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Abstract

Radiative capture reactions being an important class of nuclear fusion pro-
cesses attract a significant interest, in particular, for nuclear astrophysics. Their
cross sections at low energies are strongly suppressed by the Coulomb barrier
and therefore are not available for reliable experimental measurements. As a
result, there is a strong need in theoretical approaches to the studies of the
radiative capture reactions cross sections.

In this work, the basic ideas of the algebraic versions of the resonating group
and orthogonality condition models are presented. Microscopic approaches to
the radiative capture reactions based on the algebraic version of resonating group
model and semimicroscopic one combining the algebraic versions of resonating
group and orthogonality condition models, are reviewed. An applicability of
these approaches is demonstrated. Perspectives of their further applications are
discussed.

Keywords: Algebraic version of resonating group model; algebraic version of
orthogonality condition model; microscopic approach; radiative capture reac-
tions; low energies; cross section; astrophysical S-factor; nuclear astrophysics

1 Introduction

Cross sections of a number of nuclear reactions at low sub-Coulomb energies are de-
sired for numerous fundamental studies and advanced applications. For example,
radiative capture cross sections at low energies are required for the studies of stellar
processes, nucleosynthesis in the Universe, etc. [1–5]. These cross sections are strongly
suppressed by the Coulomb barrier and therefore are not available for reliable exper-
imental measurements. As a rule, cross section extrapolations to low energies also
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turn out to be unreliable. As a result, theoretical predictions based on microscopic
approaches are expected to be the most justified and promising way to obtain the
cross sections in the energy region inaccessible for experiment. These microscopic
approaches should be able to describe a dynamics of all nucleons of a nuclear system
considered with a complete account of the Pauli exclusion principle and a rigorous
treatment of the center-of-mass motion. From the mathematical viewpoint, it means
that the wave functions should be fully antisymmetrized and translationally invari-
ant and have an explicit dependence on space and spin-isospin coordinates of all the
nucleons of the system.

At the present moment, there is a number of approaches to the description of radia-
tive capture reactions. In particular, there are various two-body approaches utilizing
either the direct capture model [6,7] or the potential cluster model [8–12]. There are
also hybrid approaches which use either the variational Monte Carlo method [13, 14]
or the no-core shell model [15–17] for bound states and the potential cluster model
for continuum. Finally, there are fully microscopic approaches based either on the
resonating group model (RGM) [18–21] or on the fermionic molecular dynamics [22],
as well as on the no-core shell model with continuum [23].

In the present work, two microscopic approaches and a semimicroscopic approach
to the radiative capture reactions [24–32] are briefly reviewed. One of these micro-
scopic approaches [24–29] is based on the single-scale algebraic version of RGM
(AVRGM) [33, 34] while the other [32] relies on the multiscale AVRGM. The semi-
microscopic approach [30, 31] combines the single-scale AVRGM with the algebraic
version of the orthogonality condition model (AVOCM) [35–39]. An applicability to
the radiative capture processes and capabilities of these approaches have been demon-
strated in the studies of mirror 3H(α, γ)7Li and 3He(α, γ)7Be reactions important for
nuclear astrophysics. Both these reactions are responsible for the 7Li production dur-
ing the Big Bang nucleosynthesis. Their cross sections at low energies are necessary
for calculating the 7Li abundance required to resolve a number of problems concern-
ing the Big Bang nucleosynthesis and to get a general understanding the primordial
nucleosynthesis. Moreover, the latter reaction is a starting point of the second and
the third chains of the pp cycle of hydrogen burning in stars. The cross section of this
reaction at low energies is necessary for the studies of processes in the solar core and
for the solar model verification.

2 Brief description of AVRGM and AVOCM.

Generating functions method

In the framework of the single-channel RGM, the total wave function of a two-cluster
nuclear system is expressed as an antisymmetrized product of internal wave func-
tions φ(1), φ(2) of the clusters and the wave function f of their relative motion [40,41]:

Ψ = Â
{
φ(1)φ(2)f

}
. (1)

