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• Schrödinger equation

with Coulomb potential

∆ψ +
2m

~2
[E − V (r)] = 0,

V (r) = −α
r

System of two particles, each has mass m.
Binding energies (well-known solution):

En = −α
2m

4n2
– Balmer series.
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• Bethe-Salpeter
bound state equation

E.E. Salpeter, H. Bethe, 1951

pp

p/2+k'

p/2-k'p/2-k

p/2+k

p/2-k

p/2+k

K=

Φ(k, p) =
ig2

(

(p
2
+ k)2 −m2 + iǫ

) (

(p
2
− k)2 −m2 + iǫ

)

×
∫

d4k′

(2π)4
Φ(k′, p)

[(k − k′)2 − µ2 + iǫ]
, µ = 0
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• Solving BS equation

Nakanishi, 1963

Integral representation for the BS amplitude:

Φ(k, p) =

∫

1

−1

dz′
∫

∞

0

dγ′
g(γ′, z′)

[

γ′ +m2 − 1

4
M2 − k2 − p·k z′ − iǫ

]3
.

For massless exchange:

g(γ, z) → g(z)δ(γ) → g(z)

– does not depend on γ.

NTSE2018 – p. 4/36



• "Abnormal" solutions

In 1954, G.C. Wick and R.E. Cutkosky,

still for massless exchange µ = 0,

solved BS equation and reproduced Balmer series.

In addition, they found another series,

which is absent in the Schrödinger equation.

These new solutions, which do not exist in the

non-relativistic limit, were called

"abnormal" solutions.
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• Equation for g(z)

µ = 0 → G.C. Wick, R.E. Cutkosky, 1954

g′′n(z) +
2(n− 1)z

(1− z2)
g′n(z)−

n(n− 1)

(1− z2)
gn(z)

+
α

π

1

(1− z2)(1− η2 + η2z2)
gn(z) = 0

η =
M

2m
= 1− B

2m
, gn(±1) = 0

For each n – there is infinite set of solutions which can be

enumerated by another quantum number: k = 0, 1, 2, 3, . . ..
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• Spectrum
In general: E = Enk, n = 1, 2, 3 . . . , k = 0, 1, 2, 3, . . .

If k = 0, the normal Balmer series is reproduced
(with a relativistic correction):

En = − α̃
2m

4n2
, α2 → α̃2 = α2

(

1 +
4

π
α logα

)

However, for each given n there exists another (abnormal)
series with k = 1, 2, 3, . . . :

Ek = −m exp

(

− 2π3/2k
√

α− π
4

)

, k = 1, 2, 3 . . . , α >
π

4
.

k is number of nodes in the (abnormal) solution gk(z).

This formula is valid when α→ π
4
, Ek → 0.

α = e2/(~c) → α/c→ 0 when c→ ∞
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• Energy spectrum (still for µ = 0)
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The binding energies for normal and abnormal states.

Abnormal states are not predicted by the Schrödinger
equation, but they are predicted by the BS one!

Therefore they have purely relativistic origin.
Normal solutions g(z) vs. z have no nodes,

abnormal solutions have k nodes.
For even k they are symmetric,

for odd k they are antisymmetric.
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• Spectral function g(z)

Normal (ground) state, n = 1, k = 0
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• Spectral function g(z)

Normal (ground) state, small binding energy, n = 1, k = 0
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• Spectral function g(z)

One node, abnormal state, antisymmetric, n = 1, k = 1
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• Spectral function g(z)

Two nodes, abnormal state, symmetric, n = 1, k = 2
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• Spectral function g(z)

Three nodes, abnormal state, antisymmetric, n = 1, k = 3
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• Conclusion in the case µ = 0

Abnormal states for massless exchange,

as solutions of the BS equation, certainly exist.

However, minimal coupling constant

(for point-like particle!)

seems too large: αmin =
π
4 ⇒ Z = 107.

What about abnormal states for finite range

(strong) interaction?
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• Finite-range interaction, µ 6= 0

The number of states is normally finite.

When the interaction decreases, the bound states
disappear one after other:

first, the highest excited state disappears;

the next (lower) excited state disappears;

so on. . .

down to the ground state.

Any state disappears when finite-range interaction
weakens.

There is its own critical coupling constant for each state.
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• Example: potential well

Potential well: Ucrit =
π2

8mr2
0
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For µ 6= 0 the nice picture, when the abnormal

spectrum exists when α > αc,

this picture does not exists!

Do the abnormal states exist at all for µ 6= 0?

To answer this question is our aim.
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• Deriving equation for g(γ, z), µ 6= 0

Reminder: Nakanishi representation

Φ(k, p) =

∫

1

−1

dz′
∫

∞

0

dγ′
g(γ′, z′)

[

γ′ +m2 − 1

4
M2 − k2 − p·k z′ − iǫ

]3
.

Massive case µ 6= 0, g(γ, z) depends on

two variables γ, z.

