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Abstract

In the asymptotic region Ω0 (large hyperradius), the two-electron contin-
uum wave function presents formally a logarithmic phase term corresponding
to the electron-electron interaction. The idea of this contribution is to include
this phase into a Convoluted Quasi Sturmian (CQS) basis whose elements al-
ready behave asymptotically as an outgoing (incoming) six-dimensional spheri-
cal wave. With an appropriately introduced phase factor, the new CQS possess
an asymptotic form very close to the formal one, and hopefully constitute a suit-
able set of basis functions for the three-body Coulomb continuum wave function
representation in the entire space. As demonstrated numerically by solving a
first order (e, 3e) non-homogeneous Schrödinger equation in a two-channel case,
a considerable improvement of the convergence rate is observed with a simple
two-parameter form of the introduced phase factor.

Keywords: Ionization of atoms; three-body Coulomb continuum; three-body
wave function asymptotic behavior

1 Introduction

The continuum spectrum of three charged particles is notoriously difficult to describe.
In atomic or molecular ionization problems imposing cumbersome boundary condi-
tions, the wave function should obey constituents of these conditions of primary math-
ematical and numerical difficulties. Besides, the long range nature of the Coulomb
interaction implies solving Schrödinger equation on relatively large spatial domains
and hence requires to use large basis sets and a high computational cost. Ideally, such
a domain should be extended up to the boundary of the asymptotic region where all
three particles are well separated. In real calculations, however, the domain size is
not known in advance, even though the general boundary condition form has been ob-
tained in Ref. [1]. As a general rule, the convergence rate of basis function expansion
reflects its capacity in building up adequately the intricate asymptotic behavior.
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For the sake of simplicity, hereafter we consider the two-electron continuum asso-
ciated with the problem of two electrons with coordinates r1 and r2 escaping in the
field of a nucleus of charge Z. Such a state may arise as a results of a single or double
ionization of atoms or molecules by a charged projectile or by a photon.

A few ab initio methods (see, e. g., the review [2] and Introduction of Ref. [3])
have been and are being developed for constructing numerically three-body contin-
uum wave functions. Two of them convert the ionization problem into an inhomo-
geneous differential equation with a spatially confined driven term, equation that
is solved within a finite size box. The exterior complex scaling (ECS) method [4]
makes it possible to solve the problem without explicit use of the asymptotic form of
the wave function by recasting the original problem into a boundary problem with
zero boundary conditions. An interesting extension of ECS to the case of long-range
Coulomb interaction has been proposed in Refs. [5–7]. The generalized Sturmian
approach [8, 9] makes use of an expansion in terms of products of two single-particle
generalized Sturmian functions with Coulomb outgoing-wave boundary conditions set
at the box border; the angular coupling builds up a three-body scattering solution
with a hyperspherical wave front in the Ω0 region where all inter-particle distances
are large. On the other hand, within the convergent close coupling method [10–12],
the ionization problem is treated using a finite set of square integrable single-particle
functions; in this case, accurate boundary conditions need not be imposed. Alterna-
tive approaches are provided by the Coulomb–Sturmian separable expansion [13, 14]
and the J-matrix [15, 16] methods which deal with the wave function in the entire
space using the Laguerre basis representation; the two-electron continuum problem is
transformed in this case into a Lippmann–Schwinger equation with a kernel which is
generally non-compact, and thus the validity of these approaches may be questionable.

In this contribution, we would like to put forward an alternative approach to the
two-electron continuum representation in the entire space. The key idea is to use a
basis set of functions with asymptotic behavior as close as possible to the formal one
in the Ω0 region [1, 17]. Our principal goal is to show that the adequate asymptotic
property leads to an acceptable convergence rate for expansions in such a basis.

