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@ Introduction to the realistic nuclear shell model

@ The derivation of the effective shell-model Hamiltonian from
nuclear potentials derived from EFT

@ Testing the many-body theoretical framework: calculations for
p-shell nuclei and comparison with ab initio methods (NCSM)

@ Shell-model calculations for fo-shell nuclei: a paradigm to study
the contribution of effective Hamiltonians to the shell evolution

@ Conclusions and outlook
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The nuclear shell model

The nucleons are subjected to the action of a mean field, that takes
into account most of the interaction of the nucleus constituents.

Only valence nucleons interact by way of a residual two-body potential,
within a reduced model space.

19¢

@ Advantage — It is a microscopic
model, the degrees of freedom of
the valence nucleons are
explicitly taken into account.

@ Shortcoming — High-degree
computational complexity.
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Effective shell-model Hamiltonian

The shell-model Hamiltonian has to take into account in an effective
way all the degrees of freedom not explicitly considered

Two alternative approaches

@ phenomenological

@ microscopic
Van (4 Viuwn) = many-body theory = H.g

The eigenvalues of H.i belong to the set of eigenvalues of the full
nuclear Hamiltonian
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The realistic shell model

@ The derivation of the shell-model Hamiltonian using the
many-body theory provides an advantageous approach to
nuclear structure investigations

@ The model space may be “shaped” according to the
computational needs of the diagonalization of the shell-model
Hamiltonian

@ In such a case, the effects of the neglected degrees of freedom
are taken into account by the effective Hamiltonian H.¢
theoretically
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Workflow of our realistic shell-model calculation

@ Start from a nuclear potential based on chiral perturbation
theory (NN plus NNN)

© Set the model space P that is better tailored to study the system
under investigation

© Derive the effective shell-model Hamiltonian H.i; and transition
operators O.¢ by way of the many-body perturbation theory

© Diagonalize H.;; and then calculate the physical observables
(energies, e.m. transition probabilities, ...)
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The chiral perturbative expansion

Why nuclear potentials from
chiral EFT are so appealing?

@ Chiral EFT Lagrangians symmetries
and symmetry breakings are
consistent with those of low-energy
QCD = a direct link to the
underlying theory

@ Soft and hard scales of the EFT
identify the relevant degrees of
freedom for low-energy nuclear
physics (nucleons, pions, deltas)

@ EFT provides an organizational
scheme for a low-momentum
expansion of the chiral lagrangian

@ The power counting allows to
evaluate the approximation due to
the truncation of the perturbative
expansion

@ Two- and many-body forces are
introduced on an equal footing within
the perturbative expansion
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The shell-model effective Hamiltonian

We start from the many-body Hamiltonian H defined in the full Hilbert
space:
H = Hy + H :Z (Ti+U)+ > (VN - U,
i=1 i<j
Then, introducing a similarity transformation X:

_ y—1
PHP | PHQ i = 2 b PHP | PHQ
QHP | QHQ QP -0 0 QHQ
Het = PHP
Suzuki & Lee = X = e¥ with w = _0 10
N “=\"QuwP |0
eff _ v
H"(w) = PH{P + PH1O — C)HQQH“D
—PH Q Heff( ) 'NF/N)
1 _ QHQ (@

Luigi Coraggio Nuclear Theory in the Supercomputing Era - NTSE-2018



The shell-model effective Hamiltonian

Folded-diagram expansion

This recursive equation for H.¢ may be solved using iterative
techniques (Krenciglowa-Kuo, Lee-Suzuki, .

Heir = Q — /o+o/ /o o/ /o/o

Q-box vertex function

N 1
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The perturbative approach to the shell-model Hz?

Q(e) = PH; P + PH;Q QH, P

1
e— QHQ

Exact calculation of the Q-box is computationally prohibitive for many-
body system = we perform a perturbative expansion

1 & (QHQ)
e—OHQ*ng(e—QHOO)nH

The diagrammatic expansion of the Q-box

o HHM
ST o
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Introducing 3-body force in RSM, H22+3b

€

The next step is to include the effects of three-body forces

At present, we include in the o o
effective shell-model S
Hamiltonian H2}"*" diagrams
only at first order in
perturbation theory with N>LO

three-body vertices

This is the well-known normal-ordering approximation
that is employed in many ab initio calculations U?
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The shell-model effective operators

Consistently, any effective shell-model transition operator may be cal-
culated

It has been demonstrated that, for any bare operator ©, a non-Hermitian
effective operator ©.¢ can be written in the following form:
O = (P+ Qi+ Q@+ QQ+ é@z-ﬁ-"')(XO-ﬁ-
+X1+x2+-0) =
= (P+ @1 + O1©1 + @2©+ @@2+"')©@71
X(xo+x1+xe+---)=
= HaQ (o +x1+x2+-) ,
where A
A 1 d™Q(e)
Qm = m' dem

€=¢€g

IEIO being the model-space eigenvalue of the unperturbed Hamiltonian
0

K. Suzuki and R. Okamoto, Prog. Theor. Phys. 93 , 905 (1995) e
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The shell-model effective operators

The y, operators are defined in terms of the bare operator ©:

xi = (61Q+hc 901G :
Y2 = (é©©+ )+(@zQQ+h.c.)+
2QQ+ h. .

