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Abstract

Starting from the CD-Bonn potential, we have performed Gamow shell-

model calculations for neutron-rich oxygen isotopes, investigating excitation

spectra and their resonant properties. The Gamow shell model is based on

the Berggren ensemble, which is capable of treating the continuum effect rea-

sonably in weakly-bound or unbound nuclei. To calculate heavier-mass oxygen

isotopes, we choose 16O as a frozen core in the Gamow shell-model calculations.

The first 2+ excitation energies of the even-even O isotopes are calculated, and

compared with those obtained by the conventional shell model using the em-

pirical USDB interaction. The continuum effect is proved to play an important

role in the shell evolution near the drip line. We discuss also the effect of the

Berggren contour choice. We improve the approximation in the contour choice

to give more precise calculations of resonance widths.
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1 Introduction

Thanks to the radioactive isotope beam technique, the exploration of the neutron
drip line is no longer unachievable. A recent experiment performed at RIKEN-RIBF
investigated the extremely neutron-rich nucleus 26O by removing a proton from the
radioactive secondary beam of 27F [1]. The decay products, 24O and two neutrons,
were observed. This experiment confirmed that 24O is the last bound nucleus of
neutron-rich oxygen isotopes, and positioned the ground-state resonance of 26O at
about 18 keV above threshold. Another excited state in 26O was also observed at
1.28 MeV, which is believed to be the first 2+ state [1].

As a powerful method for studying atomic nuclei, including in the medium-mass
region, the shell model is very commonly used to investigate oxygen isotopes [2–4].
Shell model calculations using the USDB interaction have been successful in repro-
ducing the observables of sd-shell nuclei, such as the binding energies, spectra, and
transition rates [5–9]. However, the USDB interaction is constructed in the harmonic
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oscillator (HO) basis. The HO basis always gives well-localized wave functions of nu-
clear states. However, these cannot describe the loosely-bound or unbound properties
of drip-line nuclei. For the drip-line nucleus 26O, the HO-basis shell-model calcula-
tion with the USDB interaction gives a 2+ excitation energy about 0.8 MeV higher
than the experimental data [1]. The three-body model calculations indicate that the
two-neutron decay channel may play an important role in the 26O system [10–12].

In the three-body model calculation, the three-body system 24O + n + n is cor-
related by a density-dependent contact pairing interaction. The two-neutron decay
channel is taken into account by evolving the initial state, generated by removing a
proton from the calculated ground state of the 25F + n + n system, with the Hamilto-
nian of the three-body system. The Hamiltonian is based on a one-body Woods–Saxon
(WS) potential with a finite depth, and the two-body pairing interaction [10–12]. Us-
ing a finite-depth one-body potential is crucial for the model, as it allows the particle
emissions.

The three-body model has been successful in reproducing the first 2+ state en-
ergy of 26O, as the decay channel can couple the bound and continuum single particle
(s.p.) states [10–12]. For describing the properties of weakly-bound or unbound nuclei
near the drip line, the continuum effect has already been proved to be very impor-
tant [13–19]. In the three-body model, a phenomenological pairing interaction is
applied. As was pointed out in Ref. [11], the pairing strength has to be finely tuned
to get a precise result. Fitting the pairing strength mixes different effects, like the
continuum effect and the three-body force, and the exact contribution from each of
them cannot be identified. Another problem is that the three-body model cannot give
the decay width directly and the method used to calculate the widths is parameter-
dependent [11].

