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Abstract

An applicability of large-scale shell-model calculations grows rapidly owing
to the developments of both the methodology and high-performance computing.
We briefly describe two methods to go beyond the standard Lanczos method in
the large-scale shell model calculations: the Monte Carlo shell model and the
stochastic estimation of nuclear level density. For the latter one, we adopt
an eigenvalue-density estimation based on a shifted Krylov-subspace method.
It enables us to describe both a low-lying spectroscopy and the nuclear level
density microscopically in a unified manner.
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1 Introduction

Large-scale shell-model calculations is one of the powerful methods to study exotic
structure of neutron-rich nuclei, which has been intensively investigated due to a
recent growth of the high-performance computing enhancing a feasibility of the large-
scale shell-model calculations in medium-heavy nuclei. The recent limit of the large-
scale shell-model calculation with the conventional Lanczos diagonalization reaches
O(1011) M -scheme dimension [1, 2].

Tokyo nuclear theory group in the University of Tokyo has been continuing to pro-
mote the utilization of the high performance computing for the large-scale shell model
calculations under the HPCI Strategic Program field 5 and priority issue 9 to be tack-
led by using post-K computer [3]. Conventionally the large-scale shell-model calcula-
tions are performed by solving an eigenvalue problem for a huge Hamiltonian matrix
utilizing the Lanczos algorithm [1]. We developed a shell-model code “KSHELL” for
the Lanczos calculations on a massively parallel computer and showed its capability
up to O(1011) M -scheme dimensions [4].

2 Monte Carlo shell model

In order to overcome the limitation of the standard Lanczos method, M. Honma, T.
Mizusaki and T. Otsuka have suggested the Monte Carlo shell model (MCSM) [5],
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and the Tokyo group extended it by introducing a sophisticated variational method [6]
and an extrapolation utilizing an expectation value of the energy variance [7]. The
MCSM framework with these new features is called an “advanced MCSM”. It enables
us to obtain the low-lying spectra with large model spaces. It is applied to no-core
shell-model calculations in p-shell nuclei and large-scale shell-model calculations in
medium-heavy nuclei.

In the application of the MCSM to the no-core shell-model calculations called no-
core MCSM, we adopted the JISP16 interaction [8] and demonstrated that a cluster
structure emerges in the intrinsic states of Be isotopes [9]. It also enables us to
extrapolate the binding energies of the p-shell nuclei to those corresponding to the
infinite size of the model space [10].

In the applications of the MCSM to medium-heavy nuclei, we investigated an
exotic structure of neutron-rich nuclei such as neutron-rich Ni isotopes [11]. Recently
we successfully reproduced a sudden drop of the 2+ excitation energies in Zr isotopes
around N = 60, and revealed that it is caused by the first-order quantum phase
transition from spherical shape to prolate deformation [12, 13].

3 Stochastic estimation of level density

For understanding a neutron-capture process, a nuclear level density is an important
input in the Hauser–Feshbach theory. Nuclear shell-model calculations are consid-
ered to be one of ideal methods to evaluate the level density. In the shell-model
calculations, the level density is obtained as an eigenvalue density of the Hamiltonian
matrix. However, there is a difficulty in numerical computation: the conventional
Lanczos method shows a slow convergence and a lot of memory usages.

Although the MCSM provides a good description of the ground states and a few
low-lying excited states, it cannot provide the nuclear level density. It is difficult to
compute the nuclear level density by a direct counting of the eigenvalues obtained
by the Lanczos method, since the number of eigenvalues to be obtained reaches a
few thousands and the convergence of highly-excited states is slow in the Lanczos
method. Several methods to obtain the nuclear level density were proposed based on
shell-model calculations [14–16]. In Ref. [17], we adopted a stochastic estimation of
eigenvalue count based on a shifted Krylov-subspace method [18] and applied it to
the nuclear shell-model calculations. This estimation works efficiently especially for
sparse matrices.

Here we describe the framework of this estimation method. The shell-model wave
function is written as a linear combination of many-body configurations which are
called the M -scheme basis states [1]. Since the eigenenergy of the shell-model Hamil-
tonian is obtained as an eigenvalue of the M -scheme shell-model Hamiltonian ma-
trix, H , the nuclear level density corresponds to the number of the eigenvalues in
a certain eigenvalue region. We count the number of eigenvalues µk in the range
E(k−1) < E < E(k) by evaluating the residue of the contour integral Γk in Fig. 1.