and
() = POP+ P@Q%QMP ,

O(ey;e2) = PH1(;>61 jQHQoeoﬁZJQHQQHm ,

o _ 1d7@| énmnfnﬂi,i;é(q;@) o
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The effective shell-model transition operators

We arrest the x series at the leading term x(, and then expand
it perturbatively:

One-body operator

.
h
bl bl b b b

Two-body operator

a b a b
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Test case: p-shell nuclei

@ H. for two valence nucleons ak 15, _ {v, 3P,

. 4 g 5 g ?. -\.
outside “He ElN . “

@ Vjn = chiral N3LO potential g0 "\.\; L ’\§
by Entem & Machleidt s e R
(smooth cutoff ~ 2.5 fm—1) — e

3 °% Py 3 0 Py
. 2 g B s fe

@ Vi :> chiral N LO gl .beu £ ol w,
potential, one-pion-exchange Por T | Bl \\ ]
LEC cp = —1, contact-term L N L N
LEC CE — _035 Lab. Energy (MeV) Lab. Energy (MeV)

_ . . P —

@ Single-particle energies and £ Si g w1
residual two-body interaction &ty goer Ry
are derived from the theory. o T )
No empirical input R * Lo enorsy e

First, benchmark calculations!

L.C., A. Covello, A. Gargano, N. ltaco, and T. T. S. Kuo, Ann. Phys. 327 ,
2125-2151 (2012)

T. Fukui, L. De Angelis, Y. Z. Ma, L. C., A. Gargano, N. Itaco, and F. R. Xu,
Phys. Rev. C 98, 044305 (2018)
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Benchmark calculation

We start from a translationally invariant Hamiltonian to compare our
results with NCSM

o = (-3 S S (- BB -
int A mA
i<j=1
A 2 2
_ L NN _ P Pi-Bj
a [Z(2m+u } [Z(V U " 2mA mA )}
i=1 i<j=1
8.0
ool .z 6Li low-energy spectrum
o with two-body-force
.| \ " Hamiltonian HZ:
20T
% ool \i::\i @ (a) not translationally
s 0. T = . . . .
ryS S NG St = invariant Hamiltonian
201
N - @ (b) purely intrinsic
Hamiltonian
—-6.0T
INF/I?
o0 (f:‘) (l’l) NCSM (=
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Ground-state energies with respect to “He, H2?

To calculate the g. s. energies with
respect to the “He core, we also
include the contributions of

» three-body correlations diagrams
on the g. s. wavefunctions. This
improves the agreement of H}

A with NCSM

g.s. energy (in MeV)

3

)
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93
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The largest discrepancy is
] about 1.1 MeV for 8Be, all
other results differ less than
0.6 MeV

A Expt
® NCSM \
& RSM plus 3-b correlations  \
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Benchmark calculation - low-lying excitation spectra

with H26

Results with two-body-force Hamiltonian H2>

6
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Benchmark calculation - low-lying excitation spectra

with H20+30

€

Results with two-body-force Hamiltonian HZ; "
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Effective single-particle energies

Proton and neutron ESPE 0p; > — Ops/» as a function of A

ESPE()) = ¢ + ) _(2J + 1){IVIi)u/ ) (2J + 1)
J J

[ SR S
T

ESPE (in MeV)
ESPE (in MeV)

o0l

@ Two-body potential only: Op; > — Ops /> spacings reduce
with A

@ Two-body plus three-body potential: 0p; > — 0ps /2
spacings are constant = better closure properties!

TE®)
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fo-shell single-particle nuclei

@ The study of fp-shell nuclei provides a unique opportunity to
investigate the monopole properties of H.

@ The observed spin-orbit and /(/ + 1) splitting of the fp orbitals in
41Ca and *'Sc is responsible of N, Z = 28 shell closure

41 41

sk Ca sk Sc
-
6 L
. 6 5/2°
5/2 |
- 12 | ~
] Z | s
2ar 24
= 3/2° = 1/2°
2k 12 L X
2 3
i 12
32 -
o 70— —————— T2 o} 3/2. 702
12 2BF only 2BF+3BF 7/2° 2BF only 2BF+3BF

@ Two-body force alone is not enough to produce enough /(/ + 1)
splitting = the three-body force is crucial to reproduce the
correct shell evolution and closures
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The calcium isotopes chain

As a matter of fact, the shell evolution of the two-neutron se-
paration energies Sy, and J = 2] excitation energies can be
reproduced introducing 3NF effects employing H22 ™", or "trans-

planting” the H2"*> monopole component to H2f.
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@ Red dots: experimental values
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fo-shell effective single-particle energies with H2>°
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p-shell isotopic chains
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Collective features in fp shell

Evolution of collectivity at N = 28

Deformed yrast band in

E (MeV)
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Conclusions

@ Realistic shell model provides a reasonable comparison
with ab initio methods, with and without three-body
contributions

@ For nuclear potentials from chiral EFT three-body
contributions are relevant for a satisfactory reproduction of
the observed shell evolution and closures

Outlook

@ We plan to include higher-order contributions of the

three-body potential in the perturbative expansion of

2b+-3b
Hcff

@ An extensive study of heavier systems is underway
@ This is a valuable approach to perform fully consistent
studies of 5-decay properties
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