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.
Mathematical /Numerical Nonlinear Optimization
Find parameters x = (x1,...,x,) in domain € to improve objective f

min {f(x) : x € 2 CR"}
© (Unless €2 is very special) Need to evaluate f at many x to find a good x,

Here: ®
© Assume f is deterministic (and smooth
except where noted)
< Assume that uncertainty modeled
through constraints and objective(s)
< Assumes sensitivity analysis, uncertainty
quantification, and validations
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I,
(Computationally Expensive) Simulation-Based Optimization

min {(x) = FIS()] : o(S(x)) < 0,x € 0}

“parameter estimation”, “model calibration”, ‘design optimization”, ...
¢ Evaluating S means running a simulation modeling some (smooth) process
< Derivatives V.S often unavailable or prohibitively expensive to obtain
© S (even when parallelized) takes secs/mins/days
Evaluation is a bottleneck for optimization
© € compact, known region (e.g., finite bound constraints)

Functions of complex (numerical/physical) simulations arise everywhere
- . S N NS
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...
ComputlngAdvances Drive Research |n Simulation-Based Optimization

Argonne's AVIDAC Argonne's BlueGene/Q Argonne’s Theta Sunway TaihuLight
(1953 vacuum tubes) (2012 0.79M cores) (2017 0.23M cores) (2016 11M cores)

The simulations underlying
today's SBO problems

were nearly unthinkable a
generation ago

Argonne's “A21"
(2021 7?77 cores)
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EEEEEEEEEEEEE————
Parameter Estimation is NOT a Generic/Blackbox Optimization Problem

Generic:

m}gn{f(x) :x € QCR"}

x n decision variables

f :R™ — R objective function
) feasible region,
{x:cg(x) =0,cr(x) <0}
cp (vector of) equality
constraints
c; (vector of) inequality
constraints
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Parameter Estimation is NOT a Generic/Blackbox Optimization Problem

Generic: Typical calibration problem:

min {f(x) : x € 2 CR"} F) = IREI3 =D Ri

x n decision variables x n coupling constants

f :R™ — R objective function R; :R™ —> R residual function

2 feasible region, Ex.- w— (S(x;0;) —d;)
{x:cp(x) =0,cr(x) <0} + S(x;6;): numerical simulation

cp (vector of) equality Ex.- Obtain x*(x) by plnf(x)
constraints Q ={x:1<x<u}

Cr (vector.of) inequality + Finite bounds (for some ;)
constraints ¢+ Often dictated by dom(S)

[Ekstrém et al, PRL 2013] [Kortelainen et al, PRC 2014]
Taking advantage of structure should reduce expense/improve accuracy
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Careful: Local and Global Solutions

o0 Local

Local minimizer X,: 8  Global

f(x) < f(x) VxeN(x.)NQ

Global convergence: Convergence (to a local
solution /stationary point) from anywhere in €2

Convergence to a global minimizer: Obtain x, with
fx) € f(x) ¥xeQ

-0,5 * Unconstrained -0,5 + Unconstrained
& Constrained & Constrained
1 05 0 0.5 05 0 0.5 1
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e
Optimization Tightly Coupled With Derivatives (WRT Parameters)

Typically necessary for optimality: Vif (%4) + AT'Vyxep(x:) = 0,cp(xs) =0

h
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R ——————S
Optimization Tightly Coupled With Derivatives (WRT Parameters)

Typically necessary for optimality: Vif (%4) + AT'Vyxep(x:) = 0,cp(xs) =0

Algorithmic/Automatic Differentiation (AD)

“Exact® derivatives!”
? No black boxes allowed

? Not always automatic/ “cheap”

Finite Differences (FD)

“Nonintrusive”, “Numerical Differentiation”

7 Expense grows with n

? Sensitive to stepsize choice/noise
—[Moré & W.; SISC 2011], [Moré & W.; TOMS 2012]

But some derivatives are not always available/do not always exist
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Typical Optimization-Based Formulations

Standard “x2"-based objective

© {(61,d1), -+ ,(0p,d,)}: the data
© S(x;0;): the ith simulation (modeled/theory) output given parameters x