We compute the contour integral along Γk by discretizing the contour line with

mesh points z
(k)
j (blue crosses in Fig. 1) and their weights wj as
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Figure 1: Schematic drawing of the contour line to count the eigenvalues between
E(k−1) and E(k) in the complex plane of z. The red and blue crosses denote the

eigenvalues and the discretized mesh points z
(1)
j along the Γ1. The figure is taken

from Ref. [17].

Since the trace of the inverse of matrix in Eq. (1) cannot be directly calculated, it is
stochastically estimated by Hutchinson’s estimator [19] as

Tr

(
1

z −H

)
≃ 1

Ns

Ns∑

s

vT
s

1

z −H
vs, (2)

where vs are vectors whose components take values of 1 or −1 randomly with equal
probability. Ns denotes the number of these random vectors. Typically, Ns is taken
as 32 and its stochastic error is small enough.

In order to estimate the trace in Eq. (2), we have to compute vT
s (z

(k)
j −H)−1vs.

In the case of shell-model Hamiltonian matrix which is quite sparse, it is inefficient
to compute the inverse matrix directly. Since the matrix H is quite sparse, we solve
the linear equations vs = (z − H)x utilizing a Krylov-subspace method and obtain
the (z −H)−1vs. Among the Krylov-subspace methods, we adopt the block bilinear
form of the blocked complex orthogonal conjugate gradient (BCOCG) method [20] for
efficient computation. On top of that, we need to solve the equations vs = (z −H)x

for any z = z
(k)
j . These equations are solved simultaneously based on the shifted

algorithm [21].

As a benchmark for the validity of the estimation, Fig. 2 shows the level density
obtained by the present estimation in comparison with the exact shell-model level
density obtained by the Lanczos method. The model space is taken to be the sd shell
and the USD interaction [22] is used. The result of the stochastic estimation shows
a good agreement with the exact one with a certain stochastic error. The present
method allows us to estimate the level density of a large system with the M -scheme
dimension of up to 2 × 1010 [17]. This dimension is almost the current limit of the
Lanczos method to obtain a few low-lying states.

This method enables us to estimate the level density in medium-heavy nuclei utiliz-
ing a realistic effective interaction successfully describing low-lying excited states and
their spectroscopic information. In Ref. [17], using such a realistic effective interac-
tion, we successfully reproduced an experimentally observed equilibration of Jπ = 2+

and 2− states in 58Ni.
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Figure 2: Benchmark
test of the level den-
sity in 28Si vs the exci-
tation energy Ex. Red
solid histogram — ex-
act shell-model calcula-
tion by Lanczos method,
black line — stochastic
estimation. The figure is
taken from Ref. [17].

4 Summary

In order to extend the limit of large-scale shell-model calculations, we developed the
advanced MCSM for obtaining low-lying states and for the stochastic estimation of
the nuclear level density. Further details and a review of the advanced MCSM can be
found in Refs. [23,24]. A recent achievement of the MCSM calculations of Zr isotopes
is available in Ref. [12]. Concerning the stochastic estimation of the level density,
Refs. [17, 25] are referred.

Acknowledgments

I would like to thank Takashi Abe, Michio Honma, Takahiro Mizusaki, Takaharu Ot-
suka, Tomoaki Togashi, Yusuke Tsunoda, Yutaka Utsuno and Tooru Yoshida for our
long-standing collaborations. I also thank Tetsuya Sakurai and Yasunori Futamura
for the collaboration on methodological developments regarding the level density cal-
culations.

This work has been supported by the HPCI Strategic Program from MEXT,
CREST from JST, the CNS-RIKEN joint project for large-scale nuclear structure
calculations, and KAKENHI grants (25870168, 23244049, 15K05094) from JSPS,
Japan. The numerical calculations were performed on the K computer at RIKEN
AICS (hp140210, hp150224, hp160211), FX10 supercomputer at the University of
Tokyo, and COMA supercomputer at the University of Tsukuba.

References

[1] E. Caurier, G. Martinez-Pinedo, F. Nowacki, A. Poves and A. P. Zuker, Rev. Mod.
Phys. 77, 427 (2005).

[2] O. Legeza, L. Veis, A. Poves and J. Dukelsky, Phys. Rev. C 92, 051303(R) (2015).

[3] http://www.jicfus.jp/en/

[4] N. Shimizu, arXiv:1310.5431 [nucl-th] (2013).

