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Abstract

Owing to recent computational and methodological advancements, ab initio

approaches in nuclear structure physics have been largely developed. The no-
core Monte Carlo shell model (MCSM) is one of these methods to investigate
nuclear structure in light nuclei. With this method, it is currently capable to
calculate physical observables up to around lower sd-shell region. As one of
physics investigations with the no-core MCSM, the α-cluster structure of Be
isotopes and 12C nucleus is focused on and qualitatively discussed from an ab

initio point of view.
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1 Introduction

Nowadays, there are many approaches to solve nuclear many-body problems. One of
successful methods is the shell-model approach [1–3]. The shell-model calculations
have provided much of theoretical understanding of nuclear structure based on the
single-particle picture. In these calculations, the energy eigenvalues and eigenfunc-
tions are obtained by the diagonalization of sparse real symmetric matrices using the
Lanczos method to describe several low-lying states. The limitation of this approach
is directly related to the size of Hamiltonian matrices to be diagonalized. In the case
of no-core shell model, the current limit is around 1010 M -scheme dimensions [4]. The
dimension of Hamiltonian matrices in the single-particle truncation is illustrated in
Fig. 1. Now the mass region of interest has been extended to heavier and/or neutron-
rich nuclei to investigate various exotic phenomena, and is located at the area beyond
the scope of this standard approach with the Lanczos method.

Under these circumstances, there are some variants of shell-model approaches
aiming to go beyond the standard approach. One of them is the Monte Carlo shell
model (MCSM) [5–7]. Here, we provide a brief overview of the MCSM, especially for
the no-core calculations, and the study on the α-cluster structure using this method.
The outline of this contribution is as follows. In Section 2, the formulation of the
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Figure 1: The M -scheme dimensions as a function of the size of basis space for several
light nuclei.

MCSM is briefly introduced. In Section 3, the current status of the MCSM for no-
core calculations is shown. As one of physics investigations by the no-core MCSM,
we discuss α-clustering phenomena in Be isotopes and 12C nucleus in Section 4. The
summary is given in Section 5.

2 Monte Carlo Shell Model

In the Monte Carlo shell model (MCSM), the Hamiltonian comprises one- and two-
body terms, and is written in the second quantized form as

Ĥ =
∑

ij

tij ĉ
†
i ĉj +

1

4

∑

ijkl

v̄ijkl ĉ
†
i ĉ

†
j ĉlĉk, (1)

with the creation and annihilation operators, ĉ† and ĉ, respectively. The indices,
i, j, k, and l, stand for the single-particle states. The one- and two-body matrix
elements are described as tij and v̄ijkl . Here, the two-body matrix elements are
antisymmetrized as v̄ijkl = −v̄jikl = −v̄ijlk = v̄jilk .

With this Hamiltonian, the MCSM wave function is expressed as a linear combina-
tion of total-angular-momentum- and parity-projected deformed Slater determinants,

|Ψ
(Nb)
IMπ〉 =

Nb∑

n=1

I∑

K=−I

f
(Nb)
nK P̂ Iπ

MK |φn〉, (2)

with the total-angular-momentum- and parity-projection operator, P̂ Iπ
MK = P̂ I

MK P̂ π.

The number of deformed Slater determinants is Nb. The amplitude f
(Nb)
nK is the

coefficient of each basis function. The deformed Slater determinant reads

|φ〉 =

Nf∏

α=1

Nsp∑

i=1

Diαĉ
†
i |−〉, (3)
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with the numbers of nucleons Nf and single-particle states Nsp. Note that the particle
vacuum is described as |−〉. The complex matrixD characterizes the deformation from
the spherical harmonic-oscillator Slater determinants.

In Eq. (3), the matrix elements of D are determined by minimizing the energy
eigenvalues in stochastic and deterministic ways following the variational principle.
The stochastic sampling of bases is done in a way similar to the auxiliary-field Monte
Carlo technique, introducing auxiliary fields by the Hubbard–Stratonovich transfor-
mation. Candidates of basis function are generated by the imaginary-time evolution.
Among these generated candidates, we take the one which gives the lowest energy
eigenvalue. Then, we further minimize the energy eigenvalue by optimizing the ma-
trix D in a deterministic way with the conjugate gradient method.

Concerning the actual computational procedure, we start with one basis, usually
the Hartree–Fock basis. We increase the number of bases by repeating the basis search
in stochastic and deterministic ways as described above until the energy eigenvalues
sufficiently converge. The typical number of bases becomes finally around 100, so that
we reduce the diagonalization problem of a large and sparse Hamiltonian matrix into
a dense Hamiltonian matrix with about 100 linear dimension. At each step of the
basis search, the energy eigenvalues E and coefficients of eigenvector fnK are obtained
by solving the following generalized eigenvalue problem,

∑

nK

〈φm|ĤP̂ Iπ
MK |φn〉fnK = E

∑

nK

〈φm|P̂ Iπ
MK |φn〉. (4)

In order to evaluate the energy eigenvalues more precisely, we also compute the energy
variance and extrapolate our MCSM results towards vanishing energy variances where
the exact eigenvalue of original Hamiltonian matrix exists. For more details, see the
reviews of MCSM in Refs. [5–7].