The proposed basis set contains two ingredients. First, it uses two-particle func-
tions named Convoluted Quasi Sturmians (CQS) in Ref. [3] behaving asymptotically
as a six-dimensional outgoing (incoming) spherical wave. This means that, contrary
to pure products of single-particle functions, the basis functions already possess intrin-
sically some three-body features. However truncated expansions in CQS functions fail
to converge satisfactorily. The reason behind that is the lack of an important term

in the large hyperradius
(
ρ =

√
r21 + r22

)
domain, the Coulomb logarithmic phase

corresponding to the inter-electronic interaction. This brings us to the second ingre-
dient, which is the introducing — from the outset — of an appropriate phase factor
into the basis set. The modified CQS functions possess an asymptotic behavior closer
to the formal one, and lead to a considerable convergence improvement in numerical
results. We have already mentioned that, when dealing with the Coulomb three-body
scattering problem, we do not know a priori the size of the finite domain in which
one needs to solve the corresponding driven Schrödinger equation. With the modified
CQS basis, we know however that the functions satisfy the equation in the asymp-
totic region Ω0, and thus the size of this domain is determined by the range of the
‘perturbation’ operator (at least of its basis-independent part) induced by the phase
factor.
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As we focus on the region Ω0, we consider as a numerical test case the double
ionization channel of helium atom in kinematical conditions measured experimentally
[18]. In our previous paper [3] we analyzed the feasibility of the proposed approach
within the Temkin–Poet framework. Here we extend the study by including higher
partial waves. We first investigate the compatibility of introducing the phase factor
when using truncated expansions to solve the Schrödinger driven equation in the
entire space. Then, we use a simple two-parameters form of the introduced phase
factor to demonstrate that a satisfactory convergence rate can be achieved indeed.

Atomic units (~ = e = me = 1) are used throughout unless otherwise stated.

2 Problem statement

The first order treatment of ionization of atoms can be recast into a driven differential
equation with a square integrable inhomogeneity. For example, in the case of the
double ionization of helium by photon impact or by impact of a fast charged projectile,
the inhomogeneous Schrödinger equation takes the form

[
E − Ĥ

]
Φ(+)(r1, r2) = Ŵfi(r1, r2) Φ(0)(r1, r2), (1)

where E =
k2
1

2 +
k2
2

2 is the energy of the two ejected electrons with coordinates r1
and r2, Φ(0)(r1, r2) represents the ground state of the helium atom, and the three-
body helium Hamiltonian is given by

Ĥ = Ĥ1 + Ĥ2 +
1

r12
, (2)

Ĥj = −1

2
△rj −

2

rj
, j = 1, 2; (3)

r12 = |r1 − r2| denotes the relative inter-electronic distance. In the case of high
incident electron impact energy, the perturbation operator is given by [9, 19]

Ŵfi(r1, r2) =
1

(2π)3
4π

q2
(−2 + eiq·r1 + eiq·r2), (4)

where ki and kf are the momenta of the incident and scattered electrons, and
q = ki − kf is the transferred momentum. The solution Φ(+) with outgoing wave
boundary condition, contains all information on the scattering dynamics.

In this section we examine the solution of Eq. (1) for given quantum numbers

(L,M) in the space of CQS functions Q
ℓ1ℓ2(+)
n1n2

[3],

|n1ℓ1n2ℓ2;LM〉Q ≡ Q
ℓ1ℓ2(+)
n1n2 (E; r1, r2)

r1r2
Yℓ1ℓ2
LM (r̂1, r̂2), (5)

where the bispherical harmonics are given by

Yℓ1ℓ2
LM (r̂1, r̂2) =

∑

m1+m2=M

(ℓ1m1ℓ2m2 |LM)Yℓ1m1
(r̂1)Yℓ2m2

(r̂2). (6)

The radial CQS functions Q
ℓ1ℓ2(±)
n1n2

satisfy the inhomogeneous equation

[
E − ĥℓ11 − ĥℓ22

]
Qℓ1ℓ2(±)

n1n2
(E; r1, r2) =

ψℓ1
n1

(r1)ψℓ2
n2

(r2)

r1r2
, (7)
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where

ĥℓ = −1

2

∂2

∂r2
+

1

2

ℓ(ℓ+ 1)

r2
− 2

r
, (8)

and
ψℓ
n(r) = [(n+ 1)2ℓ+1]

