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Abstract

We review several recent results in the area of nuclear lattice simulations

based on chiral effective field theory by the Nuclear Lattice EFT Collaboration.

The topics we cover are lattice interactions with improved rotational properties

and a computational method called eigenvector continuation.
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1 Introduction

Chiral effective field theory (EFT) describes the low-energy interactions of nucleons.
It consists of an expansion in powers of momenta and factors of the pion mass near the
chiral limit where the light quarks are massless; see Ref. [1] for a review of chiral EFT.
Terms with a total of n powers of nucleon momenta or factors of the pion masses are
labelled as order Qn. The leading order (LO) interactions are at order Q0, the next-
to-leading order (NLO) interactions correspond to order Q2, next-to-next-to-leading
order (N2LO) terms areQ3, and next-to-next-to-next-to-leading order (N3LO) areQ4.
In this Proceedings article we review two recent results using chiral EFT by the
Nuclear Lattice EFT Collaboration. See also the contribution by Ulf-G. Meißner in
the same Proceedings volume [2] for other recent results.

2 Improved lattice interactions

Nuclear lattice simulations using chiral EFT have been used to describe the structure
and scattering of atomic nuclei [3–5]. However the treatment of nuclear forces at
higher orders in the chiral expansion are difficult on the lattice due to the breaking
of rotational invariance produced by the nonzero lattice spacing [6, 7].

In Ref. [8] we solve these problems with a new set of short-range chiral EFT
interactions on the lattice that decomposes more easily into spin channels. The key
idea is to define smeared annihilation and creation operators. This procedure gives
us better rotational symmetry properties when taking spatial derivatives as finite
differences. We start with ai,j(n), the nucleonic annihilation operator on lattice site n
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with spin i and isospin j. To this we add neighboring lattice operator with relative
weight, sNL, to define the smeared annihilation operator

asNL

i,j (n) = ai,j(n) + sNL

∑

|n′|=1

ai,j(n+ n
′). (1)

Next we form bilinear functions of the annihilation operators with various spin and
isospin quantum numbers, S, Sz, I, Iz ,

[a(n) a(n′)]sNL

S,Sz,I,Iz
=

∑

i,j,i′,j′

asNL

i,j (n)Mii′ (S, Sz)Mjj′ (I, Iz) a
sNL

i′,j′(n
′). (2)

We introduce orbital angular momentum using solid spherical harmonics,

RL,Lz
(r) =

√

4π

2L+ 1
rL YL,Lz

(θ, φ), (3)

that are written as functions of the lattice derivatives of one of the annihilation
operators,

P 2M,sNL

S,Sz,L,Lz,I,Iz
(n) = [a(n)∇2M

1/2R
∗
L,Lz

(∇)a(n)]sNL

S,Sz,I,Iz
. (4)

We then project onto the selected spin and orbital angular momentum using Clebsch–
Gordan coefficients,

O2M,sNL

S,L,J,Jz,I,Iz
(n) =

∑

Sz,Lz

〈SSzLLz|JJz〉P
2M,sNL

S,Sz,L,Lz,I,Iz
(n). (5)

We present in Ref. [8] results for the neutron-proton system up to next-to-next-to-
next-to-leading order for lattice spacings of 1.97, 1.64, 1.32, and 0.99 fm. In Fig. 1
we show results for the neutron-proton scattering phase shifts and mixing angles
versus the relative momenta for the lattice spacing a = 1.32 fm, and in Fig. 2 we
show neutron-proton scattering phase shifts and mixing angles for the lattice spac-
ing a = 0.99 fm. The blue, green and red bands signify the estimated uncertainties at
NLO, N2LO and N3LO respectively. The black solid line and diamonds denote phase
shift or mixing angle from the Nijmegen partial wave analysis and lattice calculation
at N3LO, respectively. These results show marked improvement over previous studies
of chiral EFT interactions on the lattice.

3 Eigenvector continuation

In nuclear theory and other fields of quantum theory we often would like to find
the extremal eigenvalues and eigenvectors of a Hamiltonian matrix in a vector space
that is extremely large, so large that linear algebra operations on general vectors
cannot be done. Monte Carlo methods are well suited to overcome this problem,
however stochastic methods fail when severe sign oscillations appear and there is
strong cancellation between positive and negative amplitudes.

