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Abstract

The adiabatic self-consistent collective coordinate (ASCC) method is a mi-
croscopic theoretical framework to extract an optimal form of collective coor-
dinate for the large amplitude nuclear collective motion. It also enables us to
calculate the inertial mass for the nuclear collective motion. Based on this theo-
retical framework, we develop a numerical method to realize a calculation of the
self-consistent collective motion path and inertial mass parameter for the nuclear
fusion/fission reactions. We apply our method to the reaction 8Be ↔ α+ α. The
collective motion paths, collective potentials, and inertial masses for the relative
motion are presented and discussed.
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1 Introduction

The time-dependent density functional theory (TDDFT) [1–5] is a general microscopic
theoretical framework to study low-energy nuclear fusion and fission reactions. Based
on the TDDFT, a microscopic mechanism of nuclear collective dynamics has been
extensively studied for many years. The linear approximation of TDDFT leads to
the random-phase approximation (RPA) [5–7], which is capable of nuclear response
calculations and provides an unified description for both the nuclear structure and
collective dynamics. Despite a rich microscopic information embedded in the TDDFT
calculations, it is difficult to give a full theoretical description for the nuclear collective
dynamics. For instance, it cannot describe the sub-barrier fusion and spontaneous
fission properly, due to its semiclassical nature [1, 5, 6].

For the study of large amplitude nuclear collective dynamics in the “macroscopic”
collective level, it is of high interest to obtain an optimal form of collective variables
maximally decoupled from other intrinsic degrees of freedom, so that equations of
motion for these collective canonical variables become of closed form. The adiabatic
self-consistent collective coordinate (ASCC) method [8–11] aims at determining such
canonical variables by solving self-consistent equations. The ASCC method has been
applied to many nuclear structure problems associated with large-amplitude oscilla-
tions described by Hamiltonians with separable interactions [10–13].
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The inertial mass of nuclear collective motion is another long-standing problem in
nuclear structure physics [6,14]. Apparently, it is very important for nuclear reaction
dynamics. Especially, the derivation of the mass after a touch of two nuclei is a
highly non-trivial problem. The calculation of the mass parameter requires properly
extracted collective coordinates and conjugate momenta, which can be provided by
the ASCC method. Thus the ASCC method is also capable of microscopic calculation
of the inertial masses for the collective motion.

Recently, by combining the imaginary-time evolution [15] and the finite amplitude
method [16–18], we proposed a numerical method to solve the ASCC equations and to
determine a collective path for the nuclear collective motion [19]. The collective coor-
dinate and momentum are obtained self-consistently. In this article we will introduce
our method and present the first applications to simplest systems, the translational
motion of a single alpha particle and the fission of 8Be.

In Section 2, we give the formulation of the basic ASCC equations in the case of
one-dimensional collective motion, introduce the method of constructing the collective
path and the coordinate transformation procedure for calculating the mass parameter.
In Section 3, we apply the method to the translational motion of a single alpha particle
and to the reaction 8Be ↔ α+ α. Summary and concluding remarks are given in
Section 4.

2 Formulation of the ASCC method

To determine an optimal collective path in the high-dimensional space of Slater de-
terminants, we first label the states on the collective path by a couple of canonical
variables (p, q), whose equation of motion can be maximally decoupled from other
intrinsic degrees of freedom. Thus q and p represent the collective coordinate and the
conjugate momentum respectively.

In the adiabatic limit, expanding the wave function ψ(q, p) in powers of p up to the
second order, the invariance principle of the SCC equation [8] leads to the equations
of the ASCC method [5,9]. Neglecting the curvature terms, it reduces to the following
set of equations:

δ〈Ψ(q)|Ĥmv|Ψ(q)〉 = 0, (1)

δ〈Ψ(q)|[Ĥmv,
1

i
P̂ (q)] − ∂2V (q)

∂q2
Q̂(q)|Ψ(q)〉 = 0, (2)

δ〈Ψ(q)|[Ĥmv, iQ̂(q)] − 1

M(q)
P̂ (q)|Ψ(q)〉 = 0, (3)

with the moving mean-field Hamiltonian Ĥmv defined as

Ĥmv = Ĥ − ∂V (q)