− 1
2 (2br)ℓ+1e−brL2ℓ+1

n (2br) (9)

are square integrable Laguerre basis functions with a scaling parameter b. A number
of properties of these CQS functions have been obtained in Ref. [3]. For example,
they can be expressed as a convolution integral of two single-particle Quasi Sturmian
functions [20]; using Green’s function, the radial CQS can be expressed through a
contour integral which is useful for deducing the leading asymptotic behavior at large
hyperradius ρ:

Qℓ1ℓ2(+)
n1n2

(E; r1, r2) ≃
√

8

π
e

iπ
4 Sn1ℓ1(p1)Sn2ℓ2(p2)

1√
kρ

× exp

{
i

[
kρ− β1 ln(2p1r1) − β2 ln(2p2r2) + σℓ1(p1) + σℓ2(p2) − π(ℓ1 + ℓ2)

2

]}
,

(10)

where α is the hyperangle, tan(α) = r2/r1; k =
√

2E, p1 = k cos(α), p2 = k sin(α),

β1 = −2
p1

, β2 = −2
p2

, and σℓ(p) = Arg [Γ(ℓ+ 1 + iβ)] is the Coulomb phase shift. Snℓ(p)

is the sine-like J-matrix solution [21] [an explicit expression can be found, e. g., in
Ref. [3], Eq. (14a)].

Assuming that the outgoing solution of Eq. (1) can be expanded as

Φ(+) (r1, r2) =

∞∑

ℓ1, ℓ2=0

∞∑

n1, n2=0

CL(ℓ1ℓ2)
n1n2

|n1ℓ1n2ℓ2;LM〉Q , (11)

we find the formal asymptotic expression

Φ(+)(r1, r2) ≃ A (r̂1, r̂2)
1

ρ5/2
exp {i [kρ− β1 ln(2p1r1) − β2 ln(2p2r2)]}, (12)

A (r̂1, r̂2) =
2

E sin(2α)

√
2

π
(2E)3/4e

iπ
4

×
∞∑

ℓ1ℓ2=0

Yℓ1ℓ2
LM (r̂1, r̂2) exp

{
i

[
σℓ1(p1) + σℓ2(p2) − π(ℓ1 + ℓ2)

2

]}

×
∞∑

n1,n2=0

CL(ℓ1ℓ2)
n1n2

Sn1ℓ1(p1)Sn2ℓ2(p2). (13)

The leading asymptotic behavior of the two-electron continuum wave function is
known [1, 17] to include the Coulomb phase corresponding to the inter-electronic
interaction 1/r12,

W3(r1, r2) = −ρ
k

1

r12
ln (2kρ) . (14)

Expression (12) clearly does not contain such a phase. As observed within a Temkin–
Poet framework [3], this failure leads to a lack of convergence for the proposed CQS
basis. The remedy proposed in Ref. [3] for the S-wave case is extended here to higher
partial waves.



240 A. S. Zaytsev, M. S. Aleshin, L. U. Ancarani and S. A. Zaytsev

3 Two-electron continuum representation

In order to describe better the two-electron correlation in the continuum, in particular,
in the Ω0 region, we propose a solution of the form

Φ(+) (r1, r2) = eiW(r1,r2) Φ̃(+) (r1, r2), (15)

where the leading asymptotic form of the phase W is given by Eq. (14). Assuming Φ̃(+)

to be properly expandable in terms of the CQS functions (5),

Φ̃(+)(r1, r2) =
∞∑

ℓ1,ℓ2=0

∞∑

n1,n2=0

C̃L(ℓ1ℓ2)
n1n2

|n1ℓ1n2ℓ2;LM〉Q , (16)

the expression (15) is hereafter referred to as a two-electron continuum (TEC) repre-
sentation of the solution.