To minimize the obscure mixing effects caused by the fitted interaction, as well as
to calculate the decay width self-consistently, we revisit the continuum effect in the
oxygen isotopes by the Gamow shell model (GSM) [18,20,21] with a realistic nuclear
force, the CD-Bonn interaction [22]. The GSM is based on the Berggren ensemble,
which is composed of s.p. bound states, resonant states and non-resonant continu-
ums [13, 18, 20, 21]. The continuum states in the Berggren ensemble are analytically
extended to the complex plain and discretized along a certain contour. The imaginary
parts of the resonant s.p. eigenenergies give the resonance widths of the s.p. states.
These s.p. widths integrate to the total widths of the many-body system through
the shell model. On the other hand, the CD-Bonn potential describes the nucleon-
nucleon interaction with high precision within a very wide range. To accelerate the
convergence of many-body calculations, the bare CD-Bonn interaction is renormalized
using the Vlow-k procedure [23]. For the shell-model calculation with a frozen core, we
adopt the Q-box folded-diagram perturbation method [24,25] to construct a realistic
effective model-space Hamiltonian, as done in Ref. [21].

As mentioned above, analytically extending the continuum states to the complex
plain is essential in the Berggren ensemble, which includes narrow resonant states,
and introduces an additional dimension to describe the resonance width. However, a
complex contour requires more discretizing points to reach convergence due to the ad-
ditional dimension. Since it is believed that the non-resonant continuum mainly cou-
ples with bound states through the resonances, and the direct coupling is assumed to
be less important, in most models based on the Berggren ensemble, only partial waves
that include narrow resonances are extended to the complex plain [18, 20, 21, 26–30].
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However the accuracy of this approximation is not yet well tested. In this paper,
we will discuss the Berggren contour choice in the oxygen chain by expanding the
extended partial waves from d3/2 to all sd partial waves.

In this paper, we perform a realistic-force GSM calculation for the neutron-rich
oxygen isotopes 18,20,22,24,25,26O to study how the continuum effect affects the shell
evolution in the drip-line region, as well as to investigate the continuum effect from
the non-resonant continuum in partial waves without narrow resonances.

2 Theoretical framework

The Berggren ensemble is a s.p. basis specialized for treating the continuum and
resonances. The one-body Schrödinger equation in the complex-k space gives the
Berggren states,

d2u (r)

dr2
=

(

l (l + 1)

r2
+

2m

~2
VWS(r) − k2

)

u(r), (1)

where VWS is the WS potential with a spin-orbit coupling,

VWS(r) = −V0 f(r) − 4VSO
1

r

df(r)

dr
l · s, (2)

where l and s refer to the orbital angular momentum and spin of the particle, respec-
tively, and

f(r) = −
1

1 + e
r−r0A1/3

d

. (3)

The basis states include bound, resonant and continuum states due to the finite depth
of the WS potential. In the present calculations, the parameters of the WS potential
are V0 = 45.39 MeV, r0 = 1.347 fm, d = 0.70 fm, and VSO = 18.2 MeV. The sd-shell
s.p. energies are −5.31 MeV, −3.22 MeV and (1.06 − 0.09i) MeV for the 0d5/2, 1s1/2
bound states and 0d3/2 resonant orbit, respectively. The values are the same as the
universal parameters [31], except that the strength |V0| is reduced to reproduce the
experimental width extracted from 17O [21].

The completeness relation of the Berggren ensemble can be written as

∑

n∈{b,d}

un(r, kn)un(r′, kn) +

∫

L+

dk v(r, k) v(r′, k) = δ(r − r′), (4)

where b and d denote the bound states and decaying resonant states respectively,
and L+ denotes the integral contour of the continuum. The contour lies in the com-
plex plain. Only narrow resonances enclosed in the contours are included in the
summation of Eq. (4) according to Cauchy’s integral theorem. Since the orbital an-
gular momentum in the s.p. Hamiltonian is conserved, the contours of different partial
waves may differ. For a partial wave that does not contain narrow resonances, a con-
tour lying on the real-momentum axis is widely used.

The effective interaction in the Berggren ensemble is obtained by performing a
Q-box folded-diagram perturbation based on the CD-Bonn interaction. The matrix
elements, which are given originally in the HO basis, are projected to the Berggren
ensemble by overlapping the Berggren basis wave functions and those of the HO
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basis. In the present work, we are using the truncation Nshell = 22 for the HO basis.
The CD-Bonn interaction is renormalized by the Vlow-k procedure before projection
to the Berggren ensemble. To minimize the induced three-body force in the Vlow-k

renormalization, a hard cutoff of Λ = 2.6 fm−1 is chosen. In the Q-box calculation,
the starting energy is −6 MeV, which is approximately equal to the average sd-shell
s.p. energy of the one-body Woods-Saxon potential.