The translationally-invariant oscillator shell-model wave functions of the lowest states
compatible with the Pauli principle are conventionally adopted as the internal wave
functions of the clusters. The relative motion wave function is unknown and should
be found by solving the integro-differential equation of RGM.
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The main idea of AVRGM is to expand the relative motion wave function in series
of the oscillator basis functions:

fνlm(~q) = Nνl q
l L

(l+1/2)
(ν−l)/2(q2) exp(−q2/2) Ylm(~n~q),

q = q/r0, Nνl = (−1)(ν−l)/2

√
2Γ((ν − l + 2)/2)

r30 Γ((ν + l + 3)/2)
,

(2)

where ~q is the Jacobi vector characterizing the relative distance between the clus-
ters; r0 is the oscillator radius; ν is the oscillator quanta; l and m are the orbital

momentum and its projection respectively; Γ is the gamma-function; L
(β)
n is the gen-

eralized Laguerre polynomial; Ylm is the spherical harmonic. As a result, the total
wave function can be written as an expansion,

Ψ =
∑

JπMlsν

CJπMlsν ΨJπMlsν , (3)

over the so-called AVRGM basis,

ΨJπMlsν = NJπlsν Â

{ ∑

m+σ=M

CJM
lm sσ[φ(1)s1 φ

(2)
s2 ]sσ fνlm(~q)

}
. (4)

Here J and M are the total angular momentum and its projection respectively; π
is the parity of the system; s1 and s2 are the cluster spins coupled to the channel
spin s with projection σ; CJM

lm sσ is the Clebsch–Gordan coefficient; NJπlsν is the
normalization factor; CJπMlsν are unknown expansion coefficients satisfying an infinite
set of homogeneous linear algebraic equations [33, 42],




s1+s2∑
s=|s1−s2|

J+s∑
l=|J−s|

∞∑
ν=ν0

(〈
JπMl̃s̃ν̃

∣∣Ĥ
∣∣JπMlsν

〉
− E δs̃s δl̃l δν̃ν

)
CJπMlsν = 0,

s̃ = |s1 − s2|, ... , s1 + s2, l̃ = |J − s̃|, ... , J + s̃, ν̃ = ν0, ν0 + 2, ...

(5)

Here Ĥ and E are the Hamiltonian and the total energy of the system respectively, ν0
is the minimal oscillator quanta compatible with the Pauli principle. It should be
noted that the summations over ν in Eqs. (3) and (4) as well as in other expressions
below are performed with a step of 2 since ν = 2nr + l, where nr = 0, 1, 2, ... is the
radial quantum number.

In the case of the discrete spectrum, we can use instead of Eq. (5) a reduced finite
set of algebraic equations,




s1+s2∑
s=|s1−s2|

J+s∑
l=|J−s|

νmax∑
ν=ν0

(〈
JπMl̃s̃ν̃

∣∣Ĥ
∣∣JπMlsν

〉
− E δs̃s δl̃l δν̃ν

)
C

(D)
JπMlsν = 0,

s̃ = |s1 − s2|, ... , s1 + s2, l̃ = |J − s̃|, ... , J + s̃, ν̃ = ν0, ν0 + 2, ... , νmax ,

(6)

where νmax should be sufficiently large depending on a desired accuracy. In the
case of the continuum, the AVRGM equations (5) should be rewritten as a set of
inhomogeneous linear algebraic equations,




∑
s

∑
l

νas−2∑
ν=ν0

(〈
JπMl̃s̃ν̃

∣∣Ĥ
∣∣JπMlsν

〉
− E δs̃s δl̃l δν̃ν

)
C

(C)
JπMlsν = FJπMl̃s̃ν̃ ,

s̃ = |s1 − s2|, ... , s1 + s2, l̃ = |J − s̃|, ... , J + s̃, ν̃ = ν0, ν0 + 2, ... , νas .

(7)
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The expansion coefficients C
(C)
JπMlsν are replaced starting from ν = νas by their asymp-

totic expressions C
(as)
JπMlsν [34, 43] entering the right-hand side (inhomogeneity) of

Eq. (7):

FJπMl̃s̃ν̃ = −
∑

s

∑

l

ν′
max∑

ν=νas

〈
JπMl̃s̃ν̃

∣∣Ĥ
∣∣JπMlsν

〉
C

(as)
JπMlsν . (8)

Although the AVRGM and the RGM are similar from the physical viewpoint, their
numerical realizations differ essentially: the AVRGM requires to find solutions of lin-
ear algebraic equations while within the conventional single-channel RGM one has to
solve a more complicated integro-differential equation. In the case of the multichannel
RGM, one faces a problem of solving a set of integro-differential equations [40, 41].

