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Abstract

We have studied neutron-rich calcium isotopes in terms of the nuclear shell

model employing a realistic effective interaction derived from realistic two- and

three-body potentials built up within the chiral perturbation theory. We focus

our attention on the shell-evolution properties of such an isotopic chain, namely

on the excitation energy of yrast J
π = 2+ states and two-neutron separation

energies of even-A isotopes. The calculated results are in a good agreement with

the available experimental data up to 56Ca, but show different predictions for

heavier nuclei when including or not the three-body potential. In this context,

the N = 40 shell closure and the location of calcium dripline is also discussed.
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1 Introduction

Heavy calcium isotopes with mass number A > 48 are currently the subject of great
experimental and theoretical interest. With an N/Z ratio > 1.4 they lie far from
the stability valley and provide a good opportunity to explore the evolution of shell
structure when approaching the neutron drip line [1, 2]. In this context, it should be
mentioned that the question of the appearance of a shell closure at N = 34 traces
back to the work of Beiner and coworkers within the framework of the energy density
formalism [3]. A decade ago some shell-model (SM) calculations [4, 5] have revived
this issue indicating the existence of a large shell gap at N = 34, employing the
empirical SM Hamiltonian GXPF1A [5]. On the other hand, the results of other
SM calculations, obtained with different SM Hamiltonians, did not exhibit any shell
closure for 54Ca [6,7]. As a matter of fact, a decrease of the experimental 2+1 excitation
energy in 54Ca with respect the one in 56Ca was observed in 2013, that evidences a
lack of the N = 34 shell closure [8].
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The contradictory theoretical predictions point to the crucial role played by the
SM Hamiltonian, and the weakening of predictive power of an empirical procedure to
derive them.

The realistic shell-model provides an approach that may overcome the ambiguity
of fitting the SM single-particle (SP) energies and two-body matrix elements (TBME)
to a chosen set of observables, namely deriving the effective Hamiltonian by way of the
many-body perturbation theory and starting from a realistic nuclear potential [9,10].

To this end, we have performed a perturbative expansion of a fp-shell effective
Hamiltonian Heff , arresting the series at the third order, and starting from a realistic
nuclear two-nucleon force (2NF) based on the chiral perturbation theory (ChPT) at
next-to-next-to-next-to-leading order (N3LO) [11]. We also include in our Heff , aside
the above two-body potential, a chiral N2LO three-body potential [12] whose effects
are considered at first-order in perturbation theory.

As mentioned before, we draw our attention to the shell evolution of calcium
isotopes, as can be inferred form the behavior of the yrast Jπ = 2+ states and
ground-state (g.s.) energies. In particular, we want also to stress the role played
by three-nucleon forces (3NF) to tackle this issue, so we will report results obtained
using realistic SM effective Hamiltonians that include or not 3NF contributions.

The relevance of 3NF for a successful SM description of the evolution of shell
closures traces back to the seminal papers of Zuker and coworkers [13, 14], who have
investigated the need of modifications of the monopole component of TBME obtained
from realistic SM Hamiltonians [15]. They also inferred that this should trace back to
the lack of a 3NF in the nuclear realistic potentials employed to derive the Heff [16].

Extensive direct investigations about the role of 3NFs in realistic Heff have been
carried out more recently by Schwenk and coworkers, who have performed studies
of calcium [17,18] isotopic chain starting from nuclear potentials built up within the
chiral perturbative expansion and softened by way of Vlow−k technique [19] or the
similarity renormalization-group (SRG) approach [20].

This paper is organized as follows. First, a brief description of the derivation ofHeff

within the perturbative approach is reported in Section 2. Section 3 is devoted to
the presentation of the results of our calculations of the excitation energy Eexc

2+ of the
yrast Jπ = 2+ states and two-neutron separation energies S2n for the calcium isotopes
ranging from N = 22 to N = 42, and compare them with the available data from
experiment. In Section 4 we discuss our results and make some concluding remarks.

2 Outline of calculations

As mentioned before, we consider as 2NF the chiral N3LO potential derived by En-
tem and Machleidt in Ref. [11], and as 3NF a chiral N2LO potential, which shares the
regulator function of a nonlocal form and some of the low-energy constants (LECs)
with the 2NF. It should be stressed that the N2LO 3NF is composed of three com-

ponents, namely the two-pion (2π) exchange term V
(2π)
3N , the one-pion (1π) exchange

plus contact term V
(1π)
3N , and the contact term V

(ct)
3N , and, consistently, the LECs c1,

c3, and c4 appearing in V
(2π)
3NF , are the same as those in the N3LO 2NF.