With the 16O core, the model space of the effective interaction is all sd-shell or-
bits including bound states 0d5/2 and 1s1/2, the narrow resonant state 0d3/2, and
the d3/2 non-resonant continuum states on the complex plain. As mentioned above,
a real-momentum continuum contour is commonly adopted for partial waves that
do not have narrow resonances. Because we are also investigating the continuum
effect contributed by partial waves that do not have narrow resonances, the results
with different contours in the s1/2 and d5/2 partial waves are compared. We change
these contours from the real-momentum axis to the same as that of the d3/2 par-
tial wave. In the calculation, we choose the contour {0.0 → 2.2} (in fm−1) in the
real axis and discretize it with 20 discrete points. The complex contour is taken
as {0.0 → (0.48 − 0.20i) → 0.62 → 2.2} (in fm−1) with 20 discrete points as well.

3 Calculations and discussion

The excitation energy of the first 2+ excited state is an indicator of the shell gap
in the sd shell. In this paper, we calculate the 2+1 excitation energies of oxygen iso-
topes, shown in Fig. 1. We see that both the CD-Bonn GSM and USDB HO-basis
SM calculations give good agreement with experimental 2+1 excitation energies, espe-
cially in the well-bound nuclei 18,20,22O, where both calculations reproduce the data
well. This indicates that, although based on a realistic force, the effective interac-
tion in the GSM has the same precision for the well-bound systems as the empirical
USDB interaction which fits the data of bound nuclei. However, for the 2+1 excitation
energy in the unbound 26O, the USDB interaction gives 2.11 MeV which is about
800 keV higher than the experimental data. The CD-Bonn GSM improves the results
of calculations significantly (see Fig. 1). Since the effective interaction in GSM is as
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Figure 1: Calculated 2+1
excitation energies in
18,20,22,24,26O compared
with the experimental
data [1, 32] and USDB
calculations. The USDB
calculation overestimates
the 2+ excitation energy in
26O, while the GSM calcu-
lation improves the result
by taking the continuum
effect into account.
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precise as the USDB interaction in the well-bound nuclei, we can thus conclude that
the improvement should be mainly due to the inclusion of the continuum.

The calculated 2+ excitations of 24O and 26O are lower than the experimental
data, which may be partially due to the lacking of the three-body force in the GSM
calculations. With an increasing number of valence neutrons, the effect of the three-
body force becomes significant. In our previous work [21], we proved that the three-
body force introduced by the Vlow-k process is weak when the hard cutoff of 2.6 fm−1

is used. However, the initial three-body force, which is not considered, would have a
non-negligible effect for neutron-rich isotopes with a large number of valence neutrons.
In the work studying the oxygen chain using the ab-initio coupled cluster method [28],
with both two-body and three-body interaction derived from the chiral effective field
theory [33], the initial three-body force has an effect of increasing the excitation
energies of the 2+ states in the even-even O isotopes. Although the 2+ state in 26O
was not calculated in Ref. [28], the direction of this effect should remain the same.
This conclusion supports our result that the 2+ state is lower in energy than the
experimental data if no three-body force is considered.

Another purpose of the present work is to investigate the influence of the contour
choice. We use different contours for the sd partial waves to calculate all well-bound
as well as weakly-bound and unbound nuclei. For convenience, we use the following
notations:
i) C0: the complex contour (i. e., a triangle shape below the real-momentum axis, see
Fig. 1 in Ref. [21], our previous paper) with 20 discrete points is employed in the d3/2
channel, which contains a narrow resonance, while the real-momentum contours with
only 8 discrete points are used in all other channels (including s1/2 and d5/2 channels),
which have no narrow resonances.
ii) C1: the same as C0 except that the number of discrete points for s1/2 and d5/2
partial waves is increased to 20.
iii) C2: the same as C1 except that the complex-momentum contour, like that in
the d3/2 partial wave, is employed in the s1/2 channel.
iv) C3: the same as C2 except that the same complex-momentum contour employed
also in the d5/2 channel.

