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Abstract

The fermion self-energy is calculated from the rainbow-ladder truncation of
the Dyson–Schwinger equation (DSE) in quantum electrodynamics (QED) for
spacelike momenta and in the complex momentum plane close to the timelike
region, both using Pauli–Villars regularization. Specifically, the DSE is solved in
the complex momentum plane by rotating either the energy component of the
four-momentum or the magnitude of Euclidean four-momentum to reach the
timelike region in Minkowski space. The coupling constant is appropriately cho-
sen to ensure the singularities of the fermion propagator located in the timelike
region while producing significant differences from the perturbative solutions.
For simplicity, we choose the Feynman gauge, but the method is applicable in
other covariant gauges as well. We demonstrate that the approximate spectral
representation based on the fermion self-energy near the timelike region is con-
sistent with the solution of the DSE directly in the Euclidean space.

Keywords: QED; fermion Dyson–Schwinger equation; Minkowski space calcu-

lations; rainbow-ladder truncation

1 Motivation

The measurable quantities associated with the structure of a hadron state in the full
possible kinematical range, which would be obtained by solving, e. g., quantum chro-
modynamics (QCD), require the knowledge of matrix elements of physical operators
with timelike momenta. This poses a challenge to methods based on a purely Eu-
clidean formulation of QCD, using either discretization methods such as lattice gauge
theories, or continuum methods like the Dyson–Schwinger (DSE) and Bethe–Salpeter
equations (BSE) [1]. To extract physical observables defined in Minkowski space,
these methods have to rely on an analytic continuation from Euclidean space such
that, e. g., the momenta of physical hadrons are on-shell (in the timelike region). This
is straightforward to do for mesons as bound states of a quark and anti-quark [2, 3],
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and can also been done for baryons. Furthermore, Poincaré-invariant form factors
can be obtained [4, 5] in a limited momentum region without any ambiguity. How-
ever, starting from a purely Euclidean formulation, it is far from trivial to access
observables defined on the light-front, such as the the parton distribution functions
and their generalizations.

Here we remind the readers that with these continuum methods, it is essential to
take into account the nonperturbative dressing of quark propagators and vertices, in
particular for light mesons: the pions represent the Goldstone bosons associated with
dynamical chiral symmetry breaking, and their Bethe–Salpeter amplitudes are closely
related to the self-energies of the light quarks [6]. Thus, if one aims to explore the
rich kinematical range associated with observable hadron structure, it is desirable to
obtain the solution of the BSE with dressed quark propagators in Minkowski space.

To make progress with the DSEs applied to QCD, it is therefore necessary to
obtain the dressed propagators in Minkowski space. The DSE for the fermion self-
energy within a QED-like model and rainbow-ladder truncation has been studied
extensively. Early investigations based on analytic continuation of the Euclidean
DSE suggested the existence of a pair of mass-like singularities at complex-conjugate
momenta [7–9]. Subsequently, the DSE was studied in Minkowski metric using the
Nakanishi integral representation (NIR) [10] in Refs. [11–13]. Their results showed
a complicated analytic structure of the self-energies in the timelike region, which
deserves to be studied further. More recently, the solutions for DSE for the fermion
propagator in Minkowski space with on-shell renormalization within quenched QED
were obtained in Ref. [14].

Efforts in solving the two-boson BSE in Minkowski space with bare particles using
the NIR have been undertaken since the pioneering works in Refs. [15,16], which relied
on the uniqueness of the Nakanishi weight function in the nonperturbative domain
of bound states. These techniques were further developed by the introduction of
the light-front projection allied to the NIR to solve the BSEs for bosons [17–20] and
for fermions [21–23]. Recently we obtained the approximate two-boson Minkowski
Bethe–Salpeter amplitude from the solution of the Euclidean BSE by numerically
‘un-Wick rotating’ the homogeneous integral equation towards Minkowski space [24].
The solutions found with this new approach reveal the rich analytic structure of the
Bethe–Salpeter amplitude, consistent with the one obtained in Minkowski space via
the Nakanishi integral representation.

