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The nuclear problem

•A multi-scale
problem.

•At least two kinds of
particles involved.

•A residual, but still
strong, interaction.

•Emergent properties.

In the middle of the quantum ladder.

A fundamental problem!

From W. Nazarewicz, J. Phys. G 43, 044002 (2016)
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Exploration of the drip lines

application of modern optimization and statistical methods, together
with high-performance computing, has revolutionized nuclear DFT
during recent years.

In our study, we use quasi-local Skyrme functionals15 in the
particle–hole channel augmented by the density-dependent, zero-
range pairing term. The commonly used Skyrme EDFs reproduce total
binding energies with a root mean square error of the order of
1–4 MeV (refs 15, 16), and the agreement with the data can be signifi-
cantly improved by adding phenomenological correction terms17. The
Skyrme DFT approach has been successfully tested over the entire
chart of nuclides on a broad range of phenomena, and it usually per-
forms quite well when applied to energy differences (such as S2n), radii
and nuclear deformations. Other well-calibrated mass models include

the microscopic–macroscopic finite-range droplet model (FRDM)18,
the Brussels–Montreal Skyrme–HFB models based on the Hartree–
Fock–Bogoliubov (HFB) method17 and Gogny force models19,20.

Figure 2 illustrates the difficulties with theoretical extrapolations
towards drip lines. Shown are the S2n values for the isotopic chain of
even–even erbium isotopes predicted with different EDF, SLy421, SV-
min13, UNEDF015, UNEDF122, and with the FRDM18 and HFB-2117

models. In the region for which experimental data are available, all
models agree and well reproduce the data. However, the discrepancy
between various predictions steadily grows when moving away from
the region of known nuclei, because the dependence of the effective
force on the neutron-to-proton asymmetry (neutron excess) is poorly
determined. In the example considered, the neutron drip line is
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Figure 2 | Calculated and experimental two-neutron separation energies of
even–even erbium isotopes. Calculations performed in this work using SLy4,
SV-min, UNEDF0 and UNEDF1 functionals are compared to experiment2 and
FRDM18 and HFB-2117 models. The differences between model predictions are
small in the region where data exist (bracketed by vertical arrows) and grow

steadily when extrapolating towards the two-neutron drip line (S2n 5 0). The
bars on the SV-min results indicate statistical errors due to uncertainty in the
coupling constants of the functional. Detailed predictions around S2n 5 0 are
illustrated in the right inset. The left inset depicts the calculated and
experimental two-proton separation energies at N 5 76.
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Figure 1 | Nuclear even–even landscape as of 2012. Map of bound even–even
nuclei as a function of Z and N. There are 767 even–even isotopes known
experimentally,2,3 both stable (black squares) and radioactive (green squares).
Mean drip lines and their uncertainties (red) were obtained by averaging the
results of different models. The two-neutron drip line of SV-min (blue) is

shown together with the statistical uncertainties at Z 5 12, 68 and 120 (blue
error bars). The S2n 5 2 MeV line is also shown (brown) together with its
systematic uncertainty (orange). The inset shows the irregular behaviour of the
two-neutron drip line around Z 5 100.
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Low-energy nuclear physics: emergence of a new paradigm

What do we see at low-energy?

Adapted from H. Hergert’s Segre map.FRIB, MSU - Kévin Fossez 4
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Near-threshold effects
(halos, clusterization).

Interplay between
continuum couplings

and collectivity.

Trapped resonances,
overlapping resonances.

Exotic
decay modes.
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Continuum couplings: a general problem

Physics close to the threshold:
•The Hamiltonian couples bound states
with continuum states.

E = 0

Coupled by excitations
⇒ Γ = 0

Excitations and decay
⇒ Γ > 0

New effective
scales

Sn > 0
(Γ = 0) Bound states

4He

Weakly bound states 6He

Sn = 0
Threshold 7He

Narrow resonances
(T1/2 >> 10−22 s)

Sn < 0
(Γ > 0)

25O

Broad resonances
(T1/2 ≈ 10−22 s)
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T1/2 = h̵ ln(2)/Γ
(Energy: E , Width: Γ)
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Neutron-rich helium isotopes as open quantum systems

Few-body, emergent effective scales, continuum couplings, exotic states...

•Two- and four-body halos (6,8He).
•Broad resonances (1/2− in 5,7He).
•Many th. results, high experimental
interest.

•Uncertain case of 9He.
•Very little known on 10He.