© 01,...,0p the (inverse) weights
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Typical Optimization-Based Formulations

Standard “x2"-based objective

{(@1,d1),---,(0p,dp)}: the data
S(x;0;): the ith simulation (modeled/theory) output given parameters x

O1,...,0p: the (inverse) weights
Multiplying f by positive constant does not affect the solution of miny f(x)
= all g; could be multiplied by a common constant
= interpretation of f(x) values comes from something other than the optimization

‘) NTSE18



Relationship to Covariance Matrices
Errors independent and normally distributed: d ~ N (u, X),
di:u(ei;x*)—l—&', EZ'NN(O,UE) 1=1,...,p

3 is a p x p diagonal matrix, with ith diagonal entry o2
Model, S(0;x) with Gaussian errors:

[S(01;%), -+, S(6,;%)]" ~ N (u(%),C)

C a (p x p symmetric positive definite) covariance matrix accounting for
correlation between model outputs (i.e., Cov(S(6;;x%),5(0;;%x)) = C; ;)
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Relationship to Covariance Matrices
Errors independent and normally distributed: d ~ N (u, X),
di:u(ei;x*)—l—&, EZ'NN(O,Ug) 1=1,...,p

3 is a p x p diagonal matrix, with ith diagonal entry o2
Model, S(0;x) with Gaussian errors:

[S(01;%), -+, S(6,;%)]" ~ N (u(%),C)

C a (p x p symmetric positive definite) covariance matrix accounting for
correlation between model outputs (i.e., Cov(S(6;;x%),5(0;;%x)) = C; ;)
Assuming model errors are independent of data errors,

[m(%;01) = da, -+, m(%;6,) = dy] " ~ N(0,C + )
Joint likelihood I(x; 6;d) o exp —%R(x; 0" (C+=) 'R(x;0)

Warning: C,3 can no longer hide behind constants of proportionality
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Incorporating Covariances Cov(S(x;0;), S(x;6;)) in W

Elastic
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Exploiting Structure Allows One to Solve Difficult Problems

Least f Value
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[Kortelainen et al, PRC 2010], [Bertolli et al, PRC 2012], [Kortelainen et al, PRC 2012], [Ekstrom et
al, PRL 2013], [Kortelainen et al, PRC 2014], ...
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...
The POUNDERS Method & Open-Source Software

Practical Optimization Using No DERivatives for sums of Squares

v ¥ -t Imvm
Y \ -A-pounders
3 H —¥—nm
\ f
. . 3.6 1
< a local, model-based, full Newton-like, trust-region 10 | I‘.
. T [
algorithm 3 Lo
]
. . w
< for unconstrained and bound-constrained Q Y I‘.
E: \
. © 3 [
< nonlinear-least squares problems >10* I
< in the absence of some derivatives (derivative-free) & t
'
o
L
that v
i ; o 10°* i A
L3
© is a misnomer (uses some derivatives) N
© is robust to noise/poor local minima 10° 10' ) 10°
Number of Evaluations
© has a simple interface (provide routine for S)
TAO solvers
< allows for parallel evaluation of S .
. ¢ nm V_f unavailable, black box
< has asymptotic convergence guarantees
< performs well in practice

< pounders V. f unavailable,
exploits problem structure
© s available in PETSc/TAO [http://mcs.anl.gov/tac] © Imvm Uses available V, f
NTSE18
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 EEEEEE—————
Exploiting Nonlinear Least Squares Structure

o Ry(x)

< (Locally) Model each R; by a surrogate q,(:)

Obtain a vector of output R;(x)

9

i i 1 i
Rif) = qfY (x) = Rita) + (x =) Tl + 5 (x =00 THY (x — 1)

< Employ models in the approximation

VI(x) =3, VRi(x)R;(x) >3, gg{‘} (%) R; (x) '
V2f(x) =3, VRi(x)VR;(x)T + Ri(x)V2Ri(x) — 3,8 (%)l (x)T + Ri(x)H" (x)

Energy Residual [MeV], Nucleus #10 Energy Residual [MeV], Nucleus #22 Energy Residual [MeV), Nucleus #9

