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Abstract

The use of symmetries to unmask simplicity within complexity in atomic
nuclei is examined within its historical context and the evolving ab initio no-core
shell model (NCSM) approaches that typically rely heavily on high-performance
computing and applied math methods. Some examples — old and new — that
demonstrate the important role symmetries plays in this evolution, are noted.
Further, an extension of the symmetry adapted no-core shell model (SA-NCSM),
one that incorporates deformation from the onset, is proffered as a potential
path forward for further reducing the combinatorial growth of model-space sizes
that are required to track collective phenomena in a non-deformed theory. This
feature suggests a means for extending ab initio methods to even heavier nuclei.
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1 Introduction

This contribution is organized into five sections: 1) A short ‘Introduction’ (i. e., this
paragraph) that lays out the structure of this report, 2) A brief ‘Historical overview’
of efforts — old and new — focused on expanding shell-model spaces to reproduce
collective and clustering features (principal co-author A. Dreyfuss), 3) Some recent
‘Exemplary results’ which show that special symmetries can be used to tame the
combinatorial growth of NCSM model spaces while extending their reach, and to re-
produce observed enhanced B(E2) transition strengths without the use of effective
charges (principle co-authors R. Baker and G. Sargsyan), 4) How ‘Canonical transfor-
mations’ from non-deformed to deformed many-particle configurations that preserve
these special symmetries can be used to gain further reductions in model space sizes —
essentially an interacting many-particle Nilsson model (principal co-author D. Keke-
jian), and 5) A ‘Conclusion’ that looks beyond the current landscape to more novel
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notions that just as special symmetries carry one from the NCSM to its symmetry-
adapted extension, SA-NCSM, should enable use of ab initio methods in studies of
heavier nuclei.

2 Historical overview

The independent-particle model of Mayer and Jensen [1, 2], with its reproduction of
the ‘magic’ numbers of nuclei, can arguably be called the first microscopic theory of
nuclear structure. Its success inspired the development of various follow-on models of
increasing levels of sophistication across the second half of the last century. However,
testing these theories against experimental data was limited by meager computational
resources, up until about the last decade or so of that period. The advent of truly
high-performance computational resources in the 90s enabled the development and
testing of so-called no-core shell model (NCSM) concepts [3,4] (see, e. g., Refs. [5–7]),
which to date have been used to describe the structure of low-lying states of s- and
p-shell nuclei, starting from ab initio principles.

The NCSM preserves exact symmetries like time reversal invariance, parity conser-
vation, and translational invariance within an overarching many-particle framework
that respects particle number conservation and statistics; that is, the NCSM is a fully
microscopic many-fermion theory of nuclear structure that uses realistic interactions
between and among nucleons that reside in properly anti-symmetrized bases states
built from single-particle states of the three-dimensional harmonic oscillator (3D-HO),
where the energy scale of the latter is set by the ~Ω parameter of the oscillator.

Within the NCSM framework, the complete model space is organized into the
horizontal slices of the HO, each separated in energy from its neighbors by ~Ω, with
interactions among particles within a slice as well as between particles in neighboring
slices accounted for, up to some Nmax cutoff which is the maximum total number
of oscillator quanta above the lowest HO configuration for a given nucleus, thereby
reducing the infinite model space to a truncated subspace of the full space, one capped
by the Nmax~Ω cutoff limit imposed on the theory. In the Nmax~Ω → infinity limit,
the theory encompasses the entire shell-model space.

