’
= =1, is given by the equality
T\ p,2)|, C, NG, = (TN s 2) +2m LT (N, 2, 2) Se(2) " Tz, 1, 2)) cq, (219)
z€Q\ ol (2.20)
with all the entries on the r.h.s. part, including the scattering matric
Se(z) =1y — 27l T(z, 2, 2), (2.21)

being taken for the same z on the physical sheet. Notation o’.. is used for the set of

all those points ¢ € QN CY where Sy(¢) has eigenvalue zero.

S

It is worth mentioning that some further analytic properties of V(A i) outside
should be known in order to decide whether II_ and IT; represent the same (“second”)

unphysical sheet or they are really different sheets of the energy Riemann surface (cf.
Ref. [14]).
Continuation formula for the scattering matrix is a simple corollary to Lemma 2.2.

Lemma 2.3. An analytic continuation of the scattering matriz S_y(z), £ = £1, to
the unphysical sheet 11y is is given by

S*Z(Z)Lenl Ny Sl(z)il}zegea z ¢ Ufesa (222)

where the r.h.s. part is taken for z on the physical sheet.
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3 Equivalence of the deformation and scattering
resonances in the Friedrichs—Faddeev model

From now on we consider a family of the Friedrichs-Faddeev Hamiltonians
Hy=Ho~ +V,

associated with smooth Jordan curves v C {2 obtained by continuous transformation
from the interval (a,b), with the end points a, b fixed during the transformation. As
before, the notation € is used for the holomorphy domain of V(A, x) in A, p. The
domain © may or may not include the points a and/or b. The entries Hy and V,
are given by

(HoNN=AFO) and (BAM = [ VO fde A€,
¥
It is assumed that f € La(7,h) where La(7,h) is the Hilbert space of h-valued func-
tions of the variable A\ € v with the scalar product

(i) = [ AT, 905

Notice once again that the standard complex scaling [16,17] of a two-body Hamilto-
nian may be viewed as a particular case of the complex deformation of the Friedrichs—
Faddeev model (see Ref. [6, Section 3]).

Assume, for simplicity, like in Section 2, that both a and b are finite real numbers
and let V (), 1) be also as in Section 2. As usually, for the resolvent R, (z) = (H,—z) !
of the operator H. we have

Ry (2) = Roy(2) = Roy(2) Ty(2) Roy(2), (3.1)
where Ry ~(z) is the resolvent of Hy -,

ROKY(Z) = (HOKY - 2)717 z ¢ U(HO,V)u
and
Ty(2) = Vo = Vo (Hy = 2)71 V5, z ¢ o(H,) (3.2)

is the transition operator for the pair (Ho , H,).

Clearly, Hy  is a normal operator on ). Its spectrum is purely absolutely con-
tinuous and fills the curve 7. From Eq. (3.1) it immediately follows that the discrete
eigenvalues of I, are associated just with the poles of the operator-valued func-
tion 77, ().

Suppose that the above Jordan contour v lies entirely in 2 = QNC~ (or entirely
in Qy =QNCT) and let 2, be again the set in C confined by (and containing) the
interval [a, b] and the curve 7 (see Fig. 1).

Lemma 3.1. The following equality holds: o(H,)\ Q, = o,(H) \ A, which means
that the spectrum of H outside §)y is purely real and coincides with the corresponding
eigenvalue set of H. Furthermore, o,(Hy) N A = 0,(H) N A, i e., the eigenvalues
of Hy lying on A do not depend on the (smooth) Jordan contour ~. Finally, the
spectrum of H., inside €., consists of the scattering-matriz resonances.
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We skip a detail justification of this assertion and refer the reader to the proof of
the corresponding statement in Ref. [6, Proposition 4.1]. Here we only notice that the
proof in Ref. [6] is reduced to the observation that the kernels of the T-matrices (3.2)
and (2.4) possess the property

T (A p,2) =T (A p,z) whenever A\ pe€y, z€C\Qy (and z & 0,(H)).

Then, by the uniqueness principle for the analytic continuation, one concludes that,
for z inside Q, the kernel T, (X, u,z) represents just the analytic continuation
of T'(\, 1, -) to the interior of 2, belonging already to the unphysical sheet. Hence,
the poles of T, (%) within Q, represent resonances of the original Friedrichs-Faddeev
Hamiltonian (the one associated with the interval (a,b)). This also means that the
positions of the resonances inside {2, are stable in the sense that they do not depend
on 7.

Conclusion

In this work we have studied the Friedrichs—Faddeev model with an analytic potential
kernel V(A, ). We have found that the transition operator and the scattering matrix
for this model, analytically continued on unphysical energy sheets, admit explicit
representations in terms of the same operators considered exclusively on the physical
sheet. A resonance on the unphysical sheet II,, ¢ = 41, or, more precisely, in the
domain IT, Ny, is a point, for the copy z of which on the physical sheet the scattering
matrix Sp(z) has eigenvalue zero, i. e.,

Se(2) A=0 for a non-zero A€ b.

We have also shown that, for the Friedrichs—Faddeev model under consideration, the
deformation resonances are nothing else but the scattering matrix resonances.
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