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Abstract

We investigate the electromagnetic form factors of the nucleon in the frame-

work of basis light-front quantization. We compute the form factors using the

light-front wavefunctions obtained by diagonalizing the effective Hamiltonian

consisting of the holographic QCD confinement potential, the longitudinal con-

finement, and a one-gluon exchange interaction with fixed coupling. The nucleon

electromagnetic radii are also computed.
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1 Introduction

Electromagnetic form factors are critical to understanding nucleon structure. There
are many experiments and theoretical studies on these form factors and they remain
a very active field of research. We refer to the articles [1–5] for detailed reviews.
It is well known that the matrix element of electromagnetic current for the nucleon
requires two form factors, namely, Dirac and Pauli form factors,

Jµ
had(q

2) = ū(p′)
(

γµF1(q
2) +

iσµνqν
2M

F2(q
2)
)

u(p), (1)

where q2 = (p′ − p)2 = −2p′ · p + 2M2 = −Q2 is the square of the momentum
transferred to the nucleon and M is the nucleon mass. The normalizations of the
form factors are given by F p

1 (0) = 1, F p
2 (0) = κp = 1.793 for the proton and

Fn
1 (0) = 0, Fn

2 (0) = κn = −1.913 for the neutron. Cates et al. [6] first decomposed
the nucleon form factors into their flavor components. Writing the hadronic current
as the sum of quark currents one can decompose the nucleon electromagnetic form
factors into flavor-dependent form factors. Neglecting the strange quark contribution,
the hadronic matrix element for electromagnetic current can be expressed as

Jµ
had(q

2) = 〈N(p′)|(euūγµu+ edd̄γ
µd)|N(p)〉, (2)
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where eu and ed are the charges of u and d quarks in the units of positron charge (e).
Under the charge and isospin symmetry 〈p|ūγµu|p〉 = 〈n|d̄γµd|n〉, it is straightforward
to write down the flavor form factors in term of the nucleon form factors as

Fu
i (Q

2) = 2F p
i (Q

2) + Fn
i (Q

2),

F d
i (Q

2) = F p
i (Q

2) + 2Fn
i (Q

2), (i = 1, 2),
(3)

with the normalizations Fu
1 (0) = 2, Fu

2 (0) = κu and F d
1 (0) = 1, F d

2 (0) = κd, where
the anomalous magnetic moments for the up and the down quarks are κu = 2κp + κn
= 1.673 and κd = κp + 2κn = −2.033. It was shown in Ref. [6] that though the ratio
of Pauli and Dirac form factors for the proton F p

2 /F
p
1 ∝ 1/Q2, the Q2 dependence

above 1 GeV2 is almost constant for the ratio of the quark form factors F2/F1 for
both u and d. The Sachs form factors for the nucleon are written in terms of Dirac
and Pauli form factors as

GN
E(Q

2) = FN
1 (Q2)− Q2

4M2
FN
2 (Q2), (4)

GN
M(Q2) = FN

1 (Q2) + FN
2 (Q2), (5)

and the electromagnetic radii are defined by

〈r2E〉N = −6
dGN

E(Q
2)

dQ2

∣

∣

∣

Q2=0
, (6)

〈r2M 〉N = − 6

GN
M(0)

dGN
M(Q2)

dQ2

∣

∣

∣

Q2=0
. (7)

The basis light-front quantization (BLFQ) approach has been developed for solv-
ing many-body bound state problems in quantum field theories [7–10]. It is a Hamil-
tonian formalism incorporating the advantages of the light-front dynamics [11, 12].
This formalism has been successfully applied to quantum electrodynamics (QED)
systems including the electron anomalous magnetic moment [10] and the strong cou-
pling bound-state positronium problem [8]. It has also been applied to heavy quarko-
nia [13] and Bc mesons [14] as QCD bound states. Recently, the BLFQ approach
using a Hamiltonian that includes the color singlet Nambu–Jona–Lasinio interaction
to account for the chiral dynamics has been applied to the light mesons [15,16]. In this
work, we study the electromagnetic form factors of the nucleon using the light-front
wavefunctions (LFWFs) obtained by diagonalizing the effective light-front Hamilto-
nian in the constituent valence quark representation with the potential including the
light-front holographic QCD in the transverse direction [17], longitudinal confine-
ment [9], and one-gluon exchange interaction with a fixed coupling in the framework
of BLFQ.