Substituting Φ(+) (r1, r2) in Eq. (1) by Eq. (15), we obtain
[
E − Ĥ1 − Ĥ2 + L̂

]
Φ̃(+)(r1, r2) = e−iW(r1,r2) Ŵfi Φ(0)(r1, r2), (17)

where the operator

L̂ =
i

2
[△r1W + △r2W ] − 1

2

[
(∇r1W)

2
+ (∇r2W)

2
]

+ i [(∇r1W) · ∇r1 + (∇r2W) · ∇r2 ] − 1

r12
, (18)

can be eventually treated as a perturbation. Using the gradient operator expres-
sion [22],

∇r =
r

r

∂

∂r
+

1

r
∇Ω, (19)

we present the operator (18) as

L̂ = Û + V̂ , (20)

where

Û =
i

2
[△r1W + △r2W ] − 1

2

[
(∇r1W)2 + (∇r2W)2

]

+ i

[
1

r1
(∇r1W) · ∇Ω1

+
1

r2
(∇r2W) · ∇Ω2

]
, (21)

V̂ = i

[
(∇r1W) · r1

r1

∂

∂r1
+ (∇r2W) · r2

r2

∂

∂r2

]
− 1

r12
. (22)

The operator Û acts only on the bispherical harmonics, and it can be easily verified
that it is a short-range potential. Concerning the operator V̂ , the phase W in the
asymptotic region is given by Eq. (14), an hence at large ρ

∇r1W ≃ − 1

k

{
r1
r12ρ

[1 + ln (2kρ)] − r12
r312

ρ ln (2kρ)

}
, (23)

∇r2W ≃ − 1

k

{
r2
r12ρ

[1 + ln (2kρ)] +
r12
r312

ρ ln (2kρ)

}
. (24)
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Moreover, using the asymptotics of the radial CQS functions (10), we obtain (j = 1, 2):

∂

∂rj
|n1ℓ1n2ℓ2;LM〉Q ≃ ik

rj
ρ
|n1ℓ1n2ℓ2;LM〉Q . (25)

Finally, by applying the operator (22) to Eq. (5) and taking into account Eqs. (23)

and (25), we conclude that V̂ acts upon these basis functions as a short-range potential
that vanishes faster than ρ−1 in the limit ρ → ∞. Thus the operator (18) may be
treated as a perturbation and therefore the expansion (16) of the solution in our TEC
representation is expected to converge.

The following issue has to be taken into account. Although the use of the phase
factor allows one to take care of the Coulomb potential 1/r12, we cannot employ
Eq. (14) directly because singular terms 1/r312 and 1/r412 appear in Eq. (21). However,
this difficulty can be easily circumvented by using in both the Hamiltonian and the
phase factor a truncated multipole expansion,

V12 =

λmax∑

λ=0

(
rλ<

rλ+1
>

)
Pλ(x), (26)

x =
r21 + r22 − r212

2r1 r2
, (27)

instead of 1/r12. In Ref. [3] we considered only the λ = 0 case (Temkin–Poet model).

4 Two-channel case

As an illustration, we compare below the functions Φ(+) and Φ̃(+) by solving the

inhomogeneous Eq. (1). More precisely, we consider the truncated expansions of Φ
(+)
N

and Φ̃
(+)
N containing N×N terms and compare their convergence rate as N increases.

For test purposes, we consider the case of zero total angular momentum, L = M = 0,
and, for simplicity, we retain in the partial-wave expansions in Eqs. (11) and (16)
only two bispherical terms Y00

00 and Y11
00 . Hence it is sufficient to retain the first three

multipole terms in Eq. (26).

We solve Eq. (1) with the initial helium ground state wave function in the driven
term given by the product of hydrogen functions (with Ze = 2 − 5/16), and we
set E = 0.791 (i. e., 20 eV) and q = 0.24, as in one of the Orsay experiments [18] (see
also Ref. [19]). The scale parameter of the CQS basis is chosen to be b = 0.6.