∂q
Q̂(q), (4)

where the potential V (q) is the expectation value of the Hamiltonian,

V (q) = 〈ψ(q)|Ĥ |ψ(q)〉, (5)

M(q) is the mass parameter of collective motion. Q̂(q) and P̂ (q) correspond to the
local generators of the variables p and q. Note that the collective motion path is
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expressed by Ψ(q), which represents the state Ψ(q, p) with p = 0. Here we consider
the one-dimensional description of collective motion without taking the pairing cor-
relation into account. Equation (1) is similar to a constrained Hartree–Fock (HF)
problem, however, the constraint operator Q̂(q) depends on the coordinate q, which
is self-consistently determined by the RPA-like Eqs. (2) and (3) called moving RPA
equations. The conventional RPA forward and backward amplitudes X and Y are
linear combinations of P̂ (q) and Q̂(q) which matrix elements Xni, Yni and Pni, Qni

satisfy the relations

Xnj =

√
ω

2
Qnj +

1√
2ω
Pnj , (6)

Ynj =

√
ω

2
Qnj −

1√
2ω
Pnj . (7)

Hereafter, indices i, j and n, m refer to the hole and particle states respectively. The
RPA eigenfrequency ω is related to the mass parameter and the second derivative of
the potential,

ω2 =
1

M(q)

∂2V (q)

∂q2
. (8)

The operators of collective momentum P̂ (q) and coordinate Q̂(q), as a pair of
canonical variables, are imposed a weak canonicity condition,

〈Ψ(q)|[iP̂ (q), Q̂(q)]|Ψ(q)〉 = 1, (9)

which is equivalent to the RPA normalization condition,
∑

n,j

(X2
nj − Y 2

nj) = 1. (10)

The collective path Ψ(q) as well as V (q) and M(q) are determined self-consistently
by Eqs. (1)–(3) and no a priori assumption is used.

The scale of the collective coordinate q in the ASCC equation set is arbitrary. It
is easy to determine the scale by mapping the coordinate q onto any other collective
quantity R as far as the one-to-one correspondence exists. For the study of nuclear
scattering and nuclear fission, we define R as the relative distance between ions. The
operator form of R can be expressed as

R̂ ≡
∫
d~r ψ̂†(~r) ψ̂(~r) z

[
θ(z − zs)

Mpro
− θ(zs − z)

Mtar

]
, (11)

where θ is the step function, and zs is an artificially introduced section plane dividing
the total system of mass A = Mpro +Mtar into the left part with mass Mpro and the
right part with mass Mtar. The relation between M(R) and M(q) reads

M(R) = M(q)

(
dq

dR

)2
. (12)

The calculation of the derivative dq/dR is straightforward once the collective path Ψ(q)
and the local generator P̂ (q) are obtained. With this equation we can calculate the
mass parameter with respect to R.
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We solve the moving RPA equations (2) and (3) by taking advantage of the finite
amplitude method (FAM) [16–18], especially of the matrix FAM prescription [18].
To solve the ASCC equations (1)–(3) self-consistently and to construct the collective
motion path Ψ(q), we adopt the following procedures: First, we calculate the HF
ground state of the nucleus before fission Ψ(q = 0); based on Ψ(q = 0), we solve the
moving RPA equations to obtain Q̂(q = 0) and P̂ (q = 0). When Ψ(q), Q̂(q), and
P̂ (q) are provided, we solve the moving HF equation to obtain the state Ψ(q+ δq) by
using the constraint condition

〈Ψ(q + δq)|Q̂(q)|Ψ(q + δq)〉 = δq. (13)

With the new state Ψ(q + δq), we may update the generators and get Q̂(q + δq)
and P̂ (q+ δq); with the updated generators, we can obtain the new state by Eq. (13)
again. Carrying on this iterative procedure, we can determine series of states Ψ(0),
Ψ(δq), Ψ(2δq), Ψ(2δq), ... and obtain the ASCC collective path. The assumption

adopted here is that Ψ(q + δq) ≃ e−iδqP̂ (q)Ψ(q).