Motivated by the success of the un-Wick rotation method developed for solving the
BSE, and the challenge to obtain the self-energy in the timelike region, this approach
is extended here to investigate the fermion self-energies both in the spacelike and
the timelike regions. We use the rainbow-ladder truncation of the fermion DSE with
a massive or massless exchange vector boson. In Section 2, the truncated DSE is
presented with its representations both in the Minkowski metric and in the Euclidean
metric. Here we restrict ourselves to the Feynman gauge, but the method is applicable
in any covariant gauge. We rely on the Pauli–Villars (PV) regularization to eliminate
ultraviolet divergences; for simplicity we do not apply any renormalization condition,
so our numerical results depend on the PV mass.

We solve the truncated DSE in the complex momentum plane using two different
implementations:

1. the complex-rotation of the fourth component of the Euclidean four-momenta
towards the zeroth component (energy component) of the four-momenta in the
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Minkowski metric (‘un-Wick rotation’);

2. and an analytic continuation of the magnitude of the Euclidean four-momenta
to rotate the Euclidean DSE on the spacelike axis towards the pure timelike
axis in the Minkowski metric,

as described in Section 3. Both implementations give (within their numerical un-
certainty) the same results in a large region of the complex momentum plane. The
numerical results for the self-energies are discussed in Section 4. In this preliminary
study, the coupling constant is chosen below the critical value for dynamical chiral
symmetry breaking, but large enough to allow for nonperturbative effects. We also
demonstrate that the obtained results close to the timelike axis can be used as a good
approximation to the spectral representation of the self-energy.

2 DSE in Minkowski and Euclidean metric

In the Minkowski metric, we can write the inverse fermion propagator S−1 as

S−1(p) = p/A(p2)−B(p2) = A(p2)
(

p/−M(p2)
)

, (1)

with M(p2) = B(p2)/A(p2). For convenience we also define Z(p2) = 1/A(p2). With
this notation, the fermion propagator S can be written as

S(p) =
A(p2) p/+B(p2)

A2(p2) p2 −B2(p2) + iǫ
= Z(p2)

p/+M(p2)

p2 −M2(p2) + iǫ
, (2)

where we have introduced the iǫ prescription to select the correct Riemann sheet when
the denominator in the spectral representation vanishes. For simplicity, however, we
will suppress the explicit iǫ’s unless that could cause ambiguities.

Next, consider DSE for the fermion propagator in the rainbow (ladder) truncation
by coupling to a vector boson with mass µ and PV regularization with mass Λ,

S−1(p) = p/−m0 − ig2
∫

d4k

(2π)4
γµ S(k) γν [Dµν(q;µ)−Dµν(q; Λ)], (3)

with the bare fermion mass m0 and q = p − k. The (massive) vector boson in the
covariant gauge can be written as [25]

Dµν(q;m) =
−1

q2 −m2 + iǫ

[

gµν − (1− ξ)
qµqν

q2 − ξ m2 + iǫ

]

, (4)

where ξ is the gauge parameter. The Landau gauge is defined by ξ = 0, while ξ = 1
defines the Feynman gauge. For simplicity, we will only consider Feynman gauge here.
Projecting out the equations for A and B we arrive at

B(p2) = m0 + ig2
∫

d4k

(2π)4
4B(k2)

k2A2(k2)−B2(k2)

Λ2 − µ2

(q2 − µ2)(q2 − Λ2)
, (5)

A(p2) = 1 + ig2
∫

d4k

(2π)4
2 p · k

p2
A(k2)

k2A2(k2)−B2(k2)

Λ2 − µ2

(q2 − µ2)(q2 − Λ2)
, (6)

with implicit iǫ prescriptions for various propagator poles.
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Solving the DSE numerically directly in Minkowski space poses the following chal-
lenges:

• the integration
∫

d4k in Minkowski metric;

• the known singularities in the denominators (q2 − µ2) and (q2 − Λ2);

• the unknown but expected singularity in the denominator k2A2(k2)−B2(k2).