NTSE18 13 B



All Together: Model-Based Trust-Region Algorithms

Basic trust region iteration:

< Build surrogate model m
(POUNDERS: for each residual
R;)

< Trust approximation of m within
region
B={xeR":|x—x| <Ag}

< Use m to obtain next point within
B for evaluation

2.0 Incorporate prior knowledge through scaling, norm selection, initial A, etc.
&t NTSE18 14



All Together: Model-Based Trust-Region Algorithms

Basic trust region iteration:

< Build surrogate model m
(POUNDERS: for each residual
R;)

< Trust approximation of m within
region
B={xeR":|x—x| <Ag}

< Use m to obtain next point within
B for evaluation

20

% Incorporate prior knowledge through scaling, norm selection, initial A, etc.
Y : NTSE18 14



All Together: Model-Based Trust-Region Algorithms

Basic trust region iteration:

20
< Build surrogate model m

* (POUNDERS: for each residual
L R)
< Trust approximation of m within
region

B={xeR":|x—x| <Ag}
< Use m to obtain next point within
B for evaluation

20 Incorporate prior knowledge through scaling, norm selection, initial A, etc.
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All Together: Model-Based Trust-Region Algorithms

Basic trust region iteration:

< Build surrogate model m
15+ (POUNDERS: for each residual
: Ri)
° < Trust approximation of m within
5 region
B={xeR":[x—xx| <A}
< Use m to obtain next point within
B for evaluation

20

~ Incorporate prior knowledge through scaling, norm selection, initial A, etc.

&v NTSE18 14 o



Other Deterministic Objective/Loss/Training Function Forms

Standard “x?": Assumes independence

P 0. — d:\ 2
£ = Y R = Z(is(x’i’f d’)

—MNn —nNn
p =1 p =1

Correlated: For W symmetric positive definite:
F) =)0 Wi Ri(x)R;(x) = |R(x)|Ry
(]

Gaussian priors: f(x) = |R(x)|J3v + [|x — X%
(Censored) L1 loss: (LAD)
F) = wildi — Si(x)] o f(x) = w;|d; — max{S;(x),c;}]

Solvers exist for many forms of objective; objective form matters!
a NTSE18
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...
Nonsmooth Compositions Require Additional Care

L1 Loss:

p
> ldi = Si(x)|
i=1

Censored L1 loss:

> Jdi — max {S;(x), ¢;}
i=1

NB- Can truncate some
multimodality

— Manifold sampling: [Larson, Menickelly, W.; SIOPT 2016], [Khan, Larson, W.; SIOPT 2018]

o NTSEL8 16 o



 EEEEEE—————
Exploiting Concurrency is Vital in the Supercomputing Era

Considerations:

¢ Load balancing

< Variability in run times
for a particular nuclei or
observable

< Variability in run times
across observables

< Degree to which you can
predict the run time of
an observables

A NTSE18 17 B



 EEEEEE—————
Exploiting Concurrency is Vital in the Supercomputing Era

- - Median: UNEDF2 nuclei, Broadwell 9 threads/nuclei

© Load balancing 480 1

< Variability in run times

spherical groundstate
deformed groundstate
fission isomer

0% P x|

for a particular nuclei or 240 1 blocking states
observable
T . - 120
< Variability in run times @
(]
across observables £
. = 60 r

< Degree to which you can kal

A
predict the run time of -] 8 o %l
30 © %ﬂg '

an observables

¢ W% Wi x Wi
15 . ‘ ‘ ‘ ‘
50 100 150 200 250

A, Mass Number
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 EEEEEE—————
Exploiting Concurrency is Vital in the Supercomputing Era

Considerations:

Extrema: UNEDF2 nuclei, Broadwell 9 threads/nuclei

, 480 T ‘ -
© Load balancmg % spherical groundstate
kil : A deformed groundstate
o
Varlab|||t¥ in run tlm.es 240 | % fission sorner
for a particular nuclei or O blocking states
observable 120
© Variability in run times e
(0]
across observables g 60
_ S 8
< Degree to which you can 30 k
predict the run time of
an observables 15 T ¥
50 100 150 200 250