T. AL KALANEE et al. PHYSICAL REVIEW C 88, 034301 (2013)

FIG. 5. Summary of all experimental results for 9He, up to 5 MeV excitation energy. Solid lines represent states with well defined resonance.
Dashed lines or hashed areas represent low-lying structures described by virtual s-wave states (see text for details).

the presence of a state in 9He very close (∼200 keV) to
the neutron emission threshold—previously observed in (d, p)
reactions [24,27]—that we have identified as the ground state.
Different theoretical angular distributions for this state as-
suming different transferred angular momenta (L = 0, 1, or 2)
calculated in both the DWBA and the CCBA formalisms
are compared with experiment in Figs. 4(a) and 4(b). The
experimental data present a sharp drop with increasing angle,
characteristic of an L = 0 transition. Consequently, despite the
very limited statistics, the present data support the contention
that the lowest lying state in 9He is 1/2+.

The present work is also compared in Fig. 5 with exper-
iments utilizing knock-out reactions to study 9He. For states
close to the neutron threshold results were obtained in terms
of scattering lengths: as = −10 fm [17], as � −3 fm [5],
and as = −3.17(66) fm [22]. Assuming that the low-lying
structure observed is a resonance, a corresponding energy Er

is calculated and shown in Fig. 5. However, in this section
we prefer to compare scattering lengths and since the g.s. is
close to the neutron threshold we use the relation Er ≈ h̄2

2μa2
s

[17] (where μ is the reduced mass for the neutron + 8He
system) to obtain the corresponding value as ≈ −12 ± 3 fm
for the scattering length from this work. This scattering
length is comparable to the result of Chen et al. [17] but is
not compatible with the weakly interacting s-wave strength
found both by Al Falou et al. [5] and Johansson et al. [22].
This may suggest, as noted by Johansson et al. [22], that
the accumulation of strength close to the neutron threshold
observed in these two experiments is inherent to the reaction
and experimental conditions and not the observation of a well
defined s-wave g.s.

The weak binding energy approximation used to calculate
the theoretical angular distributions involves the use of a low
binding energy (here 0.0001 MeV) to enable the calculation
of the form factor in the usual way for unbound states while
retaining the correct excitation energy for the “kinematical”
part of the calculation. For L = 0 states strong variations in the

calculated absolute cross section are observed as a function of
the choice of the binding energy and it is therefore impossible
to extract meaningful spectroscopic factors from the DWBA
calculation in such cases. However, it is possible to estimate
a value from the single-particle width. Using the prescriptions
of Lane and Thomas [44] we find �sp ≈ 2700 keV for Er =
180 keV. Experimentally � = 180 ± 160 keV, which corre-
sponds to a spectroscopic factor smaller than ∼0.13. Our cal-
culation may however be too crude and more appropriate the-
oretical approaches are necessary to confirm this estimation.

It is more difficult to deduce the nature of the first excited
state observed here at around 1.3 MeV above threshold from
its angular distribution. Within the experimental uncertainties
both the L = 1 and L = 2 calculations reproduce the data
[Fig. 4(c)]. Our angular distribution is compatible with the
Jπ = 1/2− spin-parity assigned in most of the previous studies
(Fig. 5). The small width measured here (� = 130 ± 170 keV)
corroborates several previous results [8,10,21–23]. The values
of the corresponding spectroscopic factors (Table II) vary by a
factor of up to 3 depending on the DWBA input parameters, but
it is worth noting that all of them are substantially smaller than
1 (of the order of 0.05 for L = 1). This indicates that the first
excited state is of a strongly mixed nature in agreement with
the small observed width. From the analysis of this width,
Barker [19] found spectroscopic factors C2S < 0.1. Here, a
calculation using the Lane and Thomas prescription [44] gives
a single-particle width of 2.4 MeV for an L = 1 resonance at
1.25 MeV. From the observed width a spectroscopic factor of
C2S ≈ 0.06 is deduced, in agreement with that extracted from
the experimental angular distribution.

The excited state found here at around 3.5 MeV shows a
smoothly decreasing angular distribution of L = 2 character
[Fig. 4(d)]. Due to the large uncertainties in its energy
(≈800 keV), this state could be compared to the 5/2+
state found at around 4 MeV in Refs. [23,27]. The small
corresponding spectroscopic factors suggest that this state is
also strongly mixed. However, we extracted a width of the
order of 3 MeV. Such a large width for decay to the ground

034301-6
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What are the options to describe 9,10He?

Practical vs. fundamental:

Fundamental

Pr
ac
tic

al Explicit 3-body forces

shell model

halo-EFT

ab initio

?