3 Applications

3.1 Solution for the translational motion

The HF ground state is a trivial solution that satisfies the ASCC equations. Based on
the ground state, we can calculate the translational mass as a test calculation. The
calculation is done in the 3-dimensional coordinate space in a sphere with radius equal
to 7 fm. The BKN energy density functional [20] is adopted in numerical calculation.
The upper panel in Fig. 1 shows the eigenfrequency ω of several lowest RPA states for
the ground state of alpha particle. Three translational modes along x, y, z axes are
degenerate with an energy of about 1 MeV. The model space is discretized with the
mesh size of 0.8 fm. Using a finer mesh size, the eigenfrequencies of these three modes
approaches to zero. Due to a compact nature of alpha particle, the lowest physical
excited state above the translational zero-modes, is 20 MeV higher representing a
monopole vibration.

Below those three degenerated translational modes, there exists a mode with the
energy equal to zero, this solution appears due to a numerical treatment of the particle
states, namely, the particle state |m〉 is expressed through the coordinate |~r〉 in the
whole model space. This redundancy in the representation of particle states results
in additional solutions that are unphysical. This unphysical state does not affect
the physical results and we may simply neglect it. Using Eq. (12), we calculate the
translational mass parameter of the alpha particle. The model space is chosen to
be a sphere with different mesh sizes. The lower panel in Fig. 1 shows the mass
parameters of alpha particle in the translational motion along x, y and z axes and
their dependence on the mesh size. As the mesh size decrease, the results approach
the value of 4 in the units of nucleon mass, which is the correct mass number of the
alpha particle.

3.2 ASCC motion path for 8Be ↔ α + α

A numerical application of the ASCC method to establishing a collective path for
the nuclear fusion or fission reactions is a complicated computational problem. We
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Figure 1: Top:
calculated eigen-
frequencies for
the ground state
of alpha particle.
Three transla-
tional motion
modes along x,
y and z axis are
shown by thick
red lines. These
three transla-
tional modes are
degenerate, five
quadrupole modes
are also degen-
erate. Bottom:
calculated transla-
tional mass of the
alpha particle in
units of nucleon’s
mass as a function
of the mesh size.

show here our first result for the spontaneous fission path of 8Be, that may be also
regarded as the fusion path of two alpha particles at low incident energy. The model
space is the three-dimensional grid space of the rectangular box size 10 × 10 × 18 fm3

with the mesh size of 0.8 fm. The BKN energy density functional [20] is adopted in
numerical calculation.

Starting from the ground state of 8Be and carrying out the iterative procedure
introduced in Section 2, we obtain the ASCC fission path of 8Be demonstrating a
smooth transformation of 8Be into two well separated alpha particles. In Fig. 2, we
show the calculated density distribution at four points on this collective path. The
inset (a) shows the density distribution of the ground state of 8Be at R = 3.55 fm
while the inset (d) shows the density distribution of two alpha particle at R = 6.40 fm.
The insets (b) and (c) show the intermediate density distributions at R = 4.10 fm
and 5.10 fm, respectively.

In the upper panel of Fig. 3, we plot the frequency ω of Eq. (8) for the solution of
the moving RPA equations on the ASCC path compared with the binding energy of
the last filled orbit as a function of R. The lower panel of Fig. 3 shows the potential
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8
Be → α + α

(c)

-6 -4 -2 -0 2 4 6

z [fm]

-4

-2

 0

 2

 4

x
 [

fm
]

(a)

-6 -4 -2 -0 2 4 6

-4

-2

 0

 2

 4

x
 [

fm
]

(d)

-6 -4 -2 -0 2 4 6

z [fm]

-4

-2

 0

 2

 4

(b)

-6 -4 -2 -0 2 4 6

-4

-2

 0

 2

 4
Figure 2: Cal-
culated density
distribution at
four points on the
ASCC collective
fission path of
8Be. Insets (a),
(b), (c), and (d)
show the density
distribution in the
y−z plane of the
ground state of 8Be
at R = 3.55, 4.10,
5.10, and 6.40 fm,
respectively.
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Figure 3: Top: RPA eigen-
frequency ω on the ASCC
collective fission path of
8Be as a function of R.
Solid (dashed) blue curve
shows real (imaginary) ω,
red curve demonstrates an
absolute value of the single
particle energy of the last
filled orbit in 8Be. Bot-
tom: potential energy as a
function of R. Blue curve
presents the potential on
the ASCC collective path
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energy as a function of R. The ground state of 8Be is at R = 3.55 fm, the Coulomb
barrier top is at R = 6.6 fm.