Substitute Φ(k, p) in the BS equation and find

equation for g(γ, z).
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• For a ladder kernel, in rather complicated form

(K. Kusaka, A.G. Williams, 1995)

• For arbitrary BS kernel, but in the form with two-integrals,

V.A. Karmanov and J. Carbonell, 2006:

∫

∞

0

g(γ′, z)dγ′
[

γ′ + γ + z2m2 + (1− z2)κ2
]2

=

∫

∞

0

dγ′
∫

1

−1

dz′ V (γ, z; γ′, z′)g(γ′, z′)

•For the ladder kernel, in the canonical form (one integral in r.h..s.),

T. Frederico, G. Salmè and M. Viviani, 2014

• For arbitrary BS kernel, in the canonical form,

J. Carbonell, T. Frederico, V.A. Karmanov, 2017

Canonical form: g(γ, z) =

∫

∞

0

dγ′
∫

1

−1

dz′N(γ, z; γ′, z′)g(γ′, z′)
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Equation for g(γ, z) was analyzed analytically

and solved numerically. More solutions (symmetric and

antisymmetric) were found than in the corresponding Schrödinger

equation. Some of them survive in the non-relativistic limit

(and turn into the solutions of the Schrödinger equation),

some of them (the abnormal ones)

disappear in the non-relativistic limit.

The abnormal states for massive exchange µ 6= 0 exist!

(We have found them!)
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• Non-relativistic limit

Relativity exists since the speed of light c is finite

and the same in any frame.

Non-relativistic limit is c→ ∞.

We should restore c in the BS equation and take

the limit c→ ∞ (analytically and/or numerically).

Restoring c:

m→ mc2, M →Mc2, α =
e2

~c
→ α

c
,

G. Wanders, Limite non-relativiste d’une équation de Bethe-Salpeter,

Helvetica Physica Acta, 1957 (in French).
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• Derivation of Schrödinger equation
from the BS one (in the limit c→ ∞)

(Equal time) wave function:

ψ(~p) =

∫ ∞

−∞
Φ(~p, p0)dp0 =

∫ ∞

0

g(γ, 0)dγ

(γ + ~p 2 + κ2)

Since equation for g is known, one can derive

equation for ψ(~p) (normal state):

ψ(~p) =
4mπα

(~p 2 + κ2)

∫

d3q

(2π)3
1

((~p− ~q)2 + µ2)
ψ(~q)

⇒
(

~̂p 2

m
+ V (r)

)

ψ(~r) = Eψ(~r), V (r) = −α
r
e−µr
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• Dependence α(c)
for a normal solution

We repeat the calculations for a set of values of speed of light

1 ≤ c ≤ 10 and find the dependence α(c).

!" m#1, mu#0.15, B#0.1 "$
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Dependence of the coupling constant α

(for a normal state, µ = 0.15, B = 0.1) on speed of light c

NTSE2018 – p. 23/36



• Dependence α(c)
for an abnormal state
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Dependence of the coupling constant α

(for an abnormal state, µ = 0.15, B = 0.1) on speed of light c

For normal state: α(c→ ∞) → finite (nonrelativistic) limit.
For abnormal state: α(c→ ∞) increases without any limit.
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• Question

If the "abnormal" states exist for a finite-range

interaction, how to distinguish them from the

"normal" ones?

In other words:

solving BS equation, we find an energy level.

What is its nature: normal or abnormal?
Introduce new variable x:

x =
1

2
(1 + z), −1 ≤ z ≤ 1 ⇒ 0 ≤ x ≤ 1

ψ(γ, z) ⇒ ψ(γ, x)
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• Domain of g(γ, x)

!" Domain: 0#gamma#infinity, 0#x#1 "$
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• 3D plot of g(γ, z)

Out[80]=

Weight function g(γ, z)

If γ < γ0 ≈ (1− |z|)2µ
√
mB , then g(γ, z) = const

(vs. γ and vs. z).

If g(γ, z) is antisymmetric, then const = 0.
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• Numerical solution g(γ, x) (c = 1)

x = 1

2
(1 + z), −1 ≤ z ≤ 1 ⇒ 0 ≤ x ≤ 1

!" alpha#1.4375 Normalized g!gamma#0.17,x#0.5$#1 "$
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• g(γ = 0.005, x)

Normal state
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• g(γ = 0.005, x)

Antisymmetric abnormal state
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• g(γ = 0.005, x)

Symmetric abnormal state
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• Criterion

g(γ < γ0(x), x) is always constant

(both for normal and abnormal states).

Outside, g(γ, x) → 0 when x→ 0, 1.

For normal states:

in vicinity of x = 0, 1, it has no nodes.

For abnormal states:
in vicinity of x = 0, 1, it has nodes.

In this way, one can distinguish abnormal states

from the normal ones,

like in the massless case, but in the domain g(γ < γ0(x), x ≈ 0, 1).
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This is a phenomenological observation,

based on numerical calculations

(never any exclusions were found!),

but not yet a theorem.
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• Non-relativistic

vs. relativistic states

��

�

�

	����
�
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����	����
�
���

There is no any theorem proving one-to-one correspondence of

the energy levels in relativistic and non-relativistic equations.

Therefore, one can expect that in a relativistic system there exist

the states which have no non-relativistic counterpart.

If so, it is senseless to analyze them

in the Schrödinger equation framework.
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• Conclusions

• Like Dirac equation predicts antiparticles, the BS equation

predicts the states having

pure relativistic origin

(not given by the Schrödinger equation).

•We know how to distinguish them from the normal ones

(by behavior of solutions g(γ, x) vs. x at small γ).

• This is important for understanding the

relativistic few-body systems

• It is interesting to analyse, from this point of view,

the spectra of particles.
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• To be calculated

Elastic electromagnetic formfactor

Transition e.m. formfactor (normal ↔ abnormal states).

BS amplitude: Φ(x1, x2; p) = 〈0|T{φ(x1)φ(x2)}|p〉.
Φ(x1, x2; p) is ”two-body” (depends on two variables).

Whereas, |p〉 is many-body (it contains not only two-body but also

higher Fock states).

To calculate the two-body and many-body contributions
in |p〉.

Thank you!
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