2 Effective light-front Hamiltonian

The structures of the bound states are encoded in the LFWFs which are obtained as
the eigenfunctions of the light-front Schrödinger equation,

Heff |Ψ〉 =M2|Ψ〉, (8)
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where Heff is the effective Hamiltonian of the system with the mass squared, M2,
eigenvalue. In general, |Ψ〉 is the eigenvector in the Hilbert space spanned by all
Fock sectors. In the valence Fock sector, the effective Hamiltonian for the nucleon
wavefunctions that we adopt is given by

Heff =
∑

a

~k2a⊥+m2
a

xa
+

1

2

∑

a,b

[

κ4T xa xb (~ra⊥− ~rb⊥)
2 − κ4L

(ma +mb)2
∂xa

(xaxb∂xb
)

]

+
1

2

∑

a,b

CF 4π αs(Q
2
ab)

Q2
ab

ūs′
a
(k′a) γ

µ usa(ka) ūs′b(k
′
b) γ

ν usb(kb) dµν , (9)

where
∑

a xa = 1 and
∑

a ka⊥ = 0; ma/b is the mass of the quark and κL (κT ) is

the strength of the longitudinal (transverse) confinement; ~ζ⊥≡ √
xaxb ~r⊥ is the holo-

graphic variable [17], where ~r⊥ = ~ra⊥− ~rb⊥ is the transverse separation between two

quarks, ∂xf(x, ~ζ⊥) = ∂ f(x, ~ζ⊥)/∂ x|~ζ ; Q2
ab=−q2=−(1/2)(k′a − ka)

2−(1/2)(k′b − kb)
2

is the average momentum transfer squared; CF = −2/3 is the color factor; dµν is the
gluon polarization tensor which reduces to the metric tensor gµν by summing over the
dynamical one-gluon exchange and the instantaneous gluon exchange, and αs is the
running coupling which can be replaced by a constant for simplicity. Note that we
use different quark masses in the kinetic energy term and in the one-gluon exchange
interaction of the effective light-front Hamiltonian to simulate the effects of higher
Fock components and the other QCD interactions. Upon diagonalization of the re-
sulting effective Hamiltonian matrix in a chosen basis representation, one obtains the
mass spectrum and the corresponding wavefunctions of the system.

In the BLFQ, Eq. (8) is expressed in a truncated basis representation of the valence
Fock space, and the resulting finite-dimensional matrix is diagonalized numerically.
The choice of basis is arbitrary as long as it is orthogonal and normalized. We choose
the two-dimensional harmonic oscillator (2D-HO) basis in the transverse direction
and the discretized plane-wave basis in the longitudinal direction [7–10]. Each single-
particle basis state can be identified using four quantum numbers, ᾱ = {k, n,m, λ}.
The longitudinal momentum of the particle is characterized by the first quantum
number k. In the longitudinal direction x−, we constrain the system to a box of
length 2L, and impose (anti-) periodic boundary conditions on (fermions) bosons. As
a result, the longitudinal momentum p+ = 2πk/L is discretized, where the dimen-
sionless quantity k = 1, 2, 3, ... for bosons and k = 1

2 ,
3
2 ,

5
2 , ... for fermions. The zero

mode for bosons is neglected. In the many-body basis, all basis states are selected to
have the same total longitudinal momentum P+ =

∑

i p
+
i , where the sum is over the

particles in a particular basis state. One then parameterizes P+ using a dimensionless
variable K =

∑

i ki such that P+ = 2π
L K. For a given particle i, the longitudinal

momentum fraction x is defined as

xi =
p+i
P+

=
ki
K
. (10)

K determines the “resolution” in the longitudinal direction, and thus the resolution
of parton distribution functions. The longitudinal continuum limit corresponds to the
limit L,K → ∞. The next two quantum numbers, n and m, denote radial excitation
and angular momentum projection, respectively, of the particle within the 2D-HO
basis in the transverse direction. The choice of the 2D-HO basis for BLFQ is made
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because the HO potential is a confining potential, and therefore its wavefunctions
should form an ideal basis for systems subjected to QCD confinement. Since we
assume harmonic confinement in the transverse direction, these transverse basis states
are also computationally convenient.

In order to numerically diagonalize Heff , the infinite dimensional basis must be
truncated down to a finite dimension. In BLFQ, two levels of the truncation scheme
are implemented. First, the number of Fock sectors in the basis is restricted. This
truncation is based on physical as well as practical considerations. For instance, the
nucleon is expected to be fairly well described by the lowest few sectors. For example,
the nucleon state can be expressed schematically as

|N〉phys = a|qqq〉+ b|qqqg〉+ c|qqqqq̄〉+ ... (11)

In this work, we limit ourselves to the leading Fock sector |qqq〉 only.
Second, within each Fock sector, further truncation is still needed to reduce the

basis to a finite dimension. We introduce a truncation parameter Kmax on the lon-
gitudinal direction such that

∑

l kl ≤ Kmax, where kl is the longitudinal momen-
tum quantum number of l-th particle in the basis state. Note that systems with
larger Kmax have simultaneously higher ultra-violet (UV) and lower infra-red (IR)
cutoffs in the longitudinal direction. In the transverse direction, we require that the
total transverse quantum number Nα =

