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Abstract

Weakly bound nuclei have exotic collective excitations associated with halo
structures and continuum effects. Our study of isovector dipole modes in the
shape-coexisting 40Mg is based on the fully self-consistent continuumFAM-QRPA
in deformed large coordinate spaces. The K-splitting in low-lying pygmy reso-
nances clearly deviates from the proportionality in terms of static deformations
which is inherent for giant resonances.
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1 Introduction

Quantum many-body systems have emergent amazing macroscopic phenomena that
can not be easily derived from their constituent parts [1]. Nuclei are in an evolu-
tion from few-body to many-body systems, and can possess deformed shapes and
superfluidity which can enhance essentially the nuclear collective behavior [2]. Thus,
an accurate treatment of continuum in large coordinate spaces is essential for the
description of collective excitation modes in weakly bound nuclei.

A traditional way to implement the QRPA is the matrix diagonalization scheme
(MQRPA). However, huge dimensions of the QRPA matrix, especially when the spher-
ical symmetry is broken and continuum configurations are included, result in expen-
sive computational costs, which become a major numerical challenge.

To this end, the finite amplitude method (FAM), which allows us to compute all in-
duced fields using a finite difference method employing a subroutine of the static mean-
field Hamiltonian, is introduced to calculate strength functions [3]. The FAM-QRPA
for monopole modes has been implemented based on several well-known DFT-solvers,
such as the spherical coordinate-space program HFBRAD, the deformed harmonic
oscillator basis space program HFBTHO, and the deformed relativistic Hartree–
Bogoliubov method [3, 4]. Previously, we also developed the FAM-QRPA based on
our DFT-solver HFB-AX which provides very precise ground-state HFB solutions in
the deformed coordinate space [5]. Recently M. Kortelainen et al. extended the FAM
to a deformed multipole case, allowing the evaluation of QRPA modes for opera-
tors of arbitrary multipolarity LK with simplex-y basis [6]. Now we also extend
our FAM-QRPA to multipole excitation modes based on the HFB-AX, which pro-
vides a good resolution of quasiparticle resonances and continuum spectra due to
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large box sizes and dense lattices [7]. This is an ideal tool for describing the collective
excitations of weakly bound deformed nuclei.

40Mg is the last experimentally observed magnesium isotope [8] with an N = 28
magic neutron number, but with a well-established prolate-oblate shape-coexistence
[9, 10]. Such a shape-coexistence is ideal for a comparative analysis of deformation-
related isovector dipole (IVD) modes, which are a natural probe of surface oscillations
and are directly related to the photoabsorption cross section.

2 Theoretical models

As mentioned above, the HFB equation is solved by HFB-AX [11] within a large two-
dimensional coordinate space based on B-spline techniques with an assumed axial
symmetry. The mesh distance is 0.6 fm and the order of B-spline is 12. A hybrid
MPI + OpenMP parallel scheme was utilized to get converged results within a rea-
sonable time.

For the particle-hole interaction channel, a recently adjusted extended SLy4 force
for light nuclei is adopted [12] including an additional density-dependent term. For
the particle-particle channel, a density dependent delta interaction (DDDI) [13],
V0[1 − η(ρ(r)/ρ0)γ ], is used. With a pairing window of 60 MeV, the pairing force
parameters are taken as V0 = −448.3 MeV fm3, η=0.8 and γ=0.7, so that pairing
gaps in both stable and very neutron-rich nuclei can be properly described. The re-
sulted pairing gaps are between those from mixed and surface types of pairing in very
neutron-rich nuclei, while the surface pairing interaction may overestimate pairing
correlations in nuclei far from stability [14].

The next step is to calculate a strength function within the framework of
FAM-QRPA utilizing the wave functions obtained by HFB-AX. The same parameters
in the particle-hole and particle-particle channels are used in the DFT-solver and FAM
for self-consistency. To study the fine structures of pygmy resonances, the smoothing
parameter is taken to be 0.25 MeV (cf. with the usually adopted value of 0.5 MeV).
For each frequency point ω, the calculation employs the OpenMP shared memory
parallel scheme. For different frequencies, the MPI distributed parallel scheme is
adopted. All computations are performed on the Tianhe-1A supercomputer located
in Tianjin and Tianhe-2 supercomputer located in Guangzhou.

