

The proton radius puzzle and nuclear structure corrections in light muonic atoms

Nir Barnea	
NTSE 2018, Deajeon, Korea	
October 30, 2018	

ķ

C. Ji Wuhan, China

S. Bacca; O.J. Hernandez Mainz, Germany

N. Nevo-Dinur Vancouver, Canada

Introduction

The proton radius puzzle

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM ķ

Proton charge measurements

- electron-proton interactions: 0.8770 ± 0.0045 fm
 - *e*H spectroscopy
 - e-p scattering
- muon-proton interactions: 0.8409 ± 0.0004 fm
 - μH Lamb shift (2S-2P energy splittings) measurements at PSI (Switzerland)
 Pohl et al., Nature (2010); Antognini et al., Science (2013)

Worldwide interests in the proton radius puzzle

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Chris Gash

Errors in *ep* scattering experiment?

•
$$G_E^p(Q^2) = 1 - \frac{1}{6} r_p^2 Q^2 + \dots$$

• Q^2 not small enough / floating normalization

Errors in ep scattering experiment?

• dispersion analysis + chiral EFT constraints global fit to n & p EM form factors $r_p = 0.84(1)$ fm ($\chi^2 \approx 1.4$)

Lorenz, Hammer, Meißner, EPJA '12

Lorenz, Hammer, Meißner, Dong, PRD '15

• deficiency in standard radiative correction model? requires further analysis

Lee, Arrington, Hill, PRD '15

• Recent reanalysis suggests $r_p = 0.886(12)$ fm

Sick, Arxiv 18

Origin of the discrepancy?

Underestimated uncertainties in *e*H spectroscopies?

Phol et al., ARNPS '13

K

• Exotic hadron structure?

- 2γ subtraction term: Birse, McGovern, EPJA (2012) vs Miller, PLB (2013)
- light sea fermions: Jentschura PRA (2013) vs Miller, PRC (2015)
- new contact term from NRQED: Hill & Paz, PRD '10; PRL '11

Beyond-standard-model physics?

- new force carrier, e.g., dark photon: couples differently with e and μ
- \gg explain both the r_p puzzle & $(g-2)_\mu$ puzzle

Tucker-Smith, Yavin, PRD (2011) Batell, McKeen, Pospelov, PRI (2011)

, FND (2012;2014)

k

• Exotic hadron structure?

- 2γ subtraction term: Birse, McGovern, EPJA (2012) vs Miller, PLB (2013)
- light sea fermions: Jentschura PRA (2013) vs Miller, PRC (2015)
- new contact term from NRQED: Hill & Paz, PRD '10; PRL '11

• Beyond-standard-model physics?

- ullet new force carrier, e.g., dark photon: couples differently with e and μ
- explain both the r_p puzzle & $(g-2)_\mu$ puzzle

Tucker-Smith, Yavin, PRD (2011) Batell, McKeen, Pospelov, PRL (2011)

Carlson, Rislow, PRD (2012,2014)

- ep scattering for Q^2 from 10^{-4} GeV² to 10^{-2} GeV²
- A1 collaboration at Mainz Microtron
 - ed scattering for $Q^2 < 0.04$ GeV²
- MUSE collaboration at PSI (2018)
 - measure e[±]p and µ[±]p scattering: reduce systematic errors / potentially unveil new physics
- CREMA collaboration at PSI
 - Lamb shift (2S-2P) in μ D (published)
 - Lamb shift in μ⁴He⁺ (finished), μ³He⁺ (finished), μ³H (planned?)

high-precision measurements \Longleftrightarrow accurate theoretical inputs

• ep scattering for Q^2 from 10^{-4} GeV 2 to 10^{-2} GeV 2

• A1 collaboration at Mainz Microtron

• ed scattering for $Q^2 < 0.04 \text{ GeV}^2$

MUSE collaboration at PSI (2018)

 measure e[±]p and µ[±]p scattering: reduce systematic errors / potentially unveil new physics

• CREMA collaboration at PSI

- Lamb shift (2S-2P) in μ D (published)
- Lamb shift in μ^4 He⁺ (finished), μ^3 He⁺ (finished), μ^3 H (planned?)

high-precision measurements \Longleftrightarrow accurate theoretical inputs

• ep scattering for Q^2 from 10^{-4} GeV 2 to 10^{-2} GeV 2

• A1 collaboration at Mainz Microtron

• ed scattering for $Q^2 < 0.04 \text{ GeV}^2$

• MUSE collaboration at PSI (2018)

 measure e[±]p and µ[±]p scattering: reduce systematic errors / potentially unveil new physics

CREMA collaboration at PSI

- Lamb shift (2S-2P) in μ D (published)
- Lamb shift in μ^4 He⁺ (finished), μ^3 He⁺ (finished), μ^3 H (planned?)

high-precision measurements \Longleftrightarrow accurate theoretical inputs

• ep scattering for Q^2 from 10^{-4} GeV 2 to 10^{-2} GeV 2

• A1 collaboration at Mainz Microtron

• ed scattering for $Q^2 < 0.04 \text{ GeV}^2$

• MUSE collaboration at PSI (2018)

 measure e[±]p and µ[±]p scattering: reduce systematic errors / potentially unveil new physics

• CREMA collaboration at PSI

- Lamb shift (2S-2P) in μ D (published)
- Lamb shift in $\mu^4 {\rm He}^+$ (finished), $\ \mu^3 {\rm He}^+$ (finished), $\ \mu^3 {\rm H}$ (planned?)

high-precision measurements \iff accurate theoretical inputs

• ep scattering for Q^2 from 10^{-4} GeV 2 to 10^{-2} GeV 2

• A1 collaboration at Mainz Microtron

• ed scattering for $Q^2 < 0.04 \text{ GeV}^2$

• MUSE collaboration at PSI (2018)

 measure e[±]p and µ[±]p scattering: reduce systematic errors / potentially unveil new physics

• CREMA collaboration at PSI

- Lamb shift (2S-2P) in μ D (published)
- Lamb shift in $\mu^4 {\rm He}^+$ (finished), $\ \mu^3 {\rm He}^+$ (finished), $\ \mu^3 {\rm H}$ (planned?)

high-precision measurements \iff accurate theoretical inputs

Current status 2018

Proton CODATA 2014 H. Fleurbaev, et al. 15-35, 2018 A. Beyer, et al. 2S-4P. 2017 µp 2013 - Mainz μp 2010 JLab H world data 0.84 0.86 0.88 0.90 0.92 proton charge radius [fm] Deuteron

 $\mu {\rm A} \ {\rm Lamb} \ {\rm shift} \ {\rm experiments}$

$\mu {\rm H}$ Lamb shift experiment

Lamb Shift: 2S-2P splitting in atomic spectrum Pic: Pohl et al. Nature (2010)

• prompt X-ray ($t \sim 0$ s): μ^- stopped in H₂ gases

• delayed X-ray ($t \sim 1 \mu s$): laser induced 2S \rightarrow 2P

האוניברסיטה העברית ביבושלים

$\mu {\rm H}$ Lamb shift experiment

Lamb Shift: 2S-2P splitting in atomic spectrum Pic: Pohl et al. Nature (2010)