The first challenge can be dealt with by integrating over k0 and ~k separately:

∫

d4k

(2π)4
=

∫

∞

−∞

dk0
2π

∫

d3~k

(2π)3
. (7)

The latter two could be overcome by using an explicitly nonzero iǫ in the propagator
denominators. However, numerically this is not necessarily stable, in particular since
the location of the singularity in the fermion propagator is determined by the solution
of the DSE.

Indeed, the common practice is to perform a formal Wick rotation to Euclidean
space, avoiding the singularities altogether. Of course, the DSE can only be solved
for Euclidean momenta after such a procedure, corresponding to spacelike momenta
in Minkowski metric. Specifically, after applying the formal Wick rotation, we obtain
the fermion DSE using Euclidean four-vectors pE and kE,

B(−p2E) = m0 + g2
∫

d4kE
(2π)4

4B(−k2E)

k2EA
2(−k2E) +B2(−k2E)

Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
. (8)

A(−p2E) = 1 + g2
∫

d4kE
(2π)4

A(−k2E)

k2EA
2(−k2E) +B2(−k2E)

2 pE · kE (Λ2 − µ2)

p2E (q2E + µ2)(q2E + Λ2)
. (9)

Note that in the Euclidean metric, p2E runs from 0 to +∞, and that results for
Euclidean p2E ≥ 0 are equivalent to the results for spacelike momenta p2 = −p2E ≤ 0
in Minkowski metric. In the next Section we discuss how one can obtain the solution
of the DSE for timelike momenta.

3 Solving the DSE numerically

In the Euclidean space, we can perform the integrations using 4-dimensional hyper-
spherical coordinates:

∫

d4kE
(2π)4

=

∫

∞

0

k3E dkE
(2π)4

∫ π

0

sin2(θ) dθ

∫ π

0

sin(φ) dφ

∫ 2π

0

dα. (10)

The unknown functions A and B of the fermion propagator depend only on k2, and
there is only one nontrivial angle in the integrand, namely the angle between k and p.
Thus we can perform two of the three angular integrations analytically, with the
remaining angular integral to be evaluated numerically

∫

d4kE
(2π)4

I(k, p) = 2

∫

∞

0

k3E dkE
(2π)3

∫ π

0

sin2(θ) dθ I
(

k2E, p
2
E, cos(θ)

)

. (11)
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This leads to a set of coupled nonlinear integral equations in one dimension for space-
like values of p2E ≥ 0,

B(−p2E) = m0 +
2 g2

(2π)3

∫

∞

0

k3E dkE
4B(−k2E)

k2EA
2(−k2E) +B2(−k2E)

×

∫ π

0

sin2 θ dθ
Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
, (12)

A(−p2E) = 1 +
2 g2

(2π)3

∫

∞

0

k3E dkE
A(−k2E)

k2EA
2(−k2E) +B2(−k2E)

×

∫ π

0

sin2 θ dθ
2 kE cos θ

pE

Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
. (13)

It is straightforward to solve these coupled nonlinear integral equations iteratively
using a suitable discretization of the integrals and an initial guess for the functions A
and B.

3.1 Un-Wick rotating from the Euclidean solution

Instead of using 4-dimensional hyperspherical coordinates, we can also integrate over
the fourth (or energy) component separately, and use 3-dimensional spherical coordi-
nates for the remaining 3 dimensions,

∫

d4kE
(2π)4

=

∫

∞

−∞

dk4
2π

∫

d3~k

(2π)3
=

1

(2π)3

∫

∞

−∞

dk4

∫

∞

0

k2v dkv

∫ π

0

sin(φ) dφ, (14)

where kv = |~k|. In this case, it is convenient to write the inverse of the fermion
propagator A and B as functions of two variables, p4 and pv. After doing so, we
arrive at