?

What do we want to describe and with which
precision? Is our description accurate? (UQ)

•Shell model approaches with continuum give
very decent results, but they suffer from sys-
tematic uncertainties (CSM, GSM).

•Halo effective field theories require three-
body forces at LO in 6He, not so practical.

•Ab initio methods are limited by the quality of
their input (forces) and computational cost.

Adding continuum couplings increases the com-
putational cost dramatically.
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9,10He: complex made simple

Problem:
•Experimentalists need about 100 keV precision on energy spectra of exotic nuclei.

Strategy:
•Decrease systematic uncertainties in an effective approach by doing a parameter reduction.

1) 4He is a good core.
→ Fit Woods-Saxon potential on n − 4He phase-shifts.

2) In the valence space: N-N → n-n (T = 1 only).

3) n-n → n—n (dilute, weak binding).
→ Dominant central term in the channel
(S = 0,L = 0) (halo EFT).

4) Simple, but not too simple.
→ Three Gaussian functions for n-n.
→ Fixed ranges from FHT interaction.
→ L even channels in n-n.

H. Furutani et al., Prog. Theor. Phys. 62, 981 (1979), Y. Jaganathen et al., Phys. Rev. C 96, 054316 (2017)FRIB, MSU - Kévin Fossez 8



9,10He: complex made simple

How precise can this approach be?
•Only one prefactor Vc in the interaction
to fit on 6−8He.
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•One obtains a series of values of Vc .
•V (opt)c (mean), σ (standard deviation).
•The uncertainty on the energy coming from the
interaction is given by:

∆E = 1
2
∣E(V (opt)

c + σ) − E(V (opt)
c − σ)∣.

→ Energies predicted within tens of keV precision!

Widths are highly correlated to energies and do not
provide additional constraints.

Space: s,p Berggren shells (≈ 35 per lj), d HO
shells (6 per lj). Total ≈ 120 shells.
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Basis expansion for continuum couplings

The Berggren basis:
•Single particle basis including bound states, decaying resonances and scattering states.

Re(k)

Im(k)

L+L−(= 0)

S(= 0)

Re(k)

Im(k)

discretized continuum
in momentum space

bo
un

d
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es

decaying
resonances

∑

n∈(b,d)
∣u`(kn)⟩ ⟨ũ`(kn)∣

+∫
L+

dk ∣u`(k)⟩ ⟨ũ`(k)∣ = 1̂`,j .

T. Berggren, Nucl. Phys. A 109, 265 (1968),FRIB, MSU - Kévin Fossez 10



Many-body method

Density matrix renormalization group for open quantum systems (Gamow-DMRG).

H ≈ s.p.
pole

P (s.p.
poles/scatt.)

{SD(0)0 ,SD(1)0 , ...,SD(N)0 }

{SD(0)1 ,SD(1)1 , ...,SD(N)1 }

H0

H1

Ψ0

(pivot)

Davidson Ψ1
ρ1(j , j ′) = ∑

h
Ψj,hΨj ′,h

{φ(0)1 , φ
(1)
1 , ..., φ

(N)
1 }

select
ε > 10−8

{Φ(0)1 ,Φ(1)1 , ...,Φ(N)1 }

{SD(0)2 ,SD(1)2 , ...,SD(N)2 } H2 Davidson Ψ2 etc.

Reference space: s.p. poles of the S-matrix. Medium: continuum states.
Can handle much larger spaces than standard diagonalization.
→ ≈ 1000 cores vs. ≈ 20 cores for dim = 108 (dense).

(G-DMRG

+ natural orbits!)

J. Rotureau et al., Phys. Rev. Lett. 97, 110603 (2006), J. Rotureau et al., Phys. Rev. C 79, 014304 (2009)FRIB, MSU - Kévin Fossez 11



9,10He: complex made simple

Predictions:

5 6 7 8 9 10
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•Broad 1/2− state in 7He.

•Parity inversion in 9He.

•Overall 9He spectrum consistent with exp.
results based on (d ,p) reactions.

•Similar partial wave occupations in the g.s.
of 8,9,10He except for s1/2.

•Possible two-neutron decay in 10He including
uncertainties.

→ Similar energy patterns between
8,9,10He and 26,27,28O.
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Can we learn something useful for halo EFT?

A crude connection with halo EFT:
•At LO, halo EFT has one central two-body
contact term in the channel (S = 0,L = 0),
regularized by a Gaussian function whose
range is adjusted with Vc in the s1/2 (or s1/2
and p3/2) model space.