3 Results

As is seen from Table 1, the oblate shape is 1.9 MeV above the prolate shape reflecting
the fact that 40Mg has a soft potential energy surface. The shape competition is also
reflected in the superfluidity difference: the prolate shape only has a neutron pairing
gap while the oblate shape only has a proton pairing gap.

The neutron density and neutron pairing density distributions in 40Mg in different
shape are shown in Fig. 1. The densities are displayed along the cylindrical coordi-
nates z (symmetrical axis) and r =

√
x2 + y2 (perpendicular to the symmetrical axis),

respectively. The difference between two profiles reflects the surface deformation. The
absolute value of pairing densities in oblate 40Mg is small which is responsible for the
almost vanishing neutron pairing gap. We see a significant neutron pairing density



176 K. Wang and J. C. Pei

Table 1: Some bulk properties of prolate and oblate 40Mg obtained by HFB-AX
within the box-size of 27.6 fm. β2 is the quadruple deformation parameter, Etot is
the total energy, λ is the Fermi energy, and ∆ is the pairing gap. Subscripts n and p
denote neutron and proton, respectively. All energies are in MeV.

shape β2 Etot λn ∆n ∆p

prolate 0.39 −264.14 −0.33 1.23 0
oblate −0.32 −262.27 −0.79 0 0.98

halo as compared to the neutron normal density. In addition, we do not see an evident
core-halo shape decoupling.

In Fig. 2, the transition strengths of K = 0 and |K| = 1 (the sum of K = 1
and K = −1) are shown. To see the role of accurate treatment of continuum and sur-
face extensions, the transition strengths of prolate 40Mg are calculated with box size
of 12, 21 and 27.6 fm. We see that, within a small box, the continuum discretization is
not sufficient, which result in some false peaks. For instance, a false peak at 13 MeV
is still present even with the box size of 21 fm. Moreover, the low-lying resonances
are fragmented and less coherent without accurate continuum.
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Figure 2: Calculated
transition strengths
of isovector dipole
resonances in shape-
coexisting 40Mg as
functions of excita-
tion energy. Re-
sults for (a) prolate
shape with box size
of 12 fm; (b) prolate
shape with box size
of 21 fm; (c) prolate
shape with box size
of 27.6 fm; (d) oblate
shape with box size
of 27.6 fm.

In calculations with a large coordinate space of 27.6 fm, the obtained transition
strengths clearly demonstrate pygmy resonances and deformation splitting, as shown
in Fig. 2 (c,d). It is known from the hydrodynamic liquid-drop model [15] that the
anisotropic splitting of the dipole transition strength is approximately proportional
to centroid excitation energy and deformation. It is reasonable that both cases have
similar giant resonance splitting (δE ∼ 5 MeV) considering different centroid energies
and deformations. Then the estimated pygmy splitting should be around 0.95 MeV
for the prolate shape and 1.05 MeV for the oblate case since 40Mg actually has no
evident core-halo shape decoupling [16]. However, we see the pygmy splitting of
the prolate shape (δE ∼ 1.4 MeV) is significantly larger than expected while the
oblate case (δE ∼ 0.45 MeV) is smaller. Obviously the hydrodynamic anisotropic
splitting is not valid anymore for pygmy resonances. According to our tests, the
pygmy splittings are not sensitive to pairing strengths. We speculate that the pygmy
splitting is related not only with static shapes and but also with significant dynamical
deformation surface effects. It will be very helpful to study the pigmy dipole resonance
deformation splitting in deformed neutron-rich nuclei in high-resolution experiments.
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Besides, the |K| = 1 dominates in the oblate case where the deformation splitting in
the total cross section is not distinguishable in contrast to the prolate case.
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