B(p4, pv) = m0 +
g2

(2π)3

∫

∞

−∞

dk4

∫

∞

0

k2v dkv
4B(k4, kv)

(k24 + k2v)A
2(k4, kv) +B2(k4, kv)

×

∫ π

0

sin(φ) dφ
Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
, (15)

A(p4, pv) = 1 +
g2

(2π)3

∫

∞

−∞

dk0

∫

∞

0

k2v dkv
A(k4, kv)

(k24 + k2v)A
2(k4, kv) +B2(k4, kv)

×

∫ π

0

sin(φ) dφ
2 (p4k4 + pvkv cosφ)

p24 + p2v

Λ2 − µ2

(q2E + µ2)(q2E + Λ2)
, (16)

where q2E = (p4 − k4)
2 + (~p− ~k)2 = p24 − 2p4k4 + k24 + p2v − 2pvkv cos(φ) + k2v. We can

now solve for A and B as functions of two variables, p4 and pv, and up to numerical
precision, we should get the same results for A(p24 + p2v) and B(p24 + p2v) as above.

We can now undo the Wick rotation by applying the transformation

p4 → e−iδp4, k4 → e−iδk4, dk4 → e−iδdk4, (17)
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while keeping p4 and k4 real, analogous to the method used in Ref. [24] to obtain the
Minkowski space Bethe–Salpeter amplitudes from the Euclidean BSE. As long as the
contribution from the integral along the arcs at |k4| = ±∞ vanishes, true in the case
of PV regularization, we only need to keep the integration over k4 from −∞ to ∞.

In the limit of δ → π/2 this transformation becomes

p4 → −ip4 ≡ p0, k4 → −ik4 ≡ k0, dk4 → −idk4 ≡ dk0, (18)

which recovers the DSEs in the Minkowski metric, for both the spacelike and the
timelike region. Indeed, applying this transformation to Eqs. (15) and (16), we obtain

B(p0, pv) = m0 + i
g2

(2π)3

∫

∞

−∞

dk0

∫

∞

0

k2v dkv
4B(k0, kv)

(k20 − k2v)A
2(k0, kv)−B2(k0, kv)

×

∫ π

0

sin(φ) dφ
Λ2 − µ2

(−q20 + q2v + µ2)(−q20 + q2v + Λ2)
, (19)

A(p0, pv) = 1 + i
g2

(2π)3

∫

∞

−∞

dk0

∫

∞

0

k2v dkv
A(k0, kv)

(k20 − k2v)A
2(k0, kv)−B2(k0, kv)

×

∫ π

0

sin(φ) dφ
p0k0 − pvkv cosφ

p20 − p2v

Λ2 − µ2

(q20 − q2v − µ2)(q20 − q2v − Λ2)
, (20)

where q20 = (p0 − k0)
2 and q2v = (~p− ~k)2. Now we can recognize p20 − p2v as p2 in the

Minkowski metric, and similarly for k20−k2v and q20−q2v, and thus we arrive at the DSE
in Minkowski space, Eqs. (5) and (6). Of course, in these expressions for the DSEs
in Minkowski metric for both timelike and spacelike momenta, there are singularities
in the propagators under the integral, which are understood in conjunction with iǫ
prescription.

With δ ∈ (0, π/2), the transformation given by Eq. (17) acts as the tool to interpo-
late the DSEs between the Euclidean and Minkowski metrics. In the limit of δ → π/2,
the Minkowski space invariant p2 = p20 − p2v is real and runs from −∞ to +∞. But
for 0 < δ < π/2 the ‘invariant’ p2 = −e−2iδp24 − p2v covers a slice in the upper com-
plex p2 plane. As δ approaches π/2, it covers almost the entire upper complex mo-
mentum plane, and ‘collapses’ onto the real axis only in the limit δ → π/2. As long
as there are no singularities in the upper complex p2 plane, we can continuously con-
nect the solution of the DSEs near the timelike region to the solution in the spacelike
region. As a consistency check, for any value of 0 ≥ δ ≥ π/2, we should obtain the
same (spacelike) solution for p4 = 0.