3 Ab initio no-core MCSM

One of the major challenges in nuclear physics is to understand nuclear structure
and reactions from the first principles. For this purpose, a number of ab initio studies
have become actively done these days, mainly due to a rapidly growing computational
power and refinement of ab initio techniques for quantum many-body calculations (see
review articles, for example, Ref. [8] and references therein).

In the ab initio approaches, all nucleon degrees of freedom are activated and nu-
clear forces from two- and three-nucleon interactions fitted to NN -scattering data
and deuteron properties (applying some soften procedures of original interactions)
are used as an input of many-body calculations. Typically, the cost for these cal-
culations tends to be computationally expensive. Therefore, an alternate way to
reduce the computational cost is awaited. For instance, in the case of no-core shell
model, a couple of methods have been proposed and are providing new insights into ab
initio nuclear structure calculations, such as the importance-truncated no-core shell
model [9, 10] and symmetry-adapted no-core shell model [11]. The no-core MCSM is
one of the variants pursuing this direction [12, 13].

For the application of the no-core MCSM, we have employed the JISP16 NN in-
teraction due to the limitation of handling explicit 3N interactions at present. This
is the J-matrix inverse scattering potential (JISP), one of the realistic nonlocal NN
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Figure 2: Compari-
son of binding ener-
gies for light nuclei be-
tween MCSM calcula-
tions and experimental
data. The error bars
denote estimated uncer-
tainties for the extrapo-
lation of MCSM results.

interactions constructed through phase-equivalent transformations [14]. This inter-
action is fitted not only to the two-nucleon scattering data and deuteron properties
but also to the properties of light nuclei up to 16O. Although we treat only NN

interactions in the calculations, it is sufficient to prove the capability of the MCSM
technique for no-core shell-model calculations.

With the JISP16 NN interaction, we have calculated the ground-state energies
and root-mean-square point-nucleon radii of 4He, 8Be, 12C, 16O and 20Ne nuclei as
shown in Figs. 2 and 3, respectively, including the nuclei in which the standard no-
core shell-model calculations are hardly performed to obtain converged results due
to huge dimensionality of Hamiltonian matrices. From our recent no-core MCSM
computation on the K computer, the JISP16 NN interaction provides the binding
energies consistent with experimental data up to around 12C, but overbinds nuclei
as A increases. In a similar way, the radii are consistent with experiment up to
around A ∼ 8, but are clearly underestimated for A larger than 12. Our results infer
the necessity of explicit inclusion of 3N potentials for heavier nuclei above the upper
p-shell region even with a non-local potential such as the JISP16 NN interaction.
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Figure 3: Comparison
of radii for light nuclei
between MCSM calcu-
lations and experimen-
tal data. Note that
the experimental data
for neighboring Be iso-
topes are plotted as a
reference of the MCSM
calculation for 8Be.
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However, a new non-local NN interaction, the Daejeon16 NN , is expected to give
better results than those with the JISP16 NN interaction [15, 16]. It is interesting
to see how well the results of no-core MCSM calculations can be improved with
this interaction and to what extent the off-shell properties of such kind of nonlocal
NN interactions can absorb the effects of explicit 3N interactions beyond the p-shell
region.

4 Alpha-cluster structure from the no-core MCSM

For physics applications of the no-core MCSM, the α-cluster structure has been re-
cently investigated focusing on two- (three-) α-cluster structure of Be (C) isotopes.
The α-cluster structure in light nuclei is one of the fundamental aspects in nuclear
many-body system, and has been studied intensively for a long time. Up to present,
there are a number of studies on α-cluster physics from the first principles as well
as those based on cluster models. The purpose for the investigation by the no-core
MCSM is to understand the mechanism of appearance and disappearance of α-cluster
structures in the intrinsic density of nuclei utilizing the nature of deformed Slater
determinants in the MCSM wave functions.

As an exploratory study, a proof-of-principle calculation by the no-core MCSM has
been done for the low-lying states of 10,12Be nuclei with the AV18 and N3LO χEFT
NN potentials transformed by the unitary correlation operator method [17]. Physical
observables of low-lying states of 10Be are reasonably well reproduced. Following this
exploratory study of Be isotopes, the no-core MCSM has been further applied to the
study of intrinsic shape of these exotic nuclei [18–21]. The no-core MCSM calculations
with JISP16 NN interaction have been performed to construct intrinsic densities of
ground and some excited states in Be isotopes in order to better understand the α-
cluster and molecular-orbital structure of Be isotopes. For a visualization of intrinsic
structure of nuclei, we superpose the deformed Slater determinants in the MCSM
wave function before the angular-momentum and parity projections so as to obtain
the density distribution in the body-fixed frame by aligning the orientation of each
deformed Slater determinant in terms of quadrupole deformation.