∑

l(2nl + |ml| + 1) for multi-particle basis
state |α〉 satisfies Nα ≤ Nmax, where Nmax is a chosen truncation parameter. The
transverse continuum limit corresponds to Nmax → ∞. The 2D-HO basis may be
defined by two parameters, massM and frequency Ω. We adopt a single HO parame-
ter b =

√
MΩ, since our transverse modes depend only on b rather than on M and Ω

individually. Here, we choose the value of b = 0.45 GeV, the same as the confining
strength κL (κT ). Nmax and b define both the transverse IR and UV regulator in
BLFQ. In addition, our many body states have well defined values of the total angu-
lar momentum projectionMJ =

∑

i(mi+λi), where λ is the fourth quantum number
which corresponds the helicity of the particle.

3 Electromagnetic form factors in BLFQ

In the light-front formalism for a spin 1
2 composite system, the Dirac and Pauli form

factors F1(q
2) and F2(q

2) are identified with the helicity-conserving and helicity-flip
matrix elements of the J+ current [18],

〈

P + q, ↑
∣

∣

∣

∣

J+(0)

2P+

∣

∣

∣

∣

P, ↑
〉

= F1(q
2), (12)

〈

P + q, ↑
∣

∣

∣

∣

J+(0)

2P+

∣

∣

∣

∣

P, ↓
〉

= −(q1 − iq2)
F2(q

2)

2M
, (13)

whereM is the nucleon mass and the arrow indicates the helicity of the nucleon. The
physical nucleon state with momentum P can be expanded in terms of multi-particle
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light-front wavefunctions [19]:

|P, Sz〉 =
∑

n

∫ n
∏

i=1

dxi d
2k⊥i

16π3
√
xi

16π3 δ

(

1−
n
∑

i=1

xi

)

δ2

(

n
∑

i=1

k⊥i

)

× ψSz

n (xi, k⊥i, λi) |n, xiP+, xiP⊥ + k⊥i, λi〉. (14)

Here xi = k+i /P
+ and k⊥i represent the relative transverse momentum of the i-th

constituent and n is the number of particles in a Fock state; the physical transverse
momenta are p⊥i = xiP⊥+k⊥i; λi and Sz are the light-cone helicities of the quark and
nucleon, respectively; the boost invariant light-front wave functions ψn depend only
on xi and k⊥i and are independent of the total momentum of the state P+ and P⊥.
In the overlap representation, the electromagnetic form factors are then expressed as

F q
1 (q

2) =
∑

n,λi

∫ n
∏

i=1

dxi d
2k⊥i

16π3
16π3 δ



1−
∑

j

xj



 δ2





n
∑

j=1

k⊥j





× ψ↑∗
n (x′i, k

′
⊥i, λi)ψ

↑
n(xi, k⊥i, λi), (15)

−(q1 − iq2)

2M
F q
2 (q

2) =
∑

n,λi

∫ n
∏

i=1

dxi d
2k⊥i

16π3
16π3 δ



1−
∑

j

xj



 δ2





n
∑

j=1

k⊥j





× ψ↑∗
n (x′i, k

′
⊥i, λi)ψ

↓
n(xi, k⊥i, λi), (16)

where for the struck parton x′1 = x1, k
′
⊥1 = k⊥1 + (1 − x1)q⊥ and x′i = xi,

k′⊥i = k⊥i − xiq⊥ for the spectators (i = 2, ... , n). We consider the frame where
q = (0, 0,q⊥), thus Q

2 = −q2 = q2
⊥. Since we restrict ourselves to the leading Fock

sector, the nucleon basis state can be written as

|NSz

phys〉 = |kq1, nq1,mq1, λq1〉 ⊗ |kq2, nq2,mq2, λq2〉 ⊗ |kq3, nq3,mq3, λq3〉. (17)

We obtain the light-front wavefunctions numerically by diagonalizing the effective
Hamiltonian given in Eq. (9) with the basis representation given by Eq. (17). Using
the resulting light-front wavefunctions ψn, we evaluate the electromagnetic form fac-
tors of the nucleon. The parameters are tuned to fit the electromagnetic properties of
the nucleons. Following the convention of Ref. [20], we fix the normalizations of the
Dirac and the Pauli form factors as

F q
1 (Q

2) = nq
F

(BLFQ)q
1 (Q2)

F
(BLFQ)q
1 (0)

, F q
2 (Q

2) = κq
F

(BLFQ)q
2 (Q2)

F
(BLFQ)q
2 (0)

, (18)

so that F q
1 (0) = nq and F q

2 (0) = κq, where nu = 2, nd = 1 and the anomalous
magnetic moments for the u and d quarks are κu = 1.673 and κd = −2.033. The
advantage of the modified formulae in Eq.(18) is that, irrespective of the values of
the parameters, the normalization conditions for the form factors are automatically
satisfied.