Consider first the expansion

Φ
(+)
N (r1, r2) =

∑

ℓ=0,1

N−1∑

n1,n2=0

Cℓ
n1n2

|n1ℓn2ℓ; 00〉Q . (28)

With the help of Eq. (7) we rewrite Eq. (1) as

∑

ℓ=0,1

N−1∑

n1,n2=0

Cℓ
n1n2

[
1

r1r2
|n1ℓn2ℓ; 00〉L − 1

r12
|n1ℓn2ℓ; 00〉Q

]
= Ŵfi Φ(0)(r1, r2), (29)



242 A. S. Zaytsev, M. S. Aleshin, L. U. Ancarani and S. A. Zaytsev

16 18 20 22 24 26 28 30 32 34 36
0,0

0,8

1,6

2,4

3,2

~

 

~~

~
l  

   
   

   
   

   
   

l

 A
rg

(A
N
 ) 

an
d 

A
rg

(A
N
 ) 

 (r
ad

.)

: A0
N
; : A1

N
; : A0

N
; : A1

N
 

~

16 18 20 22 24 26 28 30 32 34 36

0,4

0,8

1,2

1,6

N

l  
   

   
   

   
   

   
   

   
   

 l

 |A
N
 | 

an
d 

|A
N
 | 

 (x
10

-3
 a

.u
.)

N

Figure 1: Convergence of the amplitudes Aℓ
N (filled symbols) and Ãℓ

N (open symbols)
for α = π

4 and ℓ = 0, 1. We present separately the results for the arguments Arg
(
Aℓ

N

)

and Arg
(
Ãℓ

N

)
(left panel) and absolute values

∣∣Aℓ
N

∣∣ and
∣∣Ãℓ

N

∣∣ (right panel).

where the coupled Laguerre basis functions

|n1ℓ1n2ℓ2;LM〉L ≡ ψℓ1
n1

(r1)ψℓ2
n2

(r2)

r1 r2
Yℓ1ℓ2
LM (r̂1, r̂2). (30)

We obtain a matrix equation for the coefficients Cℓ
n1n2

(see, e. g., Ref. [23]) by pro-
jecting Eq. (29) onto the basis set (30) and making use of the orthogonality relation

L〈n′
1ℓ

′
1n

′
2ℓ

′
2;LM | 1

r1r2
|n1ℓ1n2ℓ2;LM〉L = δn′

1
n1
δn′

2
n2
δℓ′

1
ℓ1 δℓ′2ℓ2 . (31)

The asymptotic behavior of the proposed solution is given by Eq. (12) where the
amplitude

A (r̂1, r̂2) =
∑

ℓ=0,1

Aℓ
N Yℓℓ

00(r̂1, r̂2) (32)

is expressed in terms of partial amplitudes

Aℓ
N =

2

sin(2α)

√
8

π
e

iπ
4 k−1/2 exp {i [σℓ(p1) + σℓ(p2) − πℓ]}

×
N−1∑

n1,n2=0

Cℓ
n1n2

Sn1ℓ(p1)Sn2ℓ(p2). (33)

The amplitudes Aℓ
N for α = π

4 and ℓ = 0, 1 are shown in Fig. 1 as functions of N
(filled symbols). A poor convergence of both the argument Arg

(
Aℓ

N

)
and the absolute

value
∣∣Aℓ

N

∣∣ clearly demonstrates a limited practical usefulness of the expansion (28).
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Consider now the solution Φ̃(+) in the TEC representation given by the truncated
expansion

Φ̃
(+)
N (r1, r2) =

∑

ℓ=0,1

N−1∑

n1,n2=0

C̃ℓ
n1n2

|n1ℓn2ℓ; 00〉Q . (34)

Upon substitution into Eq. (17) we find

∑

ℓ=0,1

N−1∑

n1,n2=0

[
1

r1r2
|n1ℓn2ℓ; 00〉L + L̂ |n1ℓn2ℓ; 00〉Q

]
C̃ℓ

n1n2

= e−iW(r1,r2) Ŵfi Φ(0)(r1, r2). (35)