• prompt X-ray ($t \sim 0$ s): μ^- stopped in H₂ gases

• delayed X-ray ($t \sim 1 \mu s$): laser induced 2S \rightarrow 2P

האוניברסיטה העברית ביר

$\mu {\rm H}$ Lamb shift experiment

Lamb Shift: 2S-2P splitting in atomic spectrum Pic: Pohl et al. Nature (2010)

• prompt X-ray ($t \sim 0$ s): μ^- stopped in H₂ gases

• delayed X-ray ($t \sim 1 \mu s$): laser induced 2S \rightarrow 2P

• measure $K_{\alpha}^{\text{delayed}}/K_{\alpha}^{\text{prompt}}$

•
$$\Delta E_{LS} = f_{res}$$

• Extract the nuclear charge radius $\langle r_c^2 \rangle$ from Lamb shift in light muonic atoms

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

• Extract the nuclear charge radius $\langle r_c^2 \rangle$ from Lamb shift in light muonic atoms

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

• QED corrections:

- vacuum polarization
- lepton self energy
- relativistic recoil effects

• Extract the nuclear charge radius $\langle r_c^2 \rangle$ from Lamb shift in light muonic atoms

 $\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$

Nuclear structure effects:

• Extract the nuclear charge radius $\langle r_c^2 \rangle$ from Lamb shift in light muonic atoms

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

- Nuclear structure effects:
 - linear in $\langle r_c^2
 angle \Longrightarrow$ structure effects in one photon exchange

• $\mathcal{A}_{
m OPE} pprox m_r^3 (Zlpha)^4/12$

• Extract the nuclear charge radius $\langle r_c^2 \rangle$ from Lamb shift in light muonic atoms

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \left\langle r_c^2 \right\rangle + \delta_{\text{TPE}}$$

- Nuclear structure effects:
 - $\delta_{ ext{TPE}} \Longrightarrow$ structure effects in two photon exchange
 - elastic δ_{TPE} : Zemach moment $\langle r^3 \rangle_{(2)}$
 - inelastic δ_{TPE} : nuclear polarizability δ_{pol}

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

• Extract the nuclear charge radius $\langle r_c^2 \rangle$ from Lamb shift in light muonic atoms

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \left\langle r_c^2 \right\rangle + \delta_{\text{TPE}}$$

- Nuclear structure effects:
 - $\delta_{ ext{TPE}} \Longrightarrow$ structure effects in two photon exchange
 - elastic δ_{TPE} : Zemach moment $\langle r^3 \rangle_{(2)}$
 - inelastic δ_{TPE} : nuclear polarizability δ_{pol}

Accuracy in extracting $\langle r_c^2 \rangle$ relies on δ_{TPE} input (especially δ_{pol})

$$\mu D - \Delta r_c = 0.1 \% \implies \Delta \delta_{TPE} = 3 \%$$
$$\mu^4 He - \Delta r_c = 0.1 \% \implies \Delta \delta_{TPE} = 10 \%$$

• Extract the nuclear charge radius $\langle r_c^2 \rangle$ from Lamb shift in light muonic atoms

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \left\langle r_c^2 \right\rangle + \delta_{\text{TPE}}$$

- Nuclear structure effects:
 - $\delta_{ ext{TPE}} \Longrightarrow$ structure effects in two photon exchange
 - elastic δ_{TPE} : Zemach moment $\langle r^3 \rangle_{(2)}$
 - inelastic δ_{TPE} : nuclear polarizability δ_{pol}

Accuracy in extracting $\langle r_c^2 \rangle$ relies on $\delta_{\rm TPE}$ input (especially δ_{pol})

$$\mu$$
D - $\Delta_{exp} = 0.034 \text{ meV}$ $\Delta \delta_{TPE} = 0.05 \text{ meV}$
 μ^4 He - $\Delta_{exp} = 0.06 \text{ meV}$ $\Delta \delta_{TDE} = 0.4 \text{ meV}$

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

The deuteron binding energy

 $B_D = 2.2245666 \text{ MeV}$

The muonic deuterium μD binding energy

 $B_{\mu D} = 2.227379825778 \text{ MeV}$

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \langle r_c^2 \rangle + \delta_{\text{TPE}}$$

The deuteron binding energy

 $B_D=2.2245666~{\rm MeV}$

The muonic deuterium μD binding energy

$$\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \left\langle r_c^2 \right\rangle + \delta_{\text{TPE}}$$

The deuteron binding energy

$$B_D=2.2245666~{\rm MeV}$$

The muonic deuterium μD binding energy

 $\Delta E_{2S-2P} = \delta_{\text{QED}} + \mathcal{A}_{\text{OPE}} \left\langle r_c^2 \right\rangle + \delta_{\text{TPE}}$

The deuteron binding energy

 $B_D = 2.2245666 \text{ MeV}$

The muonic deuterium μD binding energy

Two-photon exchange

Nuclear polarizability δ_{pol}

Hamiltonian for muonic atoms

$$H = H_{nucl} + H_{\mu} + \Delta H$$
$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

• Corrections to the point Coulomb

$$\Delta H = \alpha \sum_{i}^{Z} \Delta V(\boldsymbol{r}, \boldsymbol{R}_{i}) \equiv \alpha \sum_{i}^{Z} \left(\frac{1}{r} - \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_{i}|}\right)$$

• δ_{pol} : ΔH 's 2nd-order perturbative effects to the atomic spectrum

 $\delta^A_{
m pol} = \langle N_0 \phi_0 | \Delta H \ G \, \Delta H | N_0 \phi_0
angle$

- ullet inelastic part of 2γ exchange
- nucleus excited in intermediate states

Nuclear polarizability δ_{pol}

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

X

• Hamiltonian for muonic atoms

$$H = H_{nucl} + H_{\mu} + \Delta H$$
$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

• Corrections to the point Coulomb

$$\Delta H = \alpha \sum_{i}^{Z} \Delta V(\boldsymbol{r}, \boldsymbol{R}_{i}) \equiv \alpha \sum_{i}^{Z} \left(\frac{1}{r} - \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_{i}|}\right)$$

• δ_{pol} : ΔH 's 2nd-order perturbative effects to the atomic spectrum

 $\delta^{A}_{\rm pol} = \langle N_0 \phi_0 | \Delta H \ G \, \Delta H | N_0 \phi_0 \rangle$

ullet inelastic part of 2γ exchange

nucleus excited in intermediate states

Nuclear polarizability δ_{pol}

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM k

• Hamiltonian for muonic atoms

$$H = H_{nucl} + H_{\mu} + \Delta H$$
$$H_{\mu} = \frac{p^2}{2m_r} - \frac{Z\alpha}{r}$$