While the independent-particle model approach was being developed, there was
a complementary push towards models that describes the observed strongly collec-
tive features found in nuclei. Some notable early models that reproduce collective
features are the Bohr–Mottelson Model (BMM) for collective nuclear motion [8], the
Geometrical Collective Model (GCM) of the Greiner school [9, 10], and of particular
relevance to this report, the Elliott SU(3) Model [11, 12]. Specifically, the Elliott
model captures the importance of the SU(3) symmetry in describing — from a mi-
croscopic perspective – the deformed structures in light to intermediate-mass nuclei.
A similar approach using pseudo-spin symmetry and its pseudo-SU(3) complement
has been used to describe deformation in the upper pf and lower sdg shells, and in
particular, in strongly deformed nuclei of the rare-earth and actinide regions [13], as
well as in many other studies (e. g., see Ref. [14]). The collective symplectic model
developed by Rowe and Rosensteel [15,16], with the Sp(3,R) underpinning symmetry,
intersects with these collective approaches. In one limit, the symplectic model can
be shown to be a microscopic realization of the Bohr–Mottelson theory, and, in an-
other, a multi-shell generalization of the Elliott model, with SU(3) being a subgroup
of Sp(3,R).
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First-principles SA-NCSM — Building on the foundations of particle-driven
models, such as the NCSM, and the use of symmetries to reproduce collectivity,
as in the collective symplectic model, the ab initio symmetry-adapted no-core shell
model (SA-NCSM) is a no-core shell model with a symmetry-adapted basis that
is either SU(3)-coupled or Sp(3,R)-coupled. In the SU(3)-coupled realization, ba-
sis states are organized with respect to the physically relevant, deformation-related

SU(3)(λµ)

κ⊃ SO(3)L subgroup chains. In a given complete Nmax model space, results

for the SA-NCSM and NCSM coincide exactly, for the same interaction. The use
of symmetries to guide SA-NCSM model space selection allows for the consideration
of only the most physically-relevant subspace of a complete Nmax model space. The
SA-NCSM uses a very general intrinsic non-relativistic Hamiltonian

H = Trel + VNN + V3N + ...+ VCoul, (1)

where Trel is the relative kinetic energy, and the nucleon-nucleon, VNN, and possibly
3-nucleon, V3N, interactions are included along with the Coulomb interaction, VCoul,
between the protons.

First-principles studies of p-shell nuclei computed in the ab initio SA-NCSM show
the emergence of a simple pattern that favors large deformation and low spin (Fig. 1).
For example, the SA-NCSM wave function for the 1+ ground state of 6Li computed in
an Nmax = 10 model space with the bare JISP16 nucleon-nucleon (NN) interaction
is dominated by the deformed 0~Ω (2 0) irreducible representation (irrep) and its
symplectic excitations (e. g., 2~Ω (4 0), 4~Ω (6 0), etc.). This pattern is seen in
studies of other p-shell nuclei, including 6He, 8Be, and 12C, using various realistic
NN interactions, including chiral interactions. This universality of this emergent
feature underlines the importance of the SU(3) and Sp(3,R) symmetries in describing
nuclear structure.

No-core Symplectic Shell Model (NCSpM) — The symplectic Sp(3,R) symme-
try applied in a microscopic framework is directly related to the particle position and
momentum coordinates, and naturally describes rotations and vibrations of an equi-
librium deformation [17, 18]. By exploiting this emergent symmetry, the microscopic
no-core symplectic shell model (NCSpM) [19] makes use of a schematic interaction to
approach model spaces beyond what is currently within reach of ab initio theories.
The NCSpM is a fully microscopic no-core shell model based on the physically rele-
vant symplectic Sp(3,R) group [15,16] and its SU(3) subgroup [11,12,20]. In the same
complete Nmax model space and using the same interaction, the NCSM and NCSpM
results are identical. In analogy to the NCSM horizontal slices of the complete model
space, the NCSpM organizes the complete space into a series of vertical ‘cones’ within
the HO well, which are irreps of Sp(3,R), included up to some Nmax. Each of these
irreps described a single equilibrium deformation and its rotations and vibrations. By
including only a few of these cones, the model space is greatly reduced, which allows
extension to higher Nmax model spaces beyond the current NCSM limits, giving access
to the spaces needed to probe clustering in nuclei.