This equation should be solved in the same manner as Eq. (29) to obtain the expansion

coefficients C̃ℓ
n1n2

.
We have seen how the leading asymptotic form of the phase W given by Eq. (14)

determines the features of the operator (18) acting on the CQS basis functions in
the region Ω0. There is no need to reproduce precisely the r.h.s of Eq. (14) since it
is asymptotical. On the other hand, we have to ensure the regularity at the origin

of the L̂ operator representation. Apart from this constraint, we are free to modify

properties of L̂ at moderate distances by including higher order terms in W with
the aim to optimize the basis set. We use the following phase parametrization (note,
various other parametrizations can be also explored):

W(r1, r2) = − s

k
[ln(2ks) + d]

(
1

u
+
r1 r2
u3

P1(x) +
(r1r2)2

u5
P2(x)

)
, (36)

u =
√
a2 + r2>, s =

√
c2 + ρ2, (37)

where real positive parameters a and c are introduced to avoid singularities at the
origin (for simplicity we set c2 = a). We have also introduced a real parameter d that
allows one to improve the convergence rate of expansion (34). The results presented
below are obtained with a = 5 and d = −4.75.

Let us now come back to the proposed truncated expansion (34). The asymptotic

behavior of Φ̃
(+)
N is still given by Eq. (12) with the amplitude A (r̂1, r̂2) which should

be calculated using Eq. (32) where the partial amplitudes Aℓ
N should be replaced by

Ãℓ
N =

2

sin(2α)

√
8

π
e

iπ
4 k−1/2 exp {i [σℓ(p1) + σℓ(p2) − πℓ]}

×
N−1∑

n1,n2=0

C̃ℓ
n1n2

Sn1ℓ(p1)Sn2ℓ(p2). (38)

The convergence behavior of Ãℓ
N is shown in Fig. 1 (open symbols). As expected,

the rate and smoothness of convergence are considerably improved by the TEC repre-
sentation. This result demonstrates numerically that the inclusion of an appropriate
phase factor into the basis functions is able to adequately absorb the leading asymp-
totic effect of the electron-electron interaction.
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5 Summary

In our previous publication [3], we have proposed the phase factor method as a new
approach to double ionization problems represented by the three-body driven equation
with a square integrable inhomogeneity. Specifically, we tried to solve the S-model
equation describing the fast electron impact double ionization of helium by expanding
the solution in terms of the so-called Convoluted Quasi Sturmian functions. Since the
asymptotic behavior of these functions is inconsistent with that of formal Coulomb
three-body continuum states, the CQS basis cannot represent the solution in the entire
space. Even worse, we have found out that our solution diverges as the basis size
increases. In order to circumvent this failure, and thus to improve the convergence
rate, we have suggested equipping the basis CQS functions with the phase factor
corresponding to the inter-electronic interaction. Within the S-wave framework, this
strategy has been demonstrated to be successful.

In this paper an extension of the phase factor approach of Ref. [3] to arbitrary
angular momenta is proposed. Since the phase factor is intended to account for the
inter-electronic Coulomb interaction, it is natural to use the same truncated multipole
expansion of 1/r12 in the generalized phase as employed to approximate this poten-
tial in the Hamiltonian. We examine the validity of our modified CQS approach in a
two-channel case by constructing a suitable formula for the phase. The inclusion of
higher order terms in 1/ρ in the leading asymptotic behavior, results in a significant
convergence acceleration of the calculated amplitudes. We also demonstrate the con-
vergence rate of the solution expansion to be rather sensitive to the phase behavior
at moderate distances; optimized parameters (only two in our case) can therefore
improve the efficiency of the basis. We expect the CQS basis combined with the pro-
posed phase method to provide an efficient tool for the studies of full (e, 3e) processes
as well.
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