One of the main problems of the AVRGM realization is a calculation of the Hamil-
tonian matrix elements between the antisymmetrized AVRGM basis functions (4).
This problem can be resolved using an elegant technique of the generating functions
method [33, 42, 44, 45]. The basic idea of this method is to utilize the generating
function of the harmonic oscillator functions:

fνlm(~q) = Aνl
∂ν

∂Rν

∫
exp(−q2/2r20 + ~q ~R/r0 −R2/4)Ylm(~n~R) d~n~R

∣∣∣
R=0

,

Aνl =
2ν−1/2

(πr0)3/2 ν!

√
Γ
(
(ν − l+ 2)/2

)
Γ
(
(ν + l + 3)/2

)
.

(9)

With the help of Eq. (9) one can easily derive the generating functions for the AVRGM
basis. The calculations are essentially simplified by constructing Slater determinants
of the generating functions for the initial and final states,

∣∣~R
〉

=
1√
A!

∑

{j1, j2,..., jA}

(−1)P ({j1, j2,..., jA}) ϕj1(1)ϕj2(2) . . . ϕjA(A),

∣∣~Q
〉

=
1√
A!

∑

{j1, j2,..., jA}

(−1)P ({j1, j2,..., jA}) φj1(1)φj2(2) . . . φjA(A),

(10)

or sums of these Slater determinants. In Eq. (10), P ({j1, j2, ... , jA}) is the parity
of the permutation {j1, j2, ... , jA} of indices {1, 2, ... , A}. Moreover, expressing ma-

trix elements
〈
J
πf

f Mf lfsfνf
∣∣V
∣∣Jπi

i Milisiνi
〉

of some operator V in the AVRGM basis

through its generating matrix elements
〈
~Q, sf σf

∣∣V
∣∣~R, si σi

〉
,

〈
J
πf

f Mf lfsfνf
∣∣V
∣∣Jπi

i Milisiνi
〉

=
1

κνf lfsf κνilisi νf ! νi!

∂νf

∂Qνf

∂νi

∂Rνi
Ii→f (Q,R)

∣∣∣
Q=R=0

,

(11a)

Ii→f (Q,R) =
∑

mfσfmiσi

C
JfMf

lfmf sfσf
CJiMi

limi siσi

×
∫∫

Y ∗
lfmf

(~n~Q)
〈
~Q, sfσf

∣∣V
∣∣~R, siσi

〉
Ylimi

(~n~R) d~n~Q d~n~R, (11b)
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κ2νls =
1

(ν!)2
∂ν

∂Qν

∂ν

∂Rν

∫∫
Y ∗
lm(~n~Q)

〈
~Q, sσ

∣∣~R, sσ
〉
Ylm(~n~R) d~n~Q d~n~R

∣∣∣
Q=R=0

, (11c)

one can additionally simplify the calculations by making use of the so-called recurrence
technique [42] suitable for numerical realization.

If the single-particle states ϕj and φk entering the Slater determinants in Eq. (10)
satisfy the orthogonality condition

〈
φk
∣∣ϕj

〉
∼ δkj , (12)

matrix elements in the basis of Slater determinants of an operator V which is a sum

of two-particle operators Vkj , V =
A∑

k>j

Vkj , can be written as

〈
~Q
∣∣V
∣∣~R
〉

=

A∑

k>j

(〈
φk(1)

∣∣〈φj(2)
∣∣V12

∣∣ϕj(2)
〉∣∣ϕk(1)

〉

−
〈
φk(1)

∣∣〈φj(2)
∣∣V12

∣∣ϕk(2)
〉∣∣ϕj(1)

〉) ∏

n6=k,j

〈
φn
∣∣ϕn

〉
. (13)

In this expression, the terms of the type

〈
φk(1)

∣∣〈φj(2)
∣∣V12

∣∣ϕj(2)
〉∣∣ϕk(1)

〉 ∏

n6=k,j

〈
φn
∣∣ϕn

〉
(14)

are referred to as direct ones while the terms of the type

〈
φk(1)

∣∣〈φj(2)
∣∣V12

∣∣ϕk(2)
〉∣∣ϕj(1)

〉 ∏

n6=k,j

〈
φn|ϕn

〉
(15)

are referred to as exchange ones. If the operator V is an operator describing the
interaction in the system, the terms (15) with the indices k and j corresponding to
single-nucleon states belonging to different clusters are responsible for the exchange
effects in the cluster-cluster interaction. The neglect of these exchange terms in the
interaction matrix elements simplifies significantly the calculations and leads to the
AVOCM [35–39].