The microscopic NCSpM uses a many-body Hamiltonian that includes a collec-
tive piece that enters through the quadrupole-quadrupole interaction, as described in
Ref. [19, 21]:

H = Trel + VNN + V eff
mN + ...+ VCoul. (2)

The VNN is taken to be the bare JISP16 nucleon-nucleon interaction, which is turned
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Figure 1: Probability distributions for proton, neutron, and total intrinsic spin com-
ponents (SpSnS) across the Pauli-allowed deformation-related (λµ) values for the 1+

ground state of 6Li, calculated in 12 HO shells with the JISP16 bare interaction
(~Ω = 20 MeV). The most deformed configurations (λµ) are at the right of each HO
shell subspace, where the strengths are concentrated indicating the dominance of col-
lectivity. A symmetry-guided model-space selection takes advantage of this emergent
property by including the full space up through N⊥

max, but then selecting a subset of
configurations with high deformation and low spin up through N⊤

max. A model space
constructed in this way is labeled 〈N⊥

max〉N⊤
max. The projection onto symplectic ver-

tical slices (with probability ≥ 1%) is schematically illustrated by arrows and clearly
reveals the preponderance of a single symplectic irrep. Adapted from Ref. [17].
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on only among bandheads of symplectic irreps, introducing horizontal mixing of all
the states (up through the Nmax cutoff) within the symplectic vertical slices. The

effective many-nucleon interaction is taken to be V eff
mN =

∑A
i=1

mΩ2
r
2
i

2 + χ
2

(e−γ(Q.Q)−1)
γ .

The symplectic Sp(3,R) symmetry is preserved by the HO potential and Trel, and

the important quadrupole-quadrupole interaction 1
2Q · Q = 1

2

∑
i qi · (

∑
j qj), which

introduces the interaction of each particle with the total quadrupole moment of the
system.1 The value of χ is fixed using self-consistent arguments [22] by the estimate
used in an Sp(3,R)-based study of cluster-like states of 16O [23], and the strength
of the HO potential is fixed using the empirical estimate ~Ω ≈ 41/A1/3. The only
adjustable parameter in the model is γ. The Hγ potential term introduces many-
body interactions hierarchically, controlled by γ < 1, such that higher-order terms in
the exponential of Q · Q become negligible. For example, we find that for the 12C
ground state, all terms in the expansion beyond (Q ·Q)2 contribute negligibly to the
wave function. However, the 12C Hoyle state band, requires the inclusion of terms up
through (Q ·Q)4 (or the third order in γ) [19].

The energy spectrum for 12C, computed in the NCSpM with Nmax = 20 and
~Ω = 18 MeV down-selected to only 5 symplectic irreps, agrees remarkably well with
experiment (Fig. 2). We find that the lowest 0+, 2+, and 4+ states of the two 0p-0h
irreps [0p-0h (4 0) and 0p-0h (1 2)] reproduce the ground state rotational band. The
lowest 0+ state of the 4p-4h (12 0) irrep coincides with the experimental Hoyle state,
and the lowest 0+ state of the 2p-2h (6 2) irrep coincides with the third 0+ in 12C.
The low-lying 3− state is reproduced using the 1p-1h (3 3) irrep. The one-body
(matter) densities shown in Fig. 2 (right) indicate a donut-like shape for the 12C
ground state, while the 0+2 state shows peaks in the probability density aligned along
the z-axis, indicating overlapping clusters spatially extended along this axis. While a
smaller Nmax model space is sufficient for convergence of the ground state rotational
band, the wave function for the 0+2 state of 12C has significant contributions from
highly deformed configurations [e. g., (12 0), (14 0), (16 0), etc.] and requires a much
larger Nmax model space in order for the collectivity of the state to fully develop and
for the energy to reach convergence.

In addition to the energy spectrum, the NCSpM reproduces observables such
as B(E2) transition strengths (Fig. 2), matter rms radii, and electric quadrupole
moments, and has been used to investigate the nature of the giant monopole and
quadrupole resonances in selected light- and intermediate-mass nuclei [25]. This model
has also been applied to studies of other nuclei, including 8Be, as well as various sd-
shell nuclei without the need to adjust the γ strength parameter [26, 27]. Its ability
to reproduce energy spectra as well as collective features in various nuclei indicates
that the NCSpM captures important components of the underlying nuclear physics.