In Fig. 1 we present solutions of the DSE in the Feynman gauge obtained by un-
Wick rotating p4. When un-Wick rotating p4 from the Euclidean metric, we solve the
DSE on a slice in the complex p2 = ei 2δp24 + p2v plane; the boundaries of this slice are
given by (p4 = 0, pv), which corresponds to the spacelike axis, and by (p4, pv = 0),
which approaches the timelike axis in the limit δ → π/2. The results for A(p4 = 0, pv)
and B(p4 = 0, pv), i. e., on the spacelike axis, are indeed independent of the angle δ
and purely real, as is shown in the left panel of Fig. 1. In the right panel, we show
our results as a function of p4 for pv = 0, in which case we do see a dependence on the
angle δ, as expected; furthermore, both A and B develop an imaginary part, which
increases in magnitude with increasing δ. However, as we approach δ = π/2, the
numerics becomes unstable due to singularities in the propagators, which prevents us
from actually reaching the timelike axis.



Dyson–Schwinger equations through un-Wick rotation 205

1 10 100
p

v
   (p

4
 = 0)

0

0.2

0.4

0.6

0.8

1

R
e[

 A
, 

B
 ]

 a
n

d
 I

m
[ 

A
, 

B
 ]

δ =  0
δ =  π / 8
δ =  π / 4
δ = 3π/ 8
δ = 7π/16

1 10 100
p

4
   (p

v
 = 0)

0

0.2

0.4

0.6

0.8

1

1.2

R
e[

 A
, 

B
 ]

 a
n

d
 I

m
[ 

A
, 

B
 ]

δ =  0
δ =  π / 8
δ =  π / 4
δ = 3π/ 8
δ = 7π/16

Figure 1: Real and imaginary parts of the inverse propagator functions A (solid)
and B (dashed) at different angles δ, obtained by un-Wick rotating the Euclidean
solution as a function of pv at p4 = 0, corresponding to the spacelike p2 axis (left)
and as a function of p4 at pv = 0, along a line in the complex p4e

−i δ plane (right);
δ = π/2 would be the timelike axis. On the right we also show our results of rotating
the magnitude of p from the spacelike region towards the timelike region, which are
indistinguishable at the scale shown. Parameters are m0 = 0.5, µ = 1.0, Λ = 10.0,
and α = 0.5.

3.2 Rotating the spacelike region to the timelike region

Alternatively, we can rotate the DSE from the Euclidean spacelike axis towards the
timelike axis by applying the transformation

p → e−iδp, k → e−iδk, dk → e−iδdk (21)

on the magnitude of the (Euclidean) four-vectors, while continuing to use 4-dimensional
hyperspherical coordinates, as was done in, e. g., Refs. [8, 9]. With this technique we
keep p and k real (and positive), and we retain the 4-dimensional symmetry. As long
as the contribution along the arc at k = ∞ vanishes (and with the explicit PV regu-
larization it does), we can neglect the contribution along this arc, and keep only the
integration over k from 0 to ∞.

In the limit of δ = π/2 this transformation becomes

p2E → −p2E = p2, k2E → −k2E = k2, k3E dkE → k3E dkE = k3 dk, (22)

and effectively this gives us the DSEs on the pure timelike axis with p2 ≥ 0,

B(p2) = m0 −
2 g2

(2π)3

∫

∞

0

k3 dk
4B(k2)

k2A2(k2)−B2(k2)

×

∫ π

0

sin2 θ dθ
Λ2 − µ2

(q2 − µ2)(q2 − Λ2)
, (23)

A(p2) = 1−
2 g2

(2π)3

∫

∞

0

k3 dk
A(k2)

k2A2(k2)−B2(k2)

×

∫ π

0

sin2 θ dθ
2 k cos θ

p

Λ2 − µ2

(q2 − µ2)(q2 − Λ2)
. (24)
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Note, Eqs. (23) and (24) are for timelike momenta only, p2 ≥ 0, k2 ≥ 0,
and q2 = (p− k)2 ≥ 0 — they are different from the DSEs in the Minkowski met-
ric, Eqs. (5) and (6). Again, singularities under the integrals are specified by the iǫ
prescription.