It should be emphasized that the potential cluster model widely used in literature
neglects all exchange terms in the matrix elements of the Hamiltonian and all other
operators describing the reactions. From this point of view, the AVOCM is a better
approximation since within this model the exchange terms associated with permuta-
tions of indexes related to nucleons belonging to different clusters are only neglected
in the matrix elements of the interaction operator. Matrix elements of the kinetic
energy and electromagnetic operators as well as the overlaps are calculated precisely.

3 Approaches to description of radiative capture.
The 3H(α, γ)7Li and 3He(α, γ)7Be reactions

At low energies, the mirror 3H(α, γ)7Li and 3He(α, γ)7Be reactions proceed mainly
via the electric dipole (E1) transitions with formation of 7Li and 7Be nuclei in their
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ground and first excited states. The respective cross sections are denoted σ0 and σ1
and the total cross section is their sum, σ = σ0+σ1. Similarly, σ0 and σ1 are the sums
of respectively three and two partial cross sections. An expression for these partial
cross sections was derived [25,27,29] using the Fermi golden rule, the long-wavelength
limit [46], and an expansion of the initial and final state wave functions in the series
of the AVRGM basis functions (4):

σi→f (Ec.m.) =
8π

9~(2li + 1)

(
Eγ

~c

)3

×
∣∣∣∣
∑

νi,νf

C
(D)

J
πf
f

lf sνf

〈
J
πf
f lfsνf

∣∣∣∣ME
1

∣∣∣∣Jπi
i lisνi

〉
C

(C)

J
πi
i lisνi

∣∣∣∣
2

. (16)

Here Ec.m. is the relative motion energy of the colliding clusters (nuclei) in the center-
of-mass system, Eγ is the energy of the emitted photon, and ME

1 is the electric
dipole operator. For the considered E1 transitions, a pair of the initial quantum
numbers (Ji, li) in Eq. (16) can take the values of (1/2, 0), (3/2, 2) and (5/2, 2) for the
capture to the ground state [(Jf , lf ) = (3/2, 1)], and the values of (1/2, 0) and (3/2, 2)
for the capture to the first excited state [(Jf , lf ) = (1/2, 1)].

We use three approaches in the present work to calculate the discrete C
(D)

J
πf
f

lfsνf
and

continuous C
(C)

J
πi
i lisνi

spectrum wave function expansion coefficients in the AVRGM

basis and hence the partial cross sections of the considered reactions. The first ap-
proach [24–29] hereafter referred to as a conventional AVRGM, is based on the single-
scale AVRGM. In the framework of this microscopic approach, we utilize an unified
AVRGM basis with a single oscillator radius playing a role of scale parameter. The
second approach [30, 31] combining the single-scale AVRGM and AVOCM, is here-
after referred to as a combined AVRGM + AVOCM. The AVOCM is utilized in this
semimicroscopic approach to simplify the calculation of the expansion coefficients for
the continuum wave functions, all the rest calculations are performed using the single-
scale AVRGM. The third approach [32] is based on the multiscale AVRGM. This is
a more advanced approach utilizing the AVRGM bases with different oscillator radii
to expand the discrete and continuous spectrum wave functions. It is the principle
feature of this microscopic approach which we refer to as a multiscale or generalized
AVRGM.

The radiative capture cross section drops down exponentially with the energy
decrease at low sub-Coulomb energies. As a result, this cross section is conventionally
expressed through the astrophysical S-factor S(Ec.m.),

σ(Ec.m.) =
1

Ec.m.
exp
(
−
√
EG/Ec.m.

)
S(Ec.m.), (17)

where EG is the Gamow energy. The astrophysical S-factor has a smoother behavior
than the cross section and therefore is more suitable for analysis at low energies.

The astrophysical S-factors for the considered reactions calculated within the con-
ventional AVRGM are presented in Figs. 1 and 2 by solid curves. The dashed curves
in these figures are the results obtained within the combined AVRGM + AVOCM.
All calculations are performed with the oscillator radius r0 = 1.22 fm and the ad-
justable intensity of the central Majorana force gc = 1.035 which is a parameter of
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Figure 1: Astrophysical S-factor for the 3H(α, γ)7Li reaction. Solid curve — conven-
tional AVRGM; dashed curve — combined AVRGM + AVOCM; symbols — experi-
mental data from Refs. [48–53].

the effective modified Hasegawa–Nagata NN potential [47] used to describe the inter-
nucleon interaction. The obtained cross sections are seen to be in an agreement with
experimental data of Refs. [48–53] and [54–64] for the 3H(α, γ)7Li and 3He(α, γ)7Be
reactions respectively. The results for the phase shifts in the entrance channels of
these reactions also agree with experimental findings of Refs. [65–71].