Besides this, the 3NF 1π-exchange and contact terms are own two extra LECs
(known as cD and cE , respectively), which need to be determined by reproducing
observables in systems with mass A > 2.



194 L. Coraggio and Y. Z. Ma

For our calculations, we adopt the same cD and cE values as employed in Ref. [21],
namely, cD = −1 and cE = −0.34, that have been determined by way of no-core shell
model (NCSM) calculations [12].

The details about the calculation of our 3NF matrix elements in the harmonic-
oscillator (HO) basis can be found in Appendix of Ref. [21]. The Coulomb potential
is explicitly taken into account in our calculations.

In Ref. [21], it can be found also a detailed description of the derivation of our Heff

for one- and two-valence nucleon systems, starting from 2NF and 3NF, while here we
present only a brief summary.

Our Heff are derived in the model space spanned by the five orbitals, 0f7/2, 0f7/2,
1p3/2, 1p1/2, 0g9/2, outside the doubly-closed 40Ca. We have added the 0g9/2 orbital
to the standard fp ones in order to have a sounder description of neutron-rich systems
and to investigate the location of neutron dripline in calcium isotopes.

We introduce an auxiliary one-body potential U to break up the Hamiltonian H
for a system of A nucleons into a sum of a one-body term H0, which describes the
independent motion of the nucleons, and a residual interaction H1:

H =

A∑

i=1

p2i
2m

+

A∑

i<j=1

V 2NF
ij +

A∑

i<j<k=1

V 3NF
ijk = T + V 2NF + V 3NF

= (T + U) + (V 2NF
− U) + V 3NF = H0 +H2NF

1 +H3NF
1 . (1)

In our calculation we use the HO potential, U = 1
2mω2r2, with the oscillator param-

eter ~ω = 11 MeV, according to the expression ~ω = 45A−1/3
− 25A−2/3 for A = 40.

Once the H0 has been introduced, the reduced model space is defined in terms of a
finite subset of H0’s eigenvectors. The diagonalization of the many-body Hamiltonian
in Eq. (1) within the infinite Hilbert space is then reduced to the solution of an
eigenvalue problem for an effective Hamiltonian Heff in a finite space.

We employ the time-dependent perturbation theory to derive Heff [10,22]. Heff is
expressed through the Kuo–Lee–Ratcliff folded-diagram expansion in terms of the ver-
tex function Q̂-box, which is composed of irreducible valence-linked diagrams [23, 24].
We include in the Q̂-box one- and two-body Goldstone diagrams through the third
order in H2NF

1 and up to the first order in H3NF
1 . It is worth pointing out that the

input chiral 2NF and 3NF have not been modified by way of any renormalization
procedure, and the perturbative properties of the Q̂-box from N3LO 2NF potential
have been discussed in Ref. [22]. The folded-diagram series is then summed up to all
orders using the Lee–Suzuki iteration method [25].

The Heff derived for one valence-nucleon systems contains only one-body contri-
butions which provides the SP energies for the SM calculation, while the two-body
matrix elements are obtained from Heff derived from the two valence-nucleon systems
once the theoretical SP energies are subtracted from its diagonal matrix elements.

We have derived two Heff ; one has been obtained calculating Q̂-box diagrams with
2NF vertices only, and the other has been built up including also H3NF

1 first-order
contributions in the collection of Q̂-box diagrams (see Fig. 3 in Ref. [21]).

The neutron SP energies calculated with respect to 0f7/2 orbital are reported in
Table 1.

We observe that the ǫp3/2
−ǫf7/2 splitting provided by the 2NF only is too small

to secure the shell closure of 48Ca, so, when diagonalizing the SM Hamiltonians, we
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Table 1: Theoretical neutron SP energies (in MeV) derived starting from 2NF only
(first column), and including 3NF contributions too (second column).

orbital ǫ2NF
ν ǫ2NF+3NF

ν

0f7/2 0.0 0.0
0f5/2 4.6 5.8
1p3/2 0.6 2.8
1p1/2 2.0 4.3
0g9/2 1.9 6.7

consider the same set of SP energies, namely, the one calculated including also the
3NF contributions. We dub the Heff with TBME derived with the 2NF only H2NF

eff ,
and H3NF

eff is the one whose SP energies and TBME have been obtained by adding
also the 3NF.