• Corrections to the point Coulomb

$$\Delta H = \alpha \sum_{i}^{Z} \Delta V(\boldsymbol{r}, \boldsymbol{R}_{i}) \equiv \alpha \sum_{i}^{Z} \left(\frac{1}{r} - \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_{i}|}\right)$$

• δ_{pol} : ΔH 's 2nd-order perturbative effects to the atomic spectrum

 $\delta_{\rm pol}^A = \langle N_0 \phi_0 | \Delta H \ G \, \Delta H | N_0 \phi_0 \rangle$

- inelastic part of 2γ exchange
- nucleus excited in intermediate states

• Introducing the transition density

$$ho_N^p(oldsymbol{R}) = \langle N | rac{1}{Z} \sum_a^A \delta(oldsymbol{R} - oldsymbol{R}_a) \hat{e}_{p,a} | N_0
angle$$

• We can write the inelastic TPE contribution as

$$\delta^A_{
m pol} = \sum_{N
eq N_0} \int dm{R} dm{R}'
ho^{p*}_N(m{R}) W(m{R},m{R}',\omega_N)
ho^p_N(m{R}')$$

• where W is the muon matrix element

$$W(oldsymbol{R},oldsymbol{R}',\omega_N)=-Z^2\langle \mu|\Delta V(oldsymbol{r},oldsymbol{R})rac{1}{H_\mu+\omega_N-\epsilon_\mu}\Delta V(oldsymbol{r}',oldsymbol{R}')|\mu
angle$$

- Neglect coulomb effects
- Integrate over the muon
- Some algebra, and W takes the form

$$egin{aligned} W&\simeqrac{m_r^3(Zlpha)^5}{12}\sqrt{rac{2m_r}{\omega_N}}\ & imes \left[|m{R}-m{R}'|^2-rac{\sqrt{2m_r\omega_N}}{4}|m{R}-m{R}'|^3+rac{m_r\omega_N}{10}|m{R}-m{R}'|^4
ight] \end{aligned}$$

• $|\mathbf{R} - \mathbf{R}'| \implies$ "virtual" distance a proton travels in 2γ exchange • uncertainty principal $|\mathbf{R} - \mathbf{R}'| \sim 1/\sqrt{2m_N\omega}$ • $\sqrt{2m_r\omega}|\mathbf{R} - \mathbf{R}'| \approx \sqrt{\frac{m_r}{m_N}} \approx 0.2$ for ⁴He⁺

• LO + NLO + N²LO $\implies \delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$

- האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM
- ķ

- Neglect coulomb effects
- Integrate over the muon
- Some algebra, and W takes the form

$$egin{aligned} W&\simeqrac{m_r^3(Zlpha)^5}{12}\sqrt{rac{2m_r}{\omega_N}}\ & imes\left[|m{R}-m{R}'|^2-rac{\sqrt{2m_r\omega_N}}{4}|m{R}-m{R}'|^3+rac{m_r\omega_N}{10}|m{R}-m{R}'|^4
ight] \end{aligned}$$

• $|\mathbf{R} - \mathbf{R}'| \implies$ "virtual" distance a proton travels in 2γ exchange • uncertainty principal $|\mathbf{R} - \mathbf{R}'| \sim 1/\sqrt{2m_N\omega}$

•
$$\sqrt{2m_r\omega}|m{R}-m{R}'|pprox\sqrt{rac{m_r}{m_N}}pprox 0.2$$
 for ⁴He⁺

• LO + NLO + N²LO $\implies \delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$

- Neglect coulomb effects
- Integrate over the muon
- Some algebra, and W takes the form

$$W \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega_N}} \times \left[\underbrace{|\mathbf{R} - \mathbf{R}'|^2}_{\text{LO}} - \underbrace{\frac{\sqrt{2m_r\omega_N}}{4} |\mathbf{R} - \mathbf{R}'|^3}_{\text{NLO}} + \underbrace{\frac{m_r\omega_N}{10} |\mathbf{R} - \mathbf{R}'|^4}_{\text{N}^2\text{LO}} \right]$$

• $|\mathbf{R} - \mathbf{R}'| \implies$ "virtual" distance a proton travels in 2γ exchange • uncertainty principal $|\mathbf{R} - \mathbf{R}'| \sim 1/\sqrt{2m_N\omega}$ • $\sqrt{2m_r\omega}|\mathbf{R} - \mathbf{R}'| \approx \sqrt{\frac{m_r}{m_N}} \approx 0.2$ for ⁴He⁺ • LO + NLO + N²LO $\implies \delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$

QED derivation - point proton

$$\delta^{
m R}_{
m pol} = -8lpha^2\phi^2(0)\int_0^\infty dq \left[{\cal R}_L + {\cal R}_T + {\cal R}_S
ight]$$

$$\begin{aligned} \mathcal{R}_{L} &= \int_{0}^{\infty} d\omega S_{L}(\omega, \boldsymbol{q}) g(\omega, q) \\ \mathcal{R}_{T} &= \int_{0}^{\infty} d\omega S_{T}(\omega, \boldsymbol{q}) \left[-\frac{1}{4m_{r}q} \frac{\omega + 2q}{(\omega + q)^{2}} + \frac{q^{2}}{4m_{r}^{2}} g(\omega, q) \right] \\ \mathcal{R}_{S} &= \int_{0}^{\infty} d\omega S_{T}(\omega, 0) \frac{1}{4m_{r}\omega} \left[\frac{1}{q} - \frac{1}{E_{q}} \right] \end{aligned}$$

with
$$E_q = \sqrt{q^2 + m_r^2}$$
 and
 $g(\omega, q) = \frac{1}{2E_q} \left[\frac{1}{(E_q - m_r)(E_q - m_r + \omega)} - \frac{1}{(E_q + m_r)(E_q + m_r + \omega)} \right]$

Rosenfelder, NPA (1983)

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

$$\delta_{pol} = \sum_{g, S_{\widehat{O}}} \int_{\omega_{th}}^{\infty} d\omega \ g(\omega) \ S_{\widehat{O}}(\omega)$$

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

- energy-dependent weight $g(\omega)$
- nuclear response function $S_{\hat{O}}(\omega)$

$$S_O(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

The calculation of δ_{pol} $\delta_{pol} = \sum_{g, S_{\hat{O}}} \int_{\omega_{th}}^{\infty} d\omega \underbrace{g(\omega)}_{\text{weight func} \text{ response func}} \int_{Nucleus}^{\infty} \int_{Nucleus}^{\mu} \int_{Nucleus}^{\infty} d\omega \underbrace{g(\omega)}_{\text{weight func} \text{ response func}} \int_{Nucleus}^{\infty} \int_{Nucleu$

- non-relativistic terms (multipole expansion \Longrightarrow equiv. to $\frac{m_{\mu}}{m_{nucl}}$ expansion)
 - leading order: sum rule of dipole response function $S_{D1}(\omega)$
 - higher order: sum rules of other response functions $S_{R2}(\omega), S_{Q2}(\omega) \& S_{D1D3}(\omega)$
- relativistic corrections
 - treat the muon relativistically in the intermediate state
 - longitudinal & transverse contributions
- Coulomb corrections
 - consider Coulomb interactions in the intermediate state
- finite nucleon size corrections
 - consider charge distributions of p and n