It should be noted that the conventional AVRGM generates observables that differ
only slightly from those obtained in the framework of the combined AVRGM+AVOCM
(see Figs. 1 and 2). Therefore the exchange effects do not affect essentially these
reactions in the low energy region. This fact can be used to develop approximate
approaches to the description of reactions in heavier systems where the neglect of the
exchange terms becomes necessary due to an avalanche-like growth of the calculation
complexity with the number of nucleons.

We present in Figs. 3 and 4 the astrophysical S-factors for the 3H(α, γ)7Li and
3He(α, γ)7Be reactions calculated within the generalized AVRGM. The results are
seen to agree well with the experimental data of Refs. [48–64]. The continuum wave
functions for the 4He + 3H and 4He + 3He systems are expanded over the AVRGM
basis with the oscillator radius r01 = 1.386 fm which results in the α particle bind-
ing energy of Eα = 28.296 MeV consistent with experiment [72]. The wave functions
of the ground and first excited states of 7Li are expanded over the AVRGM bases
with the oscillator radii r020 = 1.303 fm and r021 = 1.282 fm respectively; in the case
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Figure 2: Astrophysical S-factor for the 3He(α, γ)7Be reaction. Symbols — experi-
mental data from Refs. [54–64]; see Fig. 1 for other details.

of 7Be the respective oscillator radii are r020 = 1.3068 fm and r021 = 1.4205 fm —
these values are tuned to reproduce the experimental breakup thresholds [73] of
the ground (ε0 = 2.467 MeV) and the first excited (ε1 = 1.989 MeV) states of 7Li
with respect to the 4He + 3H channel and the 7Be thresholds (ε0 = 1.586 MeV,
ε1 = 1.157 MeV) with respect to the 4He + 3He cnannel. The intensity of the central
Majorana force gc = 0.977 is set to describe the 4He + 3H and 4He + 3He phase shifts
extracted from the experiments in Refs. [65–71].

Thus the generalized AVRGM provides reasonable energy dependences of the as-
trophysical S-factors of the 3H(α, γ)7Li and 3He(α, γ)7Be reactions as well as of the
scattering phase shifts in the entrance channels of these reactions together with the
description of the α-particle binding energy and of the breakup thresholds in 7Li
and 7Be nuclei. This is a significant advantage of the generalized AVRGM as com-
pared to the conventional AVRGM and combined AVRGM + AVOCM which un-
derestimate [25, 27–29] the α-particle binding energy and the 7Li and 7Be breakup
thresholds.

4 Conclusions

The main points of the present work are the following:
1. Theoretical approaches to the description of radiative capture reactions based
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Figure 3: Astrophysical S-factor for the 3H(α, γ)7Li reaction. Solid curve — general-
ized AVRGM.

on AVRGM and AVOCM have been reviewed.

2. The results of the mirror 3H(α, γ)7Li and 3He(α, γ)7Be reaction studies within
these approaches have been discussed.

3. Abilities of these approaches to describe simultaneously the astrophysical S-
factors and scattering phase shifts in the entrance channels of the radiative capture
reactions have been demonstrated.

4. We revealed an advantage of the generalized AVRGM over other reviewed
approaches that is a capability of an unified description of the astrophysical S-factors
of the mirror 3H(α, γ)7Li and 3He(α, γ)7Be reactions and of the scattering phase shifts
in the 4He + 3H and 4He + 3He systems along with the breakup thresholds in the
7Li and 7Be nuclei.

5. An insignificance of the exchange terms in the matrix elements of interaction
operator in the entrance channels of the reactions at the considered energies has
been shown. This feature is useful for realization of approximate approaches to the
description of reactions with heavier nuclei.
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Figure 4: Astrophysical S-factor for the 3He(α, γ)7Be reaction. Solid curve — gener-
alized AVRGM.
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[49] S. Burzyński, K. Czerski, A. Marcinkowski and P. Zupranski, Nucl. Phys. A 473,
179 (1987).
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