3 Results

We start our study of calcium isotopes showing in Fig. 1 our results of their Eexc
2+ from

N = 22 up to N = 42 (blue triangles and black diamonds), and compare them with
available experimental data [8, 26] (red dots).

We observe that the behaviors obtained with both Heff are very similar up to
N = 38, the results with H3NF

eff are in a better agreement with experiment. The shell
closure at N = 28 is reproduced, as well as the subshell closure at N = 32 and the
slight excitation-energy decrease between N = 32 and N = 34.
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Figure 1: Experimental (red dots) and calculated excitation energies of the yrast
Jπ = 2+ states for calcium isotopes from N = 22 to 42. The results obtained with
H2NF

eff are reported with blue triangles, those with H3NF
eff are drawn as black diamonds.
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Figure 2: Experimental and calculated two-neutron separation energies for calcium
isotopes from N = 22 to 42. See text for details.

The comparison with the data for lighter isotopes are less satisfactory, these sys-
tems are largely affected by core-excitation components of 40Ca that have not been
taken explicitly into account.

The larger discrepancy between the results obtained with H2NF
eff and H3NF

eff appears
at N = 40, where the latter exhibits a strong closure of the 0f5/2 orbital. Since both
Hamiltonians share the same set of SP energies, this feature traces back to different
monopole component of the 0f5/2, 0g9/2 configuration. In particular, this monopole
component of H3NF

eff enhances the energy splitting between the effective single-particle
energies [27] of 0f5/2 and 0g9/2 orbitals when increasing the valence-neutron number,
generating a strong shell closure at N = 40.

These closure properties are also present in the calculation of the two-neutron
separation energies that are shown in Fig. 2 for the calcium isotopes up to N = 42. As
before, the results obtained with H2NF

eff are reported as blue triangle, while the H3NF
eff

ones are drawn as black diamonds. Data from experiment [1,2,28] are reported with
red dots. It should be pointed out that we have shifted the SP energies in Table 1 in
order to reproduce the experimental g.s. energy of 41Ca [28].

We have reported the results up to N = 42 since H3NF predicts 60Ca as the last
bound isotope.

As can be seen, both experimental and theoretical S2n show a rather flat behavior
up to N = 28, then a sudden drop occurs at N = 30 that is a signature of the shell
closure due to the 0f7/2 filling. Another decrease appears at N = 34 because at that
point the valence neutrons start to occupy the 1p1/2 and 0f5/2 orbitals.

The results obtained with H3NF
eff follow closely the behavior of the experimen-

tal S2n, while those obtained with H2NF
eff provide a less satisfactory agreement

from N = 28 on. This supports the crucial role of 3NF contributions to reproduce
the observed shell evolution.

As in the case of the calculated Eexc
2+ , the difference obtained with H2NF

eff and H3NF
eff

between the monopole component of 0f5/2, 0g9/2 configuration is responsible for dif-
ferent slopes towards different neutron driplines. As a matter of fact, H2NF

eff pro-
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vides bound calcium isotopes up to N = 50, while according to the SM calculations
with H3NF

eff the calcium dripline should be located at 60Ca.

4 Concluding remarks

We have presented the results of SM calculations for the calcium isotopic chain, which
have been performed employing the SM effective Hamiltonian derived from realistic
two- and three-body potentials built up within the chiral perturbation theory.

The outcome of our calculation is manifold.

a) Single-particle energies obtained from the effective SM Hamiltonian starting
from the 2NF are not able to provide satisfactory shell-closure properties, espe-
cially the one at N = 28.

b) The 3NF contributions to the SP energies are crucial to reproduce the 48Ca
shell closure corresponding to the filling of the 0f7/2 orbital.

c) The monopole component associated with the two-body matrix elements are
rather different when including or not the 3NF. In particular, when adding
the three-body potential to the starting Hamiltonian, we predict a strong shell
closure at N = 40. This is at variance with the case when the effects of the
three-body potential are neglected.

d) The difference observed in the monopole component of the 0f5/2, 0g9/2 configu-
ration leads to different predictions for the dripline, which is located at N = 40
when including the contributions of the three-body potential.

The last mentioned feature is quite intriguing, since the recent experimental ob-
servation of 60Ca [29] and a study of the calcium isotopes by way of a Bayesian model
averaging analysis [30] have revived the issue of the calcium dripline location.
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