A, Mass Number
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LibEnsemble: Managing Tightly Coupled Ensembles of Calculations
Moving beyond local optimization requires (many) more forward model evaluations

python based, available via Spack libEnsemble

Tackles higher-level problems M anager

optimization, UQ, Sensitivity analysis, |~ _ N | active
(op Q y y Receive }] simulation

machine learning, stochastic sampling, e

,,,,,,, l,,,,,,,\ completed
i Update active ! generation

and queue )

Workers

Graceful exit of libEnsemble when time

has expired or when | ot

; ! T simulation
persistent/nonpersistent worker(s) are  Decice work

: . and resources | :

unresponsive/busy [ [
Simulations can be PETSc-based or use L Give vor « /[ simulation .| completed

. : ‘ ive worl = work |_simulation
their own communicator Silllelellelelulets
objective

J NTSE18



Related: Training in Supervised Learning

Obtain model prediction S(-,x) by solving
N . .
minZl (5(6°,%),9")
i=1

T = {(6",y")}Y, € R? x R — Training data
y* € R — label associated with input 6"

x € R" — weights

S : R% x R™ — R — trained model

[:R% — R — loss function

(SR R R R

a NTSE18

e.g., l(a,b) = (a — b)?
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Related: Optimization Under Uncertainty

— u denotes vector of uncertain variables

¢ Stochastic optimization: u ~ P
min E, [F(x,u)]
X

< Robust optimization: Guard against worst-case uncertainty in the problem data
minmagl(f(x,u) or min {f(x) : |Ri(x;u)] < kVu e U,Vi}
X uc X

< Trimmed/quantile loss: determine outliers on the fly (as x changes)

q
Fx) =D | Ry (x)] where |R(;)(x)| < |Ripy(x)|, i=1,...,p—1(>¢q)
i=1

°L B NTSE18 20 ©
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——Training
- - =Testing

NTSE18
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Robust Optimization: Deterministic Incorporation of Robustness Desires
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...
Robust Optimization: Deterministic Incorporation of Robustness Desires

U(x) = maxy {f(x+u) : ||ul| < a}

Game: You choose x to minimize
U(x), opponent chooses u to
maximize f(x + u)

° NTSE18 21 B



 EEEEEE—————
Robust Optimization: Deterministic Incorporation of Robustness Desires

U(x) = maxy {f(x +u) : [Ju]| < a}

o3 Game: You choose x to minimize
I/ ¥(x), opponent chooses u to
/ maximize f(x + u)
4 -
/
i/
l/ 1
4
4
/ )
V4
-\/
5 o 7 s
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Robust Optimization: Deterministic Incorporation of Robustness Desires

NTSE18

U(x) = maxy {f(x +u) : [Ju]| < a}

Game: You choose x to minimize
¥(x), opponent chooses u to
maximize f(x + u)
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Robust Optimization: Deterministic Incorporation of Robustness Desires

U (x) = maxy {f(x + u) : [uf <a}

Game: You choose x to minimize
¥(x), opponent chooses u to
maximize f(x + u)
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Robust Optimization: Deterministic Incorporation of Robustness Desires

U(x) = maxy {f(x +u) : [Ju]| < a}

Game: You choose x to minimize
¥(x), opponent chooses u to
maximize f(x + u)

Possible challenges
? Ability to compute ¥(x)
..0¥(x)

? Determination of o > 0
... uncertainty set
Ex-U ={u:|ju| < a}

21 B



NS
Optimization, UQ, Supercomputing, and Nuclear Theory

Exploiting structure yields better solutions, in fewer simulations
Optimization problem formulation matters
Supercomputing is opening algorithmic frontiers for calibration under uncertainty

SO R SR

Expanded opportunity for scalable parallelism through optimization, sensitivity
analysis, UQ
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NS
Optimization, UQ, Supercomputing, and Nuclear Theory

Exploiting structure yields better solutions, in fewer simulations
Optimization problem formulation matters
Supercomputing is opening algorithmic frontiers for calibration under uncertainty

SO R SR

Expanded opportunity for scalable parallelism through optimization, sensitivity
analysis, UQ

http://www.mcs.anl.gov/~wild === 2=
(Get in touch!)
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