- non-relativistic terms (multipole expansion \implies equiv. to $\frac{m_{\mu}}{m_{nucl}}$ expansion)
 - leading order: sum rule of dipole response function $S_{D1}(\omega)$
 - higher order: sum rules of other response functions $S_{R2}(\omega), S_{Q2}(\omega) \& S_{D1D3}(\omega)$
- relativistic corrections
 - treat the muon relativistically in the intermediate state
 - longitudinal & transverse contributions
- Coulomb corrections
 - consider Coulomb interactions in the intermediate state
- finite nucleon size corrections
 - consider charge distributions of p and n

- non-relativistic terms (multipole expansion \implies equiv. to $\frac{m_{\mu}}{m_{nucl}}$ expansion)
 - leading order: sum rule of dipole response function $S_{D1}(\omega)$
 - higher order: sum rules of other response functions $S_{R2}(\omega), S_{Q2}(\omega) \& S_{D1D3}(\omega)$
- relativistic corrections
 - treat the muon relativistically in the intermediate state
 - longitudinal & transverse contributions
- Coulomb corrections
 - consider Coulomb interactions in the intermediate state
- finite nucleon size corrections
 - consider charge distributions of p and n

- non-relativistic terms (multipole expansion \implies equiv. to $\frac{m_{\mu}}{m_{nucl}}$ expansion)
 - leading order: sum rule of dipole response function $S_{D1}(\omega)$
 - higher order: sum rules of other response functions $S_{R2}(\omega), S_{Q2}(\omega) \& S_{D1D3}(\omega)$
- relativistic corrections
 - treat the muon relativistically in the intermediate state
 - longitudinal & transverse contributions
- Coulomb corrections
 - consider Coulomb interactions in the intermediate state
- finite nucleon size corrections
 - ullet consider charge distributions of p and n

• The calculation of δ_{pol} needs information on the response function $S_{\hat{O}}(\omega)$

• Simple potential models

- μ^{12} C (square-well) Rosenfelder '83
- μ D (Yamaguchi) Lu & Rosenfelder '93
- From experimental photoabsorption cross sections
 - μ^{4} He: Bernabeu & Jarlskog '74; Rinker '76; Friar '77 20% uncertainty
 - μ D: Carlson, Gorchtein, Vanderhagen '14 35% uncertainty
 - μ^3 He: Carlson, Gorchtein, Vanderhagen '17 3.5% uncertainty
- State-of-the-art potentials
 - μD: AV14 Leidemann & Rosenfelder, '95;
 - AV18 Pachucki, '11,'15
 - zero-range Friar, '13
 - uncertainty < 2%
 - The dipole response function $S_{D1}(\omega)$ was calculated for the light nuclei

• Simple potential models

- μ^{12} C (square-well) Rosenfelder '83
- μ D (Yamaguchi) Lu & Rosenfelder '93
- From experimental photoabsorption cross sections
 - μ^{4} He: Bernabeu & Jarlskog '74; Rinker '76; Friar '77 20% uncertainty
 - μD: Carlson, Gorchtein, Vanderhagen '14 35% uncertainty
 - μ^3 He: Carlson, Gorchtein, Vanderhagen '17 3.5% uncertainty
- State-of-the-art potentials
 - μD: AV14 Leidemann & Rosenfelder, '95; AV18 Pachucki, '11,'15 zero-range Friar, '13 uncertainty < 2%
 - The dipole response function $S_{D1}(\omega)$ was calculated for the light nuclei

ab-initio calculations

ab-initio calculation of nuclear polarizability effects in μ D, μ T, μ ³He⁺, μ ⁴He⁺

C. Ji, N. Nevo-Dinur, S. Bacca, N. Barnea, PRL **11**, 143402 (2013); Few-Body Syst **55**, 917 (2014) N. Nevo-Dinur, C.Ji, S. Bacca, N. Barnea, PRC **89**, 064317 (2014) PLB **755**, 380 (2016)

O. J. Hernandez, A. Ekstrm, et al. PLB 778, 377 (2018)

• Few-body methods

Hyperspherical Harmonics expansion Lorentz Integral Transform (response function) Lanczos Algorithm (integral of response)

Nuclear Hamiltonian

AV18+UIX χ EFT At first, the difference used to estimate the NP uncertainty.

Nuclear currents

2-body corrections to the charge density are ignored.

2-body contributions to M1/E1 where found to be negligible

k

ab-initio calculation of nuclear polarizability effects in μ D, μ T, μ ³He⁺, μ ⁴He⁺

C. Ji, N. Nevo-Dinur, S. Bacca, N. Barnea, PRL **11**, 143402 (2013); Few-Body Syst **55**, 917 (2014) N. Nevo-Dinur, C.Ji, S. Bacca, N. Barnea, PRC **89**, 064317 (2014) PLB **755**, 380 (2016)

O. J. Hernandez, A. Ekstrm, et al. PLB 778, 377 (2018)

Few-body methods

Hyperspherical Harmonics expansion Lorentz Integral Transform (response function) Lanczos Algorithm (integral of response)

Nuclear Hamiltonian

AV18+UIX χ EFT At first, the difference used to estimate the NP uncertainty. For the duetron we have done a rather comprehensive error analysis

Nuclear currents

2-body corrections to the charge density are ignored.

2-body contributions to M1/E1 where found to be negligible

ab-initio calculation of nuclear polarizability effects in μ D, μ T, μ ³He⁺, μ ⁴He⁺

C. Ji, N. Nevo-Dinur, S. Bacca, N. Barnea, PRL **11**, 143402 (2013); Few-Body Syst **55**, 917 (2014) N. Nevo-Dinur, C.Ji, S. Bacca, N. Barnea, PRC **89**, 064317 (2014) PLB **755**, 380 (2016)

O. J. Hernandez, A. Ekstrm, et al. PLB 778, 377 (2018)

• Few-body methods

Hyperspherical Harmonics expansion Lorentz Integral Transform (response function) Lanczos Algorithm (integral of response)

Nuclear Hamiltonian

AV18+UIX $_{\chi\rm EFT}$ At first, the difference used to estimate the NP uncertainty. For the duetron we have done a rather comprehensive error analysis.

Nuclear currents

2-body corrections to the charge density are ignored.