•We have fixed-range Gaussian functions and
a fixed Woods-Saxon core.

→ Changing the range of the medium-range
Gaussian function in our model by ±20% and
readjusting Vc using the g.s. of 6He yields
identical results (’LO’).
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From nuclear structure to reactions

Gamow DMRG,
IM-SRG

Structure
observables

RGM,
coupled-channels

for reaction channels

Microscopic
optical potentials

Predictions to guide/fit
reaction models

Reaction
models

Reaction
observablespractical

doable

hard

As long as the physics is
right, we should stay
practical.
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From nuclear structure to reactions

Structure (under control):
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Microscopic optical potentials:OPTICAL POTENTIAL FROM FIRST PRINCIPLES PHYSICAL REVIEW C 95, 024315 (2017)
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FIG. 5. Real part of the diagonal optical potential in the neutron
s wave at E = 10 MeV. Results are shown for at Nmax = 8–14 and
50 discretized shells in the s1/2 partial wave

for the Berggren basis in the s wave, and η = 0. For Nmax =
10 and E = 10 MeV, the results agree with those shown in
Fig. 2. Convergence is achieved for Nmax = 14 for r � 1 fm.
For small values of r , the optical potential depends on Nmax.
This is understandable because short-range physics gets better
resolved as the model space increases, and thus convergence
becomes harder. Again we note that in this region the scattering
wave function u(r) ∝ r and the dependence of the potential on
Nmax does not impact observables. To demonstrate this point,
Fig. 6 shows the integrated quantity

Vint(r) ≡ r

∫
dr ′r ′V (r,r ′)u(r ′) = V eq(r)u(r). (31)

The potential Vint(r) can be viewed as the local equivalent
potential V eq(r) multiplied by the scattering wave function,
and corresponds to the source term in the one-body optical-
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FIG. 6. Real part of Vint(r) in the neutron s wave at E = 10 MeV.
Results are shown for at Nmax = 8–14. For illustration purpose, we
also show the results obtained with the phenomenological potential
from Ref. [17].
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FIG. 7. Contour plot of the real part of the neutron s-wave
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at E = 10 MeV.

model-type Schrödinger equation. The variations of the optical
potential with the model space for small values of r do not
impact the behavior of Vint(r). For illustration, Fig. 6 also
shows a result for Vint(r) obtained using a phenomenological
potential based on a Woods-Saxon form factor [17].

So far, we have only presented results for the diagonal
part of the optical potential. Figure 7 shows a contour plot
for the nonlocal neutron s-wave optical potential. Introducing
the relative coordinate rrel = r − r ′ and the center-of-mass
coordinate R = (r + r ′)/2, we plot the optical potential as
a function of rrel at fixed R = 1 fm in Fig. 8. We can see
that the full width at half maximum is about 2.2 fm. Clearly,
this potential is very different from a model of a Dirac delta
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(à la J. Rotureau et al.)

Reactions
(inclusive formalism):

(G. Potel et al.)

Figure for (d ,p) reaction from K. L. Jones, Physica Scripta 2013, T152 (2013)
J. Rotureau et al., Phys. Rev. C 95, 024315 (2017)
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Conclusion

The spectra of 8−10He can be precisely described in a 4He-plus-valence neutron picture.
→ Phenomenology guided by effective scale arguments.

•Achievements:
→ Largest ever continuum space for predictions on 9−10He spectra using Gamow-DMRG.
→ Prediction of energies within tens of keV.

•Open questions:
→ Can halo EFT be done differently?
→ What is the structure of 10He?
→ Can this approach be applied to other neutron-rich isotopes (different core)?

We developed an effective approach that provides a reliable alternative to ab initio methods
for energies and widths.

FRIB, MSU - Kévin Fossez 16
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(NC)GSM vs DMRG

(No-Core) Gamow Shell
Model (N. Michel)

Density Matrix Renormalization
Group (J. Rotureau)

(Complex-symmetric Hamiltonian matrices)
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s.p. scatt.
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(pole space)
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(full space)
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H0

H1

Ψ0

(pivot)

Davidson Ψ1
ρ1(j , j ′) = ∑

h
Ψj,hΨj ′,h

{φ(0)1 , φ
(1)
1 , ..., φ

(N)
1 }

select
ε > 10−8

{Φ(0)1 ,Φ(1)1 , ...,Φ(N)1 }

{SD(0)2 ,SD(1)2 , ...,SD(N)2 } H2 Davidson Ψ2 etc.
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