From our investigation, we have obtained some promising results as shown in
Fig. 4. First, we have observed the emergence of two-α-cluster structure in the 8Be
ground state without any assumption of the α-cluster structure. This fact indicates
that the α clusters can be described efficiently with deformed Slater determinants.
Second, we can identify in the ground and first excited 0+ states of 10Be nuclei
the molecular-orbital structures formed by two valence neutrons (equal to the total
number of neutrons minus the number of protons) on top of two α clusters. For the
ground state (the first excited 0+ state), two valence neutrons give π- (σ-) orbit of
molecular orbital states. In addition, we can observe four valence neutrons forming
some mixture of the π- and σ-orbital structures in the 12Be ground state. Third,
we can see the fading of intrinsic shape of the α clusters as the number of neutrons
increases. This structure change cannot be obtained by cluster models, which assume
the α cluster as a fundamental degree of freedom. This finding implies a way to
investigate the deformation of α clusters.

In addition to the investigation of intrinsic structure of Be isotopes, we also extend
our analysis to three α clusters in the 12C nucleus. In the analysis of the intrinsic
shape of 12C, we introduce the cluster analysis in the statistics. We define the distance
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Figure 4: Schematic intrinsic density illustrating the α-cluster and molecular-orbital
structure of Be isotopes obtained by the no-core MCSM.

measured in the Euclidean space which gauges the similarity of densities and cate-
gorize the groups of similar shape. For the first application, we divide our deformed
Slater determinants, which amount around 100 basis states, into 15 groups. By sepa-
rating the deformed Slater determinants into these groups, we have calculated overlap
probability of deformed Slater determinants in each group with the total MCSM wave
function. The results are shown in Fig. 5. From this analysis, we have obtained the 0+

ground state of 12C mainly composed by the group of the compact (shell-model-like)
shape and that of three α clusters. For the second 0+ state, the overlap probability
is distributed among all 15 groups on an equal footing. It indicates that this state is
a gas-like state, which is proposed by the study with the THSR wave functions [22]
as the Bose–Einstein condensation of the α gas.

5 Summary

We shortly outlined the Monte Carlo shell model (MCSM) from its formalism to some
numerical results, focusing on recent application of this method to ab initio no-core
calculations. The essence of the MCSM is the importance truncation. The size of
the original large sparse Hamiltonian matrix spanned by harmonic-oscillator Slater
determinants is reduced to a smaller dense one spanned by stochastically selected
bases. With this method, one can perform large-scale shell-model calculations even
in the case that the standard shell-model approaches with the Lanczos method cannot
handle. Most of the physics of interest usually lies on the forefront of and even beyond
the current computational limit.



α-cluster structure from no-core MCSM 307

����������������������������������������������������������������������������������������

• ��
�
���	
��
������
����� ������������������ ��	��������������	�����

�������������������������������������������������������������� ������������ �������������

• ��
�
��!���������	
��������	���� "��#��$�����%

��������������������������� ����������������������������������������������������������� 

���������������������������&����������������������� ����������������������&&������������

Figure 5: Cluster analysis of the 12C nucleus in the no-core MCSM.

In this contribution, the MCSM has been presented focusing on the no-core shell-
model calculations. It is found that the no-core MCSM results for light nuclei up
to A ≤ 20 with a NN potential can be extrapolated to the limit of infinite basis space
and provide ab initio solutions with evaluated theory uncertainties. The JISP16 NN

interaction gives good agreement with experimental data up to around 12-nucleon
system even without handling explicit three-nucleon interactions. As one of physics
applications, an exploratory study of the α cluster phenomena has been provided with
the visualization of intrinsic density obtained from the MCSM wave functions before
spin- and parity-projections. We found the emergence of two-α-cluster structure
in the 8Be ground state without any assumption of α clusters. We also identified
the molecular orbital states of valence neutrons in neutron-rich Be isotopes. The
deformation of α clusters was seen in the ground states of Be isotopes with increasing
the number of neutrons. Following the study of the Be isotopes, the analysis of the
intrinsic shape of 12C was briefly discussed. The intrinsic density of the ground state
of 12C is mainly composed of compact shell-model-like and three-α-cluster shapes,
while the overlap probability for the second 0+ state is distributed among various
configurations which indicates a gas-like state.

For future perspectives, the no-core MCSM calculations with the Daejeon16 NN

interaction are necessary for providing some insights on how far such kind of nonlocal
NN interactions can be applied to a heavier mass region. Also, a quantitative analysis
of the α-cluster structures based on intrinsic densities is expected to be done in the
near future.
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(2001).