2-body contributions to M1/E1 where found to be negligible

methods

Ab-initio response functions

• Response in continuum

$$S_J(\omega) = \sum |\langle \psi_f | J^\mu | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

Lorentz integral transform method

continuum \rightarrow bound-state

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

• Response in continuum

$$S_O(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0
angle|^2 \delta(E_f - E_0 - \omega)$$

Lorentz integral transform (LIT) method

$$\mathcal{L}(\sigma, \Gamma) = \int d\omega \frac{S_O(\omega)}{(\sigma - \omega)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$
$$(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle$$

• Since r.h.s. is finite, $| { ilde \psi}
angle$ has bound-state asymptotic behavior

Few-body methods for bound-state problems → Hyperspherical Harmonics

- applicable for $3 \leqslant A \leqslant 7$
- can accommodate local and non-local two-/three-nucleon forces

• Response in continuum

$$S_O(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0 \rangle|^2 \delta(E_f - E_0 - \omega)$$

• Lorentz integral transform (LIT) method

$$\mathcal{L}(\sigma, \Gamma) = \int d\omega \frac{S_O(\omega)}{(\sigma - \omega)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$
$$(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle$$

- $\bullet~$ Since r.h.s. is finite, $|\tilde{\psi}\rangle$ has bound-state asymptotic behavior
- Few-body methods for bound-state problems → Hyperspherical Harmonics
 - applicable for $3 \leq A \leq 7$
 - can accommodate local and non-local two-/three-nucleon forces

Ab-initio response functions

• Response in continuum

$$S_O(\omega) = \sum_f |\langle \psi_f | \hat{O} | \psi_0
angle|^2 \delta(E_f - E_0 - \omega)$$

• Lorentz integral transform (LIT) method

$$\mathcal{L}(\sigma, \Gamma) = \int d\omega \frac{S_O(\omega)}{(\sigma - \omega)^2 + \Gamma^2} = \langle \tilde{\psi} | \tilde{\psi} \rangle$$
$$(H - E_0 - \sigma + i\Gamma) | \tilde{\psi} \rangle = \hat{O} | \psi_0 \rangle$$

- Since r.h.s. is finite, $|\tilde{\psi}
 angle$ has bound-state asymptotic behavior
- Few-body methods for bound-state problems → Hyperspherical Harmonics
 - applicable for $3 \leqslant A \leqslant 7$
 - can accommodate local and non-local two-/three-nucleon forces
 AV18 + UIX & NN(N³LO) + NNN(N²LO)

 $\sigma_{\gamma}(\omega) = 4\pi^2 \alpha \omega S_{D1}(\omega)$

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM ļ

 $\sigma_{\gamma}(\omega) = 4\pi^2 \alpha \omega S_{D1}(\omega)$

 Nuclear polarizability => energy-dependent sum rules of the response functions

$$I = \int_0^\infty d\omega \, S_O(\omega) \, g(\omega)$$

• We use Lanczos method to directly calculate I without explicitly solving $S_O(\omega)$.

$$I_M = \sum_{n
eq 0}^M |\langle N_m | \hat{O} | N_0
angle|^2 g(\omega_m) = \langle N_0 | \hat{O}^\dagger \hat{O} | N_0
angle \sum_{m
eq 0}^M |Q_{m0}|^2 g(\omega_m)$$

• I_M converges fast in the Lanczos method, if $g(\omega)$ is smooth. • If $|\mathcal{L}(\sigma,\Gamma) - \mathcal{L}_M(\sigma,\Gamma)| \le \varepsilon_M$, then

$$ert I - I_M ert \le arepsilon_M \int d\sigma ert h(\sigma, \Gamma)$$
 $g(\omega) = rac{\Gamma}{\pi} \int d\sigma rac{h(\sigma, \Gamma)}{(\omega - \sigma)^2 + \Gamma^2}$

N. Nevo-Dinur, N. Barnea, C. Ji, S. Bacca, PRC 89, 064317 (2014)

 Nuclear polarizability => energy-dependent sum rules of the response functions

$$I = \int_0^\infty d\omega \, S_O(\omega) \, g(\omega)$$

• We use Lanczos method to directly calculate I without explicitly solving $S_O(\omega)$.

$$I_M = \sum_{n
eq 0}^M |\langle N_m | \hat{O} | N_0
angle|^2 g(\omega_m) = \langle N_0 | \hat{O}^\dagger \hat{O} | N_0
angle \sum_{m
eq 0}^M |Q_{m0}|^2 g(\omega_m)$$

- I_M converges fast in the Lanczos method, if $g(\omega)$ is smooth.
- If $|\mathcal{L}(\sigma,\Gamma) \mathcal{L}_M(\sigma,\Gamma)| \leq \varepsilon_M$, then

$$|I - I_M| \le \varepsilon_M \int d\sigma \, |h(\sigma, \Gamma)$$
$$g(\omega) = \frac{\Gamma}{\pi} \int d\sigma \frac{h(\sigma, \Gamma)}{(\omega - \sigma)^2 + \Gamma^2}$$

N. Nevo-Dinur, N. Barnea, C. Ji, S. Bacca, PRC 89, 064317 (2014)

Results

TPE - Calculations results

האוניברסיטה העברית בירושלים The Hebrew UNIVERSITY OF JERUSALEM

Deuteron

Triton

TPE - Calculations results

Deuteron

TPE - Calculations results

 χ^{EFT}

-4.701

0.308

-0.134

0.083

0.546

-3.717

4.526

0.324

0.561

-0.784

-0.874

1.812

-0.293

-2.426

-6.338

-8.764

The μ -D Lamb shift correlation matrix Calculated for N²LO χ EFT potential

The evolution of the μ -D Lamb shift with χ EFT order

X			ļ
		Ś	Ś

⁴ He		AV18/UIX	$\chi {\sf EFT}$	Difference
binding energy	$B_0 \; [{\rm MeV}]$	28.422	28.343	0.28%
rms radius	R_{rms} [fm]	1.432	1.475	3.0%
electric-dipole polarizability	$\alpha_E [{ m fm}^3]$	0.0651	0.0694	6.4%
$\mu^{4}{ m He^{+}}$ nuclear polarizablity	$\delta_{pol}~[{ m meV}]$	-2.408	-2.542	5.5%

The uncertainty from nuclear physics: (5.5)

 $\left(5.5\%/\sqrt{2}\right)$

 $\delta_{pol} = -2.47 \text{ meV} \pm 4\%(1\sigma)$

X			ļ
		Ś	Ś

⁴ He		AV18/UIX	$\chi {\sf EFT}$	Difference
binding energy	$B_0 \; [{\rm MeV}]$	28.422	28.343	0.28%
rms radius	R_{rms} [fm]	1.432	1.475	3.0%
electric-dipole polarizability	$\alpha_E [{ m fm}^3]$	0.0651	0.0694	6.4%
$\mu^{4}{ m He^{+}}$ nuclear polarizablity	$\delta_{pol}~[{ m meV}]$	-2.408	-2.542	5.5%

• The uncertainty from nuclear physics: $(5.5\%/\sqrt{2})$

 $\delta_{pol} = -2.47 \text{ meV} \pm 4\%(1\sigma)$

TPE in muonic heliom

Rinker

$$\delta_{\rm TPE} = \delta^A_{\rm Zem} + \delta^A_{\rm pol} + \delta^N_{\rm Zem} + \delta^N_{\rm po}$$

	$\delta^A_{ m Zem}$	$\delta^A_{ m pol}$	$\delta^N_{ m Zem}$	$\delta_{\rm pol}^N$	δ_{TPE}
$\mu^2 H$	-0.424(03)	-1.245(19)	-0.030(02)	-0.020(10)	-1.727(20)
$\mu^{3}H$	-0.227(06)	-0.473(17)	-0.033(02)	-0.031(17)	-0.767(25)
$\mu^{3}\mathrm{He^{+}}$	-10.49(24)	-4.17(17)	-0.52(03)	-0.25(13)	-15.46(39)
$\mu^{4}\mathrm{He^{+}}$	-6.29(28)	-2.36(14)	-0.54(03)	-0.34(20)	-9.58(38)

Summary

k

• Lamb shifts in muonic atoms

- raise interesting questions about lepton symmetry
- connect nuclear, atomic and particle physics
- ab-initio calculations are key to analyze Lamb shift experiments
- obtaining a few percent accuracy in δ_{TPE}
- Nuclear physics predictions with a sub **meV** accuracy :)
- more accurate than estimates using experimental data
- light nuclei with $A \leq 4$ are done, what about A > 4?