3 Exemplary results

Ab initio SA-NCSM calculations have now been extended into and beyond the inter-
mediate mass region as shown in Fig. 3, including odd-A nuclei and their negative
parity states (e. g., 19Ne in 12 HO major shells [28]) and nuclei near the dripline (e. g.,

1Note, the average value ofQ·Qwithin an oscillator shell introduces a major renormalization of the

HO shell structure, so, as is normally done, this average is removed; that is, Q ·Q →
(

Q ·Q−〈Q ·Q〉
)

,

where the average 〈Q ·Q〉 has a simple universal operator form that applies to a HO shell.
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Figure 2: Left: Energy spectrum for 12C calculated using the NCSpM with the schematic interaction (2) and the JISP16 NN
interaction as the V SB

NN symmetry-breaking term, and using 5 Sp(3,R) irreps (the average deformation of each is depicted at bottom)
extended to Nmax = 20 (~Ω = 18 MeV), and compared to experiment. B(E2) transition strengths are in W.u. Right: Densities,
shown along the x-axis (dashed) and z-axis (solid) of the intrinsic frame for the ground state and the 0+2 state. Components of the
wave function with probability > 3% are included, comprising 95% of the ground state wave function, and 91% of the wave function
for the 0+2 state. The figures are adapted from Refs. [21, 24].
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(a) (b)

Figure 3: Ab initio SA-NCSM calculations using the chiral NNLOopt NN interac-
tion [31] for excitation spectra in (a) 19Ne with 12 HO major shells and (b) 32Ne
with 7 HO major shells. Simulations are performed on the Blue Waters system.

32Ne in 7 HO major shells [29]). Further, medium mass nuclei (e. g., 48Ti in 8 HO
major shells [29]) are now within the reach of the SA-NCSM. All of these results uti-
lize realistic chiral interactions and were able to incorporate contributions from higher
HO major shells than previously achievable in order to allow the development of the
most important configurations in each nucleus. The results show good agreement with
experiment, especially as related to collectivity, a traditionally challenging feature for
ab initio models to reproduce. For example, the quadrupole moment for the first 2+

state in 48Ti from experiment is known to be −17.7 e · fm2 [30] and SA-NCSM calcu-
lations show a value of −19.3 e·fm2 based on the chiral NNLOopt NN interaction [31]
in 8 HO major shells with no effective charges. This indicates that the symmetry-
adapted basis is capable of allowing the necessary collectivity to develop while also
controlling the combinatorial growth associated with standard NCSM model spaces.

To further study the collectivity, especially with respect to the isospin symmetry
breaking effects in mirror nuclei, we carry forward a systematic study of B(E2) val-
ues in mirror nuclei. Traditionally the isospin symmetry breaking has been studied
by comparing the level energies in mirror nuclei or their masses. To advance the
understanding of isospin symmetry breaking effects, a range of spectroscopic data is
required, including the B(E2) values, in addition to the energies of excited states. For
example, Fig. 4 shows ab initio SA-NCSM calculation results for 21Mg and 21F mir-
ror nuclei. Calculations of B(E2) strengths were performed using various symmetry-
based selections of the SA-NCSMmodel space and ~Ω values, and only the results with
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(a) (b)

Figure 4: Ab initio SA-NCSM calculations using the chiral NNLOopt NN interaction [31] in ultra-large model spaces (~Ω = 15 MeV).

(a) Energy spectrum of 21Mg and 21F in 11 HOmajor shells, and (b) convergence of the B
(
E2 : 1

2

+ → 5
2

+)
(top) andB

(
E2 : 5

2

+ → 9
2

+)

(bottom) strengths with increasing model space, and the extrapolated values with uncertainties from model space and ~Ω variance.
Simulations are performed on the Blue Waters system. Experimental values for the B(E2) are available in Ref. [32].
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the most optimal parameters that show the fastest convergence trend are depicted
in Fig. 4. The variance of the model spaces and HO parameter ~Ω is accounted for
the extrapolated values and their uncertainties. These results compare to the recent
experimental values [32] reasonably well, demonstrating the SA-NCSM capability to
describe collectivity in these challenging mirror nuclei.

4 Canonical transformations

The symplectic Sp(3,R) group is the group of linear canonical transformations in
phase space [33]. We use this fact to define a linear unitary canonical transformation
that maps the generators of the sp(3,R) algebra into a deformed equivalent set while
preserving the symplectic symmetry. We expect that the associated deformed basis
states can capture the dominant physics of deformed systems in smaller model spaces,
which, in turn, reduces the computational resource requirements.