In Fig. 1, we show the Q2 dependence of the Dirac and the Pauli form factors
of u and d quark. We set the confining strengths κL = κT = 0.45 GeV in both the
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Figure 1: BLFQ results for the Dirac (a) and Pauli (b) form factors of u and d quarks
with confining strength κL = κT = 0.45 GeV and fixed coupling αs = 0.5. The quark
mass in the kinetic energy term is mq/KE = 0.5 GeV, whereas the quark mass in the
one-gluon-exchange interaction is mq/OGE = 0.3 GeV. The bands correspond to the
range for Nmax = 6−8 with Kmax = 10. We choose the value of the HO parameter b
the same as κL(κT ), i. e., b = 0.45 GeV. mg (= 0.01 GeV) is a small gluon mass
regulator used for numerical convenience. The experimental data are taken from
Refs. [6, 21, 22].

longitudinal and transverse confinements and the coupling constant αs = 0.5. The
bands represent the range of our results due to increasing the basis from Nmax = 6
to Nmax = 8 with Kmax = 10. We use different quark masses, i. e., in the kinetic
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Figure 2: The ratio of the Pauli and Dirac form factors of the proton with the same
parameters as mentioned in Fig. 1 and with basis truncationNmax = 8 andKmax = 10.
The ratio is divided by κp. The experimental data are taken from Refs. [23–27].

energy term mq/KE = 0.5 GeV and in the one-gluon exchange interaction mq/OGE

= 0.3 GeV in order to minimize the effect of higher Fock component and the other
QCD interactions. Figure 1 shows that the BLFQ results for the flavor Pauli form
factors are in reasonable agreement with the experimental data. The Dirac form
factor for the u quark is also in reasonable agreement with the data. However, the
theoretical d quark form factor is somewhat over estimated compared to the data.

The nucleon form factors can be obtained from the flavor dependent form factors.
The ratio of Pauli and Dirac form factors of the proton for Nmax = 8 and Kmax = 10
is shown in Fig. 2. We find that at low Q2 our result agrees well with the experimental
data. The Sachs form factors for the proton are presented in Fig. 3 where we find a
good agreement between theory and experiment. In Fig. 4, we show the Sachs form
factors for the neutron. Our results for the neutron magnetic form factor are in a
reasonable agreement with experimental data, however, for the charge form factor is
overestimated as compared to the data. The deviations of the neutron charge form
factor from the experimental data can be attributed to the fact that the d quark form
factor F d

1 does not have the correct behavior in this model. From the Sachs form
factors we also compute the electromagnetic radii of the nucleons. We quote the radii
in Table 1, the experimental values are taken from the Ref. [37]. Here again, we find
a reasonable agreement with experiment.

4 Conclusions

The electromagnetic form factors for the nucleon and their flavor decomposition have
been presented using the BLFQ approach. The form factors have been evaluated from
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Figure 3: BLFQ
results for the
Sachs form factors
GE(Q

2) (a) and
GM (Q2) (b) of
the proton with
the same parame-
ters as mentioned
in Fig. 1 and with
the basis trunca-
tion Nmax = 8 and
Kmax = 10. The
experimental data
are taken from
Refs. [23–25, 28–30]
and Refs. [25, 31],
respectively.

Table 1: Electromagnetic radii of nucleons.

Quantity BLFQ Measured data [37]

rpE 0.804 fm 0.877± 0.005 fm

rpM 0.917 fm 0.777± 0.016 fm

〈r2E〉n −0.1214 fm2 −0.1161± 0.0022 fm2

rnM 1.007 fm 0.862+0.009
−0.008 fm
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Figure 4: BLFQ
results for the
Sachs form factors
GE(Q

2) (a) and
GM (Q2) (b) of
the neutron with
the same parame-
ters as mentioned
in Fig. 1 and
with basis trunca-
tion Nmax = 8 and
Kmax = 10. The
experimental data
are taken from
Refs. [23–25, 28–30]
and Refs. [32–36],
respectively.

the overlaps of the light-front wavefunctions which were obtained by diagonalizing the
effective Hamiltonian. In our model, we consider the holographic QCD confinement
potential, longitudinal confinement, and a one-gluon exchange interaction with fixed
coupling in the effective light-front Hamiltonian. We observed a reasonable agreement
of our results for the proton and u quark form factors with the experimental data,
however, the Dirac form factor of d quark and the neutron charge form factors deviate
from the data for the basis truncation Nmax = 8 and Kmax = 10. We also presented
the electromagnetic radii for the nucleon.
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