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Outlook

hyperfine splittings (HFS) in muonic atoms \implies nuclear magnetic radii

study 2γ exchange contributions to HFS

- magnetic polarizability plays an significant role
- meson-exchange current is important

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Outlook

hyperfine splittings (HFS) in muonic atoms \implies nuclear magnetic radii

study 2γ exchange contributions to HFS

- magnetic polarizability plays an significant role
- meson-exchange current is important

backup

BACK UP

• Neglect Coulomb interactions in the intermediate state

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

- $ullet ~~ |m{R}-m{R}'| \Longrightarrow$ "virtual" distance a proton travels in 2γ exchange
- \circ uncertainty principal $|R R'| \sim 1/\sqrt{2m_N \omega}$

$$|\mathcal{R}_{i} = \mathcal{R}'|_{\mathcal{H}_{i}} \left| \mathcal{R}_{i} = \mathcal{R}'|_{\mathcal{H}_{i}} \left| \frac{2\pi}{m_{i}} \approx 0.37$$
 for μ^{2} He²

•
$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \Longrightarrow$$
 LO + NLO + N²LO

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

- $ullet \; \; |m{R}-m{R}'| \Longrightarrow$ "virtual" distance a proton travels in 2γ exchange
- ullet uncertainty principal $|m{R}-m{R}'|\sim 1/\sqrt{2m_N\omega}$

•
$$\sqrt{2m_r\omega}|m{R}-m{R}'|\sim\sqrt{rac{m_r}{m_N}}pprox 0.17$$
 for μ^4 He $^+$

•
$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \Longrightarrow$$
 LO + NLO + N²LO

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

- $|m{R}-m{R}'|$ \Longrightarrow "virtual" distance a proton travels in 2γ exchange
- ullet uncertainty principal $|m{R}-m{R}'|\sim 1/\sqrt{2m_N\omega}$

•
$$\sqrt{2m_r\omega}|m{R}-m{R}'|\sim\sqrt{rac{m_r}{m_N}}pprox 0.17$$
 for $\mu\,^4$ He $^+$

•
$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \Longrightarrow$$
 LO + NLO + N²LO

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

- $|m{R}-m{R}'| \Longrightarrow$ "virtual" distance a proton travels in 2γ exchange
- uncertainty principal $|m{R}-m{R'}|\sim 1/\sqrt{2m_N\omega}$

•
$$\sqrt{2m_r\omega}|m{R}-m{R}'|\sim \sqrt{rac{m_r}{m_N}}pprox 0.17$$
 for $\mu\,^4$ He $^+$

•
$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \Longrightarrow$$
 LO + NLO + N²LO

• Expand muon matrix element based an expansion in $\sqrt{2m_r\omega}|{m R}-{m R}'|$

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

- $|m{R}-m{R}'|$ \Longrightarrow "virtual" distance a proton travels in 2γ exchange
- uncertainty principal $|m{R}-m{R'}|\sim 1/\sqrt{2m_N\omega}$

•
$$\sqrt{2m_r\omega}|{m R}-{m R}'|\sim \sqrt{rac{m_r}{m_N}}pprox 0.17$$
 for $\mu^4{
m He^+}$

• $\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \Longrightarrow$ LO + NLO + N²LO

$$P \simeq \frac{m_r^3 (Z\alpha)^5}{12} \sqrt{\frac{2m_r}{\omega}} \left[|\mathbf{R} - \mathbf{R}'|^2 - \frac{\sqrt{2m_r\omega}}{4} |\mathbf{R} - \mathbf{R}'|^3 + \frac{m_r\omega}{10} |\mathbf{R} - \mathbf{R}'|^4 \right]$$

- $|m{R}-m{R}'| \Longrightarrow$ "virtual" distance a proton travels in 2γ exchange
- uncertainty principal $|m{R}-m{R}'|\sim 1/\sqrt{2m_N\omega}$

•
$$\sqrt{2m_r\omega}|{m R}-{m R}'|\sim \sqrt{rac{m_r}{m_N}}pprox 0.17$$
 for $\mu^4{
m He^+}$

•
$$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)} \Longrightarrow$$
 LO + NLO + N²LO

• $\delta^{(0)}_{NR} \propto |m{R}-m{R}'|^2$: dominant in δ_{pol}

energy-weighted integration of the electric dipole response $S_{D_1}(\omega)$

$$\delta_{NR}^{(0)}=-rac{2\pi m_r^3}{9}(Zlpha)^5\int_{\omega_{
m th}}^\infty d\omega\,\sqrt{rac{2m_r}{\omega}}S_{D_1}(\omega)$$

- $\delta^{(1)}_{NR} \propto |m{R}-m{R}'|^3$
 - $\delta_{NR}^{(1)}$ has a part that cancels the Zemach moment (elastic) contribution to δ_{TPE}

c.f. Pachucki '11 & Friar '13 (μ D)

• $\delta_{NR}^{(2)}\propto |m{R}-m{R}'|^4$

- integration of three different response functions
- $S_{R^2}(\omega)$ (monopole) & $S_Q(\omega)$ (quadrupole)
- $S_{D_1D_3}(\omega)$ $(D_1 \& D_3 \text{ interference })$ $\hat{D}_3 = R^3 Y_1(\hat{R})$

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

$\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$

• $\delta^{(0)}_{NR} \propto |m{R}-m{R}'|^2$: dominant in δ_{pol}

energy-weighted integration of the electric dipole response $S_{D_1}(\omega)$

$$\delta_{NR}^{(0)} = -rac{2\pi m_r^3}{9} (Zlpha)^5 \int_{\omega_{
m th}}^\infty d\omega \, \sqrt{rac{2m_r}{\omega}} S_{D_1}(\omega)$$

•
$$\delta^{(1)}_{NR} \propto |m{R}-m{R}'|^3$$

• $\delta_{NR}^{(1)}$ has a part that cancels the Zemach moment (elastic) contribution to $\delta_{\rm TPE}$

c.f. Pachucki '11 & Friar '13 (μ D)