Figure 2 displays the results of calculations of low-lying states in 22−26O. We see
that there is no meaningful changes of the results when the number of discretizing
points is increased from 8 to 20, except for the 24O where the energies become slightly
lower. An increase in the number of discretizing points leads to a remarkable increase
in the model dimension. Therefore, a reasonable but converged number of discretiz-
ing points is an issue that one should consider in the GSM calculations. From our
calculations for the sd-shell nuclei, 8 discretizing points should be reasonable in most
cases.

From Fig. 2, we can also analyze the results of calculations with different strategies
of the contour choice. Overall, the different strategies in the choices of contours give
almost the same results, except that C3 gives slightly higher energies for the 2+ and 3+

states in 22O. This means that for the partial waves with no narrow resonances, real-
momentum contours can be chosen without a loss of accuracy of the calculations. A
real-momentum contour with reasonable discretizing points can significantly reduce
the computational burden. This means that if there are no narrow resonances in the
channel, the continuum states on the real-momentum contour are good enough to
describe the continuum effect in the real part of the eigenenergies.
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Figure 2: Low-lying
states in 22,24,26O. The
experimental data are
taken from Refs. [1, 32].
Different strategies of
the contour choosing
Ci are defined in the
text. The results show
that the real parts of
the eigenenergies given
by GSM do not change
meaningfully with the
different choices of
contours for the chan-
nels without narrow
resonances.

Figure 3 plots the imaginary parts (i. e., resonance widths) of the obtained eigenen-
ergies of the resonant states in 24,25,26O, compared with the experimental data avail-
able currently [1, 32]. The calculated resonance widths are gently dependent on the
prescriptions of contour choice. The widths tend to be slightly smaller with more
partial waves taking complex-momentum contours, and closer to the experimental
values. However, the GSM calculation with a complex-momentum contour is much
more expensive in computation. The new experiment of 26O [1] mentioned in the
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introduction has also updated the resonance width of the unbound 25O ground state.
The experimental resonance width of the 2+ state in 26O [1] looks extremely large,
much larger than obtained in the GSM calculation. The experimental strength of the
2+ resonant state is relatively weak, and the FWHM is influenced a lot by continuum
states around. The present calculation predicts a much smaller resonance width for
this state.

In the present paper, we are investigating how to treat the continuum effect in
both energy and width of resonances. For the calculation of resonance energy, choos-
ing a real-momentum contour for a partial wave that has no narrow resonance is
good enough to give a convergent result. Taking a complex-momentum contour does
not change the result. For the calculation of resonance width, however, choosing
complex-momentum contours for all partial waves of the model space seems to be
more reasonable, and hence recommended. For partial waves belonging to the ex-
cluded space, couplings with valence particles are weak, and hence it should be safe
to use real-momentum contours for the respective channels.

4 Conclusion

In conclusion, we have applied the with-core GSM based on the CD-Bonn potential
to neutron-rich oxygen isotopes, investigating the continuum effect on both resonance
energy and width. These calculations were motivated with the recent experiment on
26O beyond the neutron drip line. The calculated 2+ excitation energies were com-
pared with shell-model calculations using the empirical USDB interaction, showing a
strong continuum effect in the spectra of drip-line nuclei. By choosing the different
prescriptions of contours in the Berggren coordinates for the GSM calculation, we
have discussed the convergence of the resonance spectrum. It is suggested that all
model-space partial waves, regardless of whether there is a narrow resonance, should
take the same complex-momentum contour to obtain a convergent resonance width.
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