[5] T. Otsuka, M. Honma, T. Mizusaki, N. Shimizu and Y. Utsuno Prog. Part. Nucl.
Phys. 47, 319 (2001).



Large-scale shell-model studies of exotic nuclei and nuclear level densities 183

[6] N. Shimizu, Y. Utsuno, T. Mizusaki, M. Honma, Y. Tsunoda and T. Otsuka,
Phys. Rev. C 85, 054301 (2012).

[7] N. Shimizu, Y. Utsuno, T. Mizusaki, T. Otsuka, T. Abe and M. Honma, Phys.
Rev. C 82, 061305(R) (2010).

[8] A. M. Shirokov, J. P. Vary, A. I. Mazur and T. A. Weber, Phys. Lett. B 644 33
(2007).

[9] T. Yoshida, N. Shimizu, T. Abe and T. Otsuka Few-Body Syst. 54 1465 (2013);
J. Phys. Conf. Ser. 569 012063 (2014).

[10] T. Abe, P. Maris, T. Otsuka, N. Shimizu, Y. Utsuno and J. P. Vary, in Proc. Int.
Conf. Nucl. Theor. Supercomputing Era (NTSE-2014), Khabarovsk, Russia, June
23–27, 2014, eds. A. M. Shirokov and A. I. Mazur. Pacific National University,
Khabarovsk, 2016, p. 230, http://www.ntse-2014.khb.ru/Proc/Abe.pdf.

[11] Y. Tsunoda, T. Otsuka, N. Shimizu, M. Honma and Y. Utsuno, Phys. Rev. C
89 031301(R) (2014).

[12] T. Togashi, Y. Tsunoda, T. Otsuka and N. Shimizu, Phys. Rev. Lett. 117, 172502
(2016).

[13] C. Kremer, S. Aslanidou, S. Bassauer, M. Hilcker, A. Krugmann, P. von
Neumann-Cosel, T. Otsuka, N. Pietralla, V. Yu. Ponomarev, N. Shimizu,
M. Singer, G. Steinhilber, T. Togashi, Y. Tsunoda, V. Werner and M. Zweidinger,
Phys. Rev. Lett. 117, 172503 (2016).

[14] Y. Alhassid, G. F. Bertsch, S. Liu and H. Nakada, Phys. Rev. Lett. 84, 4313
(2000); H. Nakada and Y. Alhassid, ibid. 79, 2939 (1997).

[15] R. A. Sen’kov and V. Zelevinsky, Phys. Rev. C 93, 064304 (2016); R. A. Sen’kov
and M. Horoi, ibid. 82, 024304 (2010).

[16] B. Strohmaier, S. M. Grimes and S. D. Bloom, Phys. Rev. C 32 1397 (1985);
S. M. Grimes, S. D. Bloom, R. F. Hausman, Jr. and B. J. Dalton, ibid. 19, 2378
(1979).

[17] N. Shimizu, Y. Utsuno, Y. Futamura, T. Sakurai, T. Mizusaki and T. Otsuka,
Phys. Lett. B 753, 13 (2016).

[18] Y. Futamura, H. Tadano and T. Sakurai, JSIAM Lett. 2, 127 (2010).

[19] M. F. Hutchinson, Commun. Stat. Simul. Comput. 19, 433 (1990).

[20] L. Du, Y. Futamura and T. Sakurai, Comput. Math. Appl. 66, 12 (2014).

[21] S. Yamamoto, T. Sogabe, T. Hoshi, S.-L. Zhang and T. Fujiwara, J. Phys. Soc.
Jpn. 77, 114713 (2008).

[22] B. A. Brown and B. H. Wildenthal, Annu. Rev. Nucl. Part. Sci. 38, 29 (1988).

[23] N. Shimizu, T. Abe, Y. Tsunoda, Y. Utsuno, T. Yoshida, T. Mizusaki, M. Honma
and T. Otsuka, Progr. Theor. Exp. Phys. 2012, 01A205 (2012).



184 Noritaka Shimizu

[24] N. Shimizu, T. Abe, M. Honma, T. Otsuka, T. Togashi, Y. Tsunoda, Y. Utsuno,
and T. Yoshida, to be submitted.

[25] N. Shimizu, Y. Utsuno, Y. Futamura, T. Sakurai and T. Otsuka, EPJ Web Conf.
122, 02003 (2016).