• $\delta_{NR}^{(2)} \propto |m{R}-m{R}'|^4$

- integration of three different response functions
- $S_{R^2}(\omega)$ (monopole) & $S_Q(\omega)$ (quadrupole)
- $S_{D_1D_3}(\omega)$ $(D_1 \& D_3 \text{ interference })$ $\hat{D}_3 = R^3 Y_1(\hat{R})$

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

• $\delta^{(0)}_{NR} \propto |{m R}-{m R}'|^2$: dominant in δ_{pol}

energy-weighted integration of the electric dipole response $S_{D_1}(\omega)$

$$\delta_{NR}^{(0)} = -rac{2\pi m_r^3}{9} (Zlpha)^5 \int_{\omega_{
m th}}^\infty d\omega \, \sqrt{rac{2m_r}{\omega}} S_{D_1}(\omega)$$

•
$$\delta^{(1)}_{NR} \propto |m{R} - m{R}'|^3$$

 $\delta_{NR} = \delta_{NR}^{(0)} + \delta_{NR}^{(1)} + \delta_{NR}^{(2)}$

• $\delta_{NR}^{(1)}$ has a part that cancels the Zemach moment (elastic) contribution to $\delta_{\rm TPE}$

c.f. Pachucki '11 & Friar '13 (µ D)

• $\delta_{NR}^{(2)} \propto |m{R}-m{R}'|^4$

- integration of three different response functions
- $S_{R^2}(\omega)$ (monopole) & $S_Q(\omega)$ (quadrupole)
- $S_{D_1D_3}(\omega) (D_1 \& D_3 \text{ interference }) \quad \hat{D}_3 = R^3 Y_1(\hat{R})$

ļ

- Longitudinal contributions $\delta_L^{(0)}$
 - exchange Coulomb photon
- Transverse contributions $\delta_T^{(0)}$
 - convection current & spin current
 - seagull term: cancels infrared divergence restore gauge invariance
- $\delta_{L(T)}^{(0)}$ are sum rule of dipole response with different weights

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \, K_{L(T)}(\frac{\omega}{m_r}) \, S_{D_1}(\omega)$$

ļ

- Longitudinal contributions $\delta_L^{(0)}$
 - exchange Coulomb photon
- ullet Transverse contributions $\delta_T^{(0)}$
 - convection current & spin current
 - seagull term: cancels infrared divergence restore gauge invariance
- $\delta_{L(T)}^{(0)}$ are sum rule of dipole response with different weights

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega K_{L(T)}(\frac{\omega}{m_r}) S_{D_1}(\omega)$$

j,

- Longitudinal contributions $\delta_L^{(0)}$
 - exchange Coulomb photon
- Transverse contributions $\delta_T^{(0)}$
 - convection current & spin current
 - seagull term: cancels infrared divergence restore gauge invariance
- $\delta_{L(T)}^{(0)}$ are sum rule of dipole response with different weights

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega K_{L(T)}(\frac{\omega}{m_r}) S_{D_1}(\omega)$$

j,

- Longitudinal contributions $\delta_L^{(0)}$
 - exchange Coulomb photon
- Transverse contributions $\delta_T^{(0)}$
 - convection current & spin current
 - seagull term: cancels infrared divergence restore gauge invariance
- $\delta_{L(T)}^{(0)}$ are sum rule of dipole response with different weights

$$\delta_{L(T)}^{(0)} = \frac{2m_r^3}{9} (Z\alpha)^5 \int_{\omega_{\rm th}}^{\infty} d\omega \, K_{L(T)}(\frac{\omega}{m_r}) \, S_{D_1}(\omega)$$

• Non-perturbative Coulomb interaction in intermediate state

• naive estimation: $\delta_C^{(0)} \sim (Z\alpha)^6$

• full analysis: logarithmically enhanced $\delta_C^{(0)} \sim (Z\alpha)^6 \ln(Z\alpha)$

Friar '77 & Pachucki '11

• Non-perturbative Coulomb interaction in intermediate state

• naive estimation:
$$\delta_C^{(0)} \sim (Z\alpha)^6$$

• full analysis: logarithmically enhanced $\delta_C^{(0)} \sim (Z\alpha)^6 \ln(Z\alpha)$

Friar '77 & Pachucki '11

• Non-perturbative Coulomb interaction in intermediate state

• naive estimation:
$$\delta_C^{(0)} \sim (Z\alpha)^6$$

• full analysis: logarithmically enhanced $\delta_C^{(0)} \sim (Z\alpha)^6 \ln(Z\alpha)$

Friar '77 & Pachucki '11

• In point-nucleon limit

$$\Delta H = -\alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_{i}|} + \frac{Z\alpha}{r}$$

ullet consider finite nucleon sizes \Longrightarrow include nucleon charge density

$$\Delta H = -\alpha \sum_{i}^{Z} \int d\mathbf{R}' \, \frac{n_p(\mathbf{R}' - \mathbf{R}_i)}{|\mathbf{r} - \mathbf{R}'|} - \alpha \sum_{j}^{N} \int d\mathbf{R}' \, \frac{n_n(\mathbf{R}' - \mathbf{R}_j)}{|\mathbf{r} - \mathbf{R}'|} + \frac{Z\alpha}{r}$$

Iow-Q approximations of nucleon form factors

$$\begin{array}{lcl} G_p^E(q) &\simeq& 1-\frac{\langle r_p^2 \rangle}{6}q^2 \\ G_n^E(q) &\simeq& -\frac{\langle r_n^2 \rangle}{6}q^2 \end{array}$$

In point-nucleon limit

$$\Delta H = -\alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_{i}|} + \frac{Z\alpha}{r}$$

• consider finite nucleon sizes \implies include nucleon charge density

$$\Delta H = -\alpha \sum_{i}^{Z} \int d\mathbf{R}' \, \frac{n_p(\mathbf{R}' - \mathbf{R}_i)}{|\mathbf{r} - \mathbf{R}'|} - \alpha \sum_{j}^{N} \int d\mathbf{R}' \, \frac{n_n(\mathbf{R}' - \mathbf{R}_j)}{|\mathbf{r} - \mathbf{R}'|} + \frac{Z\alpha}{r}$$

Iow-Q approximations of nucleon form factors

$$\begin{array}{lcl} G^E_p(q) &\simeq& 1-\frac{\langle r^2_p \rangle}{6}q^2 \\ G^E_n(q) &\simeq& -\frac{\langle r^2_n \rangle}{6}q^2 \end{array}$$

In point-nucleon limit

$$\Delta H = -\alpha \sum_{i}^{Z} \frac{1}{|\boldsymbol{r} - \boldsymbol{R}_{i}|} + \frac{Z\alpha}{r}$$