For any 0 < δ < π/2, this method gives the DSE along the line from 0 to ∞ in the
upper complex p2 plane, rather than on the slice of the upper complex momentum
plane. Furthermore, it remains an integral equation in one variable, rather than in
two variables as with the method described in the previous subsection. This method is
therefore numerically easier to implement, and leads to a better numerical precision.

In the right panel of Fig. 1, we also include our results obtained with this method.
Not surprisingly, the results of the two methods are essentially indistinguishable, at
least at the scale shown. However, the method of rotating the magnitude of p is much
more accurate (for a similar numerical effort) than the explicit un-Wick rotation of
the fourth component, because when we un-Wick rotate the fourth component, we
break the 4-dimensional symmetry by treating the fourth component and the 3-vector
components differently. Furthermore, we solve the propagator functions A and B
as functions of two independent real variables, p4 and pv, for a given angle δ (or,
equivalently, as a function of one complex variable p2 = p24e

i 2δ + p2v), whereas, if
we rotate the magnitude of p, the functions A and B remain functions of only one
essentially real variable. In particular, as δ approaches π/2, in the case of the un-
Wick rotation we solve the DSE in the entire upper p2 plane, whereas, if we rotate
the magnitude of p, we solve the DSE along a line from 0 to ∞ close to the timelike
axis. Clearly, the latter approach is more efficient numerically.

4 Results for the self-energy in the timelike region

In order to discuss our results as we approach the timelike region, it is more convenient
to use θ = π/2−δ; with this notation the timelike axis corresponds to the limit θ → 0.
For moderate values of the coupling (well below those corresponding to dynamical chi-
ral symmetry breaking), we can achieve accurate results down to θ = π/256 ≈ 0.7◦ by
rotating the magnitude of p, whereas if we decrease θ below about θ = π/16 ≈ 11◦,
the un-Wick rotation becomes numerically challenging, requiring an efficient imple-
mentation on parallel high-performance computing systems.

In Fig. 2 we see that the imaginary parts of A(p2) and B(p2) become nonzero along
the timelike axis. Furthermore, both the real parts and the imaginary parts of A(p2)
and B(p2) develop kinks, that is, discontinuities in their derivatives. The location of
these kinks is determined by the physical thresholds for the production of an exchange
particle; these kinks occur at (mphys+µ)2 and (mphys+Λ)2, where the pole massmphys

is determined from the zero of the inverse propagator, at M(p2) =
√

p2.
These kinks are generally attributed to the integration over the propagator poles

in Eqs. (5) and (6), where one (or more) denominator becomes zero. Mathematically,
the kinks are caused by a pinch singularity due to the zeros of the exchange boson
propagator and the fermion propagator in Eqs. (5) and (6).

4.1 Analytic structure and pole mass

In Fig. 3 we show our results for M2(p2) and Z(p2) = 1/A(p2) in the infrared re-
gion. The fermion propagator has a singularity at p2 = M2(p2) = m2

phys in the
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Figure 2: Real and imaginary parts of the inverse propagator functions A (dashed)
and B (solid) at different angles θ close to the timelike axis. Both figures are
with m0 = 0.5 and the PV mass Λ = 10; the exchange mass µ = 1.0 and α = 0.5
(left) and the massless vector boson and α = 0.1 (right).

timelike region. With a nonzero mass for the exchange boson, this singularity is a
simple mass-pole (at least in the Feynman gauge) — but neither the inverse propaga-
tor functions A2(p2) and B(p2), nor the dynamical mass function M(p2) shows any
discontinuity or kink at this mass-pole.