In classical mechanics, canonical transformations are a set of transformations that
preserve the Poisson brackets between generalized coordinates and momenta,

{qi, pj} = {q̃i, p̃j} = δij . (3)

The generalization of this definition to the quantum mechanical case is achieved if
one replaces the Poisson brackets with commutation relations between the coordinate
and momentum operators.

[qi, pj ] = [q̃i, p̃j ] = iδij . (4)

Furthermore, the canonical transformations in classical mechanics are always uni-
tary transformations. However, this is not necessarily the case in quantum mechan-
ics [34]. In quantum mechanics, a canonical transformation can be unitary or non-
unitary [35, 36]. For the purpose of constructing a deformed basis, we will limit
ourselves to unitary transformations. Now we define the following unitary canonical
transformations:

q̃i =
1√
ǫi

qi,

p̃i =
√
ǫi pi,

(5)

where ‘∼’ denotes the quantities in the canonically deformed space, and the ǫi’s are
the deformation parameters (real positive quantities) that define the specifics of the
transformation. The physical implication of ǫi depends on the system being studied.
If we choose ǫi = ω/ωi where ωi is the HO frequency in the i-th direction, then ǫi
could be interpreted as a deformation parameter that transforms the non-deformed
canonical set (qi, pi) into the deformed canonical set (q̃i, p̃i). It is important to note
that these canonical transformations not only preserve the Heisenberg algebra, but
also preserve the symplectic algebra such that it closes under commutation just as
the non-deformed algebra does [37].

Using the canonical transformations defined above, we construct the deformed
harmonic oscillator creation and annihilation operators in terms of non-deformed
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ones,

b̃+in =
1

2

(
1√
ǫi

(
b+in + bin

)
+
√
ǫi
(
b+in − bin

))
,

b̃in =
1

2

(
1√
ǫi

(
b+in + bin

)
−√

ǫi
(
b+in − bin

))
.

(6)

It is easy to see that the canonical transformations in Eqs. (6) are equivalent to
Eqs. (5), and therefore

[bin, b
+
jn] = [̃bin, b̃

+
jn] = δij , (7)

which are equivalent to Eq. (4).
The canonical transformations defined in Eqs. (5) are symmetric with respect to

inverse transformations. The inverse transformations are achieved if one removes ‘∼’
from the deformed quantities and adds it to the non-deformed quantities and then
flips the deformation coefficients. To demonstrate this, we apply this procedure of
inverse transformation to Eq. (5) by making the substitution (q̃i → qi, p̃i → pi), then

flipping the coefficients 1√
ǫi

→ √
ǫi ,

√
ǫi → 1√

ǫi
, and we get

qi =
√
ǫi q̃i,

pi =
1√
ǫi

p̃i,
(8)

which are the inverse transformations.
Using the canonical transformations, we express the many-body HO Hamiltonian

in terms of the deformed symplectic operators in ~ω units,

H =
∑

i

Cii =
1

4

(
ǫi
(
Ãii + B̃ii + 2C̃ii

)
+

1

ǫi

(
− Ãii − B̃ii + 2C̃ii

))
, (9)

where, for simplicity, ǫx=ǫy has been chosen with the constraint ǫxǫyǫz = 1 which
implies volume conservation of the system. Then Eq. (9) reduces to

H =
1

4

((
ǫz−

1

ǫz

)(
Ãzz+ B̃zz

)
++2

(√
ǫz+

1√
ǫz

)(
C̃xx+ C̃yy

)
+2

(
ǫz+

1

ǫz

)
C̃zz

)
. (10)

Diagonalizing the Hamiltonian in Eq. (10) for a single particle within a model
space of Nmax = 2 and Nmax = 4 we get results shown in Fig. 5. We expected to see
all the eigenvalues independent of ǫz, however Fig. 5 shows a slight dependence of the
eigenvalues on ǫz. This is because we are attempting to map from an infinite Hilbert
space onto a finite Hilbert space, which one can only do approximately by going to
higher and higher Nmax values; that is, the transformation from the non-deformed to
deformed set of operators is not truly a unitary one. To get a unitary transformation,
that will be independent of ǫz, one has to map it onto infinite deformed basis states
which is not possible, but as the figures show, with increasing Nmax the results seem
to converge very nicely to the low-lying eigenvalues by the time Nmax = 4.