We present in Ref. [9] a new technique called eigenvector continuation (EC) that
can improve the reach of Monte Carlo methods. The main idea is that while an eigen-
vector inhabits a linear space with very many dimensions, the eigenvector trajectory
generated by smooth changes of the Hamiltonian matrix can be well approximated
by a low-dimensional manifold. This statement is proven using analytic continuation.
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Figure 1: Results for the neutron-proton scattering phase shifts and mixing angles versus the relative momenta for the lattice spac-
ing a = 1.32 fm. The blue, green and red bands signify the estimated uncertainties at NLO, N2LO and N3LO respectively. The black
solid line and diamonds denote phase shifts or mixing angles from the Nijmegen partial wave analysis and lattice calculation at N3LO,
respectively.
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Figure 2: Results for the neutron-proton scattering phase shifts and mixing angles versus the relative momenta for the lattice spac-
ing a = 0.99 fm. The blue, green and red bands signify the estimated uncertainties at NLO, N2LO and N3LO respectively. The black
solid line and diamonds denote phase shifts or mixing angles from the Nijmegen partial wave analysis and lattice calculation at N3LO,
respectively.
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Suppose that the Hamiltonian H(c) depends smoothly on some control parame-
ter c. Let c⊙ be the target value of the parameter where we wish to compute the
ground state wave function |Ψ0(c⊙)〉. The EC method is variational calculations
where the variational subspace consists of eigenvectors |Ψ0(c)〉 for different values
of c. The computational advantage is clear when the direct calculation of |Ψ0(c⊙)〉
is not possible but we can use values of c where the Monte Carlo simulations are
accurate and reliable.

We assume that H(c) is Hermitian for real c and thus diagonalizable. Hence
we can define |Ψ0(c)〉 so that it also has no singularities on the real axis. We now
expand |Ψ0(c)〉 as a power series about the point c = 0. The coefficients for cn

are |Ψ
(n)
0 (0)〉/n!, where the superscript (n) indicates the nth derivative. An analogous

series expansion can be applied to the eigenvalue E0(c). These series converge for
all |c| < |z|, where z and its complex conjugate z̄ are the closest singularities to c = 0
in the complex plane. Although the series expansion about c = 0 fails to converge
for |c| > |z|, we can define an analytic extension by constructing a new series about
another point c = w, where w is real and |w| < |z|.

For this new series the coefficients of (c − w)n are |Ψ
(n)
0 (w)〉/n!. We can use

the original series to express each |Ψ
(n)
0 (w)〉 in terms of |Ψ

(m)
0 (0)〉. In this way we

can approximate |Ψ0(c)〉 to arbitrary accuracy as a linear combination of the vec-

tors |Ψ
(n)
0 (0)〉 in the region |c− w| < |z − w| centered at w. This process of analytic

continuation is illustrated in Fig. 3. By applying this analytic continuation repeat-
edly, we can reach any value of c and express any |Ψ0(c)〉 to any desired accuracy as

a linear combination of a finite number of vectors |Ψ
(n)
0 (0)〉. The number of required

vectors is determined by the number of different expansion centers needed in the ana-
lytic continuation and the rate of convergence of each series expansion. This explains

Figure 3: Analytic continuation of the wave function |Ψ0(c)〉 beyond the nearest
singularity at z and z̄.
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Table 1: EC results for the ground state energy for six and fourteen neutrons using
sampling data g2A = c1, c2, c3, where c1 = 0.25, c2 = 0.60, and c3 = 0.95. For
comparison we also show the direct calculation results.

g2A values E0, 6 neutrons (MeV) E0, 14 neutrons (MeV)

c1 14.0(4) 48.8(6)
c2 13.7(4) 48.5(7)
c3 13.8(6) 48.8(8)

c2, c3 13.7(4) 48.4(7)
c3, c1 13.8(4) 48.8(6)
c1, c2 13.7(4) 48.4(7)

c1, c2, c3 13.7(4) 48.4(7)

direct calculation 12(+3
−4) 42(+7

−15)

why the trajectory traced out by |Ψ0(c)〉 can be approximated by a manifold with a
small number of linearly-independent directions.

In Ref. [9] we consider simulations of the neutron matter at the leading order using
the leading order interaction described in Ref. [10]. This particular lattice action is
plagued by large sign oscillations due to the one-pion exchange interaction, which is
parameterized by the coupling g2A. The systems we calculate are the ground state en-
ergies of 6 and 14 neutrons on a 4×4×4 lattice with spatial lattice spacing 1.97 fm and
time lattice spacing 1.32 fm. We first attempt to compute the ground state energies by
direct calculation. The errors are quite large due to sign oscillations. For 6 neutrons
the ground state energy is E0 = 12(+3

−4) MeV, and for 14 neutrons E0 = 42(+7
−15) MeV.

Next we use the EC for the values g2A = c1, c2, c3, where c1 = 0.25, c2 = 0.60, and
c3 = 0.95. We use Monte Carlo simulations to calculate the ground state eigenvectors
for c1, c2, c3. In Table 1 we show the EC results using just one of the three vectors,
two of the vectors, or all three vectors. The error bars are estimates of the stochastic
error and extrapolation error in the projection time. For comparison we also show the
direct calculation results. The EC results are consistent with the direct calculation
results, though with an error bar that is smaller by an order of magnitude. The EC
approach is now being developed for all interactions that produce sign oscillations in
the nuclear lattice simulations.
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