• consider finite nucleon sizes \implies include nucleon charge density

$$\Delta H = -\alpha \sum_{i}^{Z} \int d\mathbf{R}' \, \frac{n_p(\mathbf{R}' - \mathbf{R}_i)}{|\mathbf{r} - \mathbf{R}'|} - \alpha \sum_{j}^{N} \int d\mathbf{R}' \, \frac{n_n(\mathbf{R}' - \mathbf{R}_j)}{|\mathbf{r} - \mathbf{R}'|} + \frac{Z\alpha}{r}$$

low-Q approximations of nucleon form factors

$$egin{array}{rcl} G_p^E(q) &\simeq& 1-rac{\langle r_p^2
angle}{6}q^2 \ G_n^E(q) &\simeq& -rac{\langle r_n^2
angle}{6}q^2 \end{array}$$

results

T A		

[meV]		AV18/UIX	$\chi {\sf EFT}^{\bigstar}$
	$\delta_{D1}^{(0)}$	-4.418	-4.701
$\delta^{(0)}$	$\delta_L^{(0)}$	0.289	0.308
0	$\delta_T^{(0)}$	-0.126	-0.134
	$\delta_C^{(0)}$	0.512	0.546
$\delta^{(1)}$	$\delta^{(1)}_{R3pp}$	-3.442	-3.717
0 ()	$\delta_{Z3}^{(1)}$	4.183	4.526
	$\delta_{R2}^{(2)}$	0.259	0.324
$\delta^{(2)}$	$\delta_Q^{(2)}$	0.484	0.561
	$\delta^{(2)}_{D1D3}$	-0.666	-0.784
	$\delta^{(1)}_{R1pp}$	-1.036	-1.071
δ_{NS}	$\delta_{Z1}^{(1)}$	1.753	1.811
	$\delta_{NS}^{(2)}$	-0.200	-0.210
δ_{pol}		-2.408	-2.542

- Convergence from $\delta^{(0)}$ to $\delta^{(2)}$ in a systematic expansion of $\sqrt{2m_r\omega}|{m R}-{m R}'|\sim \sqrt{m_r/M_N}pprox 0.17$
- δ_{pol} with AV18/UIX & χ EFT differ: ~ 5.5% (0.134 meV)

1	

[meV]		AV18/UIX	χ EFT
	$\delta_{D1}^{(0)}$	-4.418	-4.701
$(0)_{\lambda}$	$\delta_L^{(0)}$	0.289	0.308
0. ,	$\delta_T^{(0)}$	-0.126	-0.134
	$\delta_C^{(0)}$	0.512	0.546
$\delta^{(1)}$	$\delta^{(1)}_{R3pp}$	-3.442	-3.717
0., ,	$\delta_{Z3}^{(1)}$	4.183	4.526
	$\delta_{R2}^{(2)}$	0.259	0.324
$\delta^{(2)}$	$\delta_Q^{(2)}$	0.484	0.561
	$\delta^{(2)}_{D1D3}$	-0.666	-0.784
	$\delta^{(1)}_{R1pp}$	-1.036	-1.071
δ_{NS}	$\delta_{Z1}^{(1)}$	1.753	1.811
	$\delta_{NS}^{(2)}$	-0.200	-0.210
δ_{pol}		-2.408	-2.542

- Convergence from $\delta^{(0)}$ to $\delta^{(2)}$ in a systematic expansion of $\sqrt{2m_r\omega}|{m R}-{m R}'|\sim \sqrt{m_r/M_N}pprox 0.17$
- δ_{pol} with AV18/UIX & χ EFT differ: ~ 5.5% (0.134 meV)

האוניברסיטה הי SITY OF JERUSALEM	

[meV]	AV18/UIX	$\chi {\sf EFT}^{\bigstar}$
$\delta^{(0)}$	-3.743	-3.981
$\delta^{(1)}$	0.741	0.809
$\delta^{(2)}$	0.077	0.101
δ_{NS}	0.517	0.530
δ_{pol}	-2.408	-2.542

- Convergence from $\delta^{(0)}$ to $\delta^{(2)}$ in a systematic expansion of $\sqrt{2m_r\omega}|\mathbf{R} - \mathbf{R}'| \sim \sqrt{m_r/M_N} \approx 0.17$
- δ_{pol} with AV18/UIX & χ EFT differ: ~ 5.5% (0.134 meV)

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

		7	v
	2	Λ	v
	٢.		Δ.
7.			

[meV]	AV18/UIX	$\chi {\sf EFT}^{\bigstar}$
$\delta^{(0)}$	-3.743	-3.981
$\delta^{(1)}$	0.741	0.809
$\delta^{(2)}$	0.077	0.101
δ_{NS}	0.517	0.530
δ_{pol}	-2.408	-2.542

- Convergence from $\delta^{(0)}$ to $\delta^{(2)}$ in a systematic expansion of $\sqrt{2m_r\omega}|\mathbf{R} - \mathbf{R}'| \sim \sqrt{m_r/M_N} \approx 0.17$
- δ_{pol} with AV18/UIX & χ EFT differ: $\sim 5.5\%$ (0.134 meV)

Deuteron ground-state observables

האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Hernandez, C. Ji, N. Nevo-Dinur, S. Bacca, N. Barnea, PLB 736, 344

with relativistic corrections & meson-exchange currents

		$\langle r_{str}^2 angle_d^{1/2} [{ m fm}]$	Q_d [fm ²]
N ³ LO-EM	Our work	1.974	0.2750
	+RC+MEC	1.978 ¹	0.285 ¹
۸\/10	Our work	1.967	0.2697
AVIO	+RC+MEC	-	0.275 ²
Experiment		1.97507(78)	0.285783(30)

¹Entem, Machleidt '03 ²Wiringa, Stoks, Schiavilla '95

Nuclear structure effects in μ D

O.J. Hernandez, C. Ji, N. Nevo-Dinur, S. Bacca, N. Barnea, PLB 736, 344 (2014)

Nuclear structure effects in μ D

O.J. Hernandez, C. Ji, N. Nevo-Dinur, S. Bacca, N. Barnea, PLB 736, 344 (2014)

Nuclear structure effects in μ D

O.J. Hernandez, C. Ji, N. Nevo-Dinur, S. Bacca, N. Barnea, PLB 736, 344 (2014)

Nuclear structure effects in μ D

O.J. Hernandez, C. Ji, N. Nevo-Dinur, S. Bacca, N. Barnea, PLB 736, 344 (2014)

- Lamb shifts in $\mu^3 {\rm He^+}$ will be also measured at PSI (possibility in $\mu^3 {\rm H}$)
- unequal proton and neutron numbers
- We calculate nuclear structure effects in μ³He⁺ and μ³H
 N. Nevo-Dinur, C.Ji, S. Bacca, N. Barnea (PLB accepted for publication)

	$\mu^{3}\mathrm{He^{+}}$		μ^3 H	
	AV18/UIX	$\chi {\sf EFT}$	AV18/UIX	$\chi {\rm EFT}$
$\delta^A_{ m pol}$ [meV]	-4.114(17)	-4.201(8)	-0.4688(6)	-0.4834(4)
$\delta_{ m Zem}$ [meV]	-10.511(10)	-10.770(3)	-0.2263(1)	-0.2337(1)