According to Eq. (8), ω2 is proportional to the second order derivative of the
collective potential V (q) which can be negative. In the upper panel of Fig. 3, the
imaginary ω is plotted by the dashed curve while the real one is plotted by the solid
curve. In the region 4.4 fm < R < 6.9 fm, the imaginary ω appears, where the state
is not in the minimum but on the saddle point of the energy surface corresponding
to the moving Hamiltonian Hmv. At a larger distance, ω should approach zero. As a
general trend, the frequency ω for the relative motion increases as the nuclei approach
each other. Inside the HF ground state at R < 3.6 fm, ω increases drastically and
becomes larger than the binding energy of the last filled orbit, the RPA excitation here
is above the bound threshold and in the continuum region. In this case the unbound
RPA state features depend on the choice of model space, therefore we should not take
the result in this region seriously.

3.3 Inertial mass for 8Be ↔ α + α

With the collective fission path obtained, the ASCC inertial mass MASCC(R) for this
fission path is calculated using Eq. (12) and shown in Fig. 4 in comparison with the
cranking mass Mcr(R).

The cranking inertial mass is derived by assuming a separable interaction and
taking the adiabatic limit of the RPA inertial mass. In the case of one-dimensional
motion, the widely used formula for the cranking mass reads [21]

Mcr(R) =
1

2

{
S(1)(R)

}−1

S(3)(R)
{
S(1)(R)

}−1

, (14)

where

S(k)(R) =
∑

m,i

|〈ϕm(R)|R̂|ϕi(R)〉|2
{em(R) − ei(R)}k . (15)

Here the single-particle states φ(R) and energies e(R) are defined with respect
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Figure 4: Inertial mass
for the fission path of
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to hCHF(R) = hHF[ρ] − λ(R)R̂ as

hCHF(R)ϕµ(R) = eµ(R)ϕµ(R), µ = i,m. (16)

Residual fields induced by the density fluctuations are neglected in the cranking for-
mula. The calculation of the cranking mass is based on the CHF states with the
constraint on R. The model space is the same as that for the ASCC.

As is seen in Fig. 4, the ASCC mass MASCC(R) is smaller than the cranking
mass. At large distance, both produce the reduced mass of 2 in the units of nucleon
mass, which is just the reduced mass for the relative motion of two alpha particles;
the precision of cranking mass is a little worse as compared with the ASCC mass.
In the interior region after the touch of two nuclei, these masses have very different
values. The cranking mass is found to be larger than the ASCC mass, especially at
around R = 4 fm, the cranking mass has an about 40 percent larger value. This fact
shows that the residual field arising from the density fluctuations makes a significant
contribution. Compared with the cranking mass, the ASCC mass has an advantage
that the collective coordinate as well as the wave functions are not assumed artificially
but calculated self-consistently. As mentioned in the previous Subsection, we should
not take seriously the results for the ASCC mass at R < 3.6 fm, the ASCC mass is
plotted in this region by a dashed curve.

4 Summary

Based on the ASCC theory, we presented a method to determine the collective motion
path for the large amplitude nuclear collective motion, and applied this method to the
nuclear fusion/fission reaction 8Be ↔ α+ α. In the 3D coordinate space representa-
tion, the reaction path, the collective potential and the inertial mass are calculated.
Since the system under consideration presents one of the simplest cases, there is no
significant difference in the reaction path as compared with that for the CHF states.
The ASCC collective potential is similar to the potential of the CHF states. A com-
parison of the ASCC mass with the cranking mass is presented. The ASCC mass
improves the cranking mass by taking into account the residual interaction caused by
the density fluctuations. By using this method it is feasible to calculated the mass
parameter for any collective coordinate. As our first application, we use a schematic
BKN interaction, it is desired to use more realistic interactions accounting for paring
in our future study.
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