Note that when we applied the canonical transformations to the harmonic oscil-
lator Hamiltonian in Eq. (9), the operator Cii includes the zero point energy or the
so-called vacuum energy in its definition. It is usually common practice in quantum
mechanics and quantum field theories to renormalize the energy by discarding the
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(a)

(b)

Figure 5: The eigenval-
ues (in ~ω units) of a
3D spherical HO as a
function of ǫz in the de-
formed model spaces of
Nmax=2 (a) and Nmax=4
(b) where ǫx=ǫy and the
ǫxǫyǫz =1 constraint ap-
plies.

vacuum contribution to the energy since it has no physical meaning. However, the
vacuum term should be included when applying canonical transformations because it
is part of the symplectic algebra sp(3,R). In order to unitarily map the symplectic
operators to their deformed counterparts, one also needs to map the vacuum to its
deformed counterpart. After the mapping one could renormalize the energy by throw-
ing away the deformed vacuum. The vacuum term in Cii for a single particle is 3

2

which, after applying the canonical transformation becomes 6
(√

ǫz+
1√
ǫz

)
+3

(
ǫz+

1
ǫz

)

for ǫx = ǫy and ǫxǫyǫz = 1.

5 Conclusions

A short ‘Historical overview’ of multi-shell-model efforts to understand observed fea-
tures of light nuclei is given in Section 2. The focus is on ‘open-shell’ methods —
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commonly called the NCSM, where nucleons are allowed to occupy any and all valance
shells of a 3D HO that include excited configurations up to an aggregated Nmax value
coupled with the use of ab initio rather than schematic interactions within that space.
These concepts, introduced around the turn of the last century, serves as a demarka-
tion between ‘old’ and ‘new’ in the evolution of the shell-model for reproducing and
predicting nuclear phenomena. Our focus within this framework is on the use of
symmetries to tame the exponential grow of model spaces, which otherwise await the
availability of ever larger and faster high-performance computing resources and/or
various extrapolation procedures for further advances within this NCSM framework.

Section 3 gives some examples of how one can beat back the exponential growth
of NSCM spaces through the recognition and use of special symmetries that track
with dominant modes in nuclei. A dominant feature that stands above all others is
strongB(E2) transition strengths between members of rotational bands. This feature,
which is correlated with the emergence of coherent states that organizes the NSCM
landscape into various shapes, which was foreshadowed by early successes of collective
models like that of Bohr and Mottelson [8] as well as that of Nilsson [38] and the so-
called Geometrical Collective Model of Greiner and associates [9, 10], which extend
to odd-A nuclei with an uncoupled nucleon residing within the collective geometrical
shape defined by that of the others. This collusion among nucleons that leads to
collective configurations, which can be characterized as a co-existence of geometrical
shapes, tracks with Elliott’s SU(3) Model [11, 12] within a single shell and its multi-
shell extension, the symplectic shell model, Sp(3,R) [19] that in its most rudimentary
form can be envisioned as the addition HO quanta (via particle excitations) of the
monopole and quadrupole type to the simplest of Nmax = 0 configurations.

What this picture suggests, as it did in the earliest days via the Nilsson Model [38],
is moving to a deformed geometry from the onset might define a smarter path for-
ward. In Section 4 we show results which suggest that this can be achieved while
simultaneously maintaining all the advantages of the symplectic shell-model picture
through exploitation of a canonical transformation away from spherical symmetry to
a deformed geometry that preserves commutation relations of the symplectic algebra
while maintaining the unitarity of the transformation. From a practical perspective
this means that everything learned and developed for a spherical symplectic picture
can be brought forward into a deformed symplectic picture. As suggested above,
this can be seen as an interacting many-particle generalization of the Nilsson Model.
While additional work remains to be done, the underlying feature of this evolving
picture look promising for its overarching simplicity; namely, the accommodation of
what requires high Nmax values within a spherical geometry within lower Ñmax model
spaces of a deformed geometry. It also suggests that the development and application
of a deformed symmetry-adapted NCSM for nuclei may soon be within reach.
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