The first kink or branch-point in the inverse propagator functions is located
at (mphys + µ)2 ≥ m2

phys, as marked by the vertical dotted line in Fig. 3. At this
kink, both the propagator itself and the inverse propagator functions have a branch-
point, at which point the imaginary part becomes nonzero. With a nonzero exchange
mass µ, this kink occurs well beyond the mass-pole at p2 = M2(p2), and both the
propagator and the inverse propagator functions are finite at this branch-point. How-
ever, in the limit of µ → 0, this branch-point coincides with the mass-pole singularity,
as can be seen in the right panel of Fig. 3. Consequently, the propagator exhibits a
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Figure 3: Real and imaginary parts of the dynamical mass squared, M2(p2) (solid),
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more complicated singularity instead of a simple mass-pole, at which point the inverse
propagator is zero, and a branch-cut starts along the timelike axis. The sign of the
imaginary part is a consequence of the iǫ prescription — or, in the case of the un-Wick
rotation, of the direction of the rotation.

Due to the PV regularization, the (inverse) propagator has a second kink along
the timelike axis, located at (mphys + Λ)2, beyond which the imaginary parts fall off
to zero, and the real parts of the (inverse) fermion propagator approach their bare
(tree-level) values, see Fig. 2.

4.2 Spectral representation of the self-energy

With the PB regularization, the integral representation for the scalar and vector self-
energies can be written as

B(p2) = m0 +

∫

∞

0

ds
ρB(s)

p2 − s+ iε
with ρB(s) = −Im [B(s)/π], (25)

A(p2) = 1 +

∫

∞

0

ds
ρA(s)

p2 − s+ iε
with ρA(s) = −Im [A(s)/π], (26)

following the standard spectral representation of the propagators [25]. In principle,
the spectral functions ρA,B fully determine the scalar and vector self-energies, and
thus the propagator.

We show in the left panel of Fig. 4 approximations to the spectral functions ρA,B

obtained from the imaginary parts of A and B at different angles θ close to the
timelike axis. (Note that the angle θ is defined as the rotation angle for p0 or the
magnitude of p; in terms of the variable s used in the spectral representation, this
corresponds to an angle 2θ.) The right panel confirms that in the limit of θ → 0,
these approximate spectral functions can indeed reproduce the Euclidean (spacelike)
to high accuracy. With a more careful analysis and using a Mellin transformation, we
can use these ‘approximate spectral representations’ at nonzero values of θ to calculate
the self-energies in the entire slice of the upper complex p2 plane, bounded by the
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close to the timelike axis for m0 = 0.5, µ = 1.0, Λ = 10.0, and α = 0.5. Right:
Spacelike self-energies obtained from the approximate spectral functions, compared
to the Euclidean solution.
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real spacelike axis (negative p2) and the line p2ei 2θ. More details will be presented in
Ref. [26].

5 Conclusion and outlook

This contribution presents a preliminary study of the nonperturbative fermion propa-
gator in both the spacelike and near the timelike regions by investigating the fermion
DSE in rainbow-ladder truncation in the Feynman gauge in a QED-like theory. Two
methods to solve the Pauli–Villars regulated DSE were implemented to obtain the
self-energies near the timelike axis, both relying on an analytic continuation of the
Euclidean DSE into the complex momentum plane. In the first approach the energy
component of the four-momenta are complex-rotated to bring the Euclidean formu-
lation towards the Minkowski metric, while in the second method the magnitude of
the four-vector p is complex-rotated to rotate the spacelike axis towards the timelike
axis. Both methods were used to compute the Dirac scalar and vector self-energies of
the fermion near the timelike region. The second method showed to be much more
accurate allowing calculations with angles as small as θ = π/256 ≈ 0.7◦, quite close
to the timelike axis. This is natural as with a fixed angle, in the first method the
DSE has to be solved as function of two real variables, while in the second approach
the scalar and vector self-energies depend on only one real variable, allowing a finer
grid in this one variable.

The coupling constant was chosen sufficiently large for the solutions to allow for
noticeably nonperturbative effects, while below the value for the dynamical chiral
symmetry breaking. With a massive vector boson, the obtained nonperturbative
fermion propagator has a mass-pole at p2 = M2(p2) = m2

phys on the timelike axis,

followed by a branch-cut starting at p2 = (mphys+µ)2. With massless bosons, µ = 0,
this branch-cut starts at the physical mass, and the mass-pole becomes a more com-
plicated singularity. Finally, the imaginary part of the self-energies along the timelike
axis were used to obtain the spectral densities, from which the spacelike self-energies
were computed in good agreement with the Euclidean self-energies.

In the future, we intend to explore in more detail the analytic structure of the
fermion propagator in the complex plane by, e. g., generalizing the spectral represen-
tation with finite θ associated with the study the solutions of Laplace equations using
Mellin transform [26]; we also plan to extend these investigations to other gauges, in
particular the Landau gauge, and to other theories. The next step will be to use these
nonperturbative propagators in the Minkowski metric for bound state calculations and
to explore hadron structure directly in the Minkowski space.
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Paulo, Brazil (FAPESP) Thematic grants No. 13/26258-4 and No. 17/05660-0,
by CAPES, Brazil - Finance Code 001, and by the US Department of Energy un-
der Grants No. DE-FG02-87ER40371 and No. DE-SC0018223 (SciDAC-4/NUCLEI).
TF thanks Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (Brazil),
Project INCT-FNA Proc. No. 464898/2014-5, and the Fulbright Visiting Professor
Award. DCD thanks FAPESP grant No. 17/26111-4. EY thanks FAPESP grant



210 T. Frederico et al.

No. 016/25143-7. PM thanks the Visiting Researcher Fellowship from FAPESP, grant
No. 2017/19371-0. This research used resources of the National Energy Research Sci-
entific Computing Center (NERSC), which is a US Department of Energy Office of
Science user facility, supported under Contracts No. DE-AC02-05CH11231.

References

[1] G. Eichmann, H. Sanchis-Alepuz, R. Williams, R. Alkofer and C. S. Fischer,
Prog. Part. Nucl. Phys. 91, 1 (2016).

[2] P. Maris and C. D. Roberts, Phys. Rev. C 56, 3369 (1997).

[3] P. Maris and P. C. Tandy, Phys. Rev. C 60, 055214 (1999).

[4] P. Maris and P. C. Tandy, Phys. Rev. C 62, 055204 (2000).

[5] M. S. Bhagwat and P. Maris, Phys. Rev. C 77, 025203 (2008).

[6] P. Maris, C. D. Roberts and P. C. Tandy, Phys. Lett. B 420, 267 (1998).

[7] D. Atkinson and D. W. E. Blatt, Nucl. Phys. B 151, 342 (1979).

[8] P. Maris, Nonperturbative analysis of the fermion propagator: Complex singu-
larities and dynamical mass generation. Ph.D. thesis, University of Groningen,
Groningen, 1993.

[9] P. Maris, Phys. Rev. D 50, 4189 (1994).

[10] N. Nakanishi, Prog. Theor. Phys. Suppl. 43, 1 (1969).

[11] V. Sauli, JHEP 0302, 001 (2003).

[12] V. Sauli, Few-Body Syst. 39, 45 (2006).

[13] V. Sauli, J. Adam, Jr. and P. Bicudo, Phys. Rev. D 75, 087701 (2007).

[14] S. Jia and M. R. Pennington, Phys. Rev. D 96, 036021 (2017).

[15] K. Kusaka and A. G. Williams, Phys. Rev. D 51, 7026 (1995).

[16] K. Kusaka, K. M. Simpson and A. G. Williams, Phys. Rev. D 56, 5071 (1997).

[17] V. A. Karmanov and J. Carbonell, Eur. Phys. J. A 27, 1 (2006).

[18] V. Sauli, Few-Body Syst. 49, 223 (2010).
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