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Abstract

We continue the study of the tetraneutron resonance within the democratic
SS-HORSE extension of the ab initio No-Core Shell Model [16] using mod-
ern NN interactions. With Daejeon16 and SRG-evolved chiral Idaho N3LO
NN interactions we obtain the S-matrix pole corresponding to the tetraneu-
tron resonance with energy between 0.7 and 1.0 MeV and width between 1.1
and 1.7 MeV. However we do not obtain a low-lying narrow resonance with the
original Idaho N3LO but, instead, we obtain a very low-lying virtual state with
the energy of 15 keV.

Keywords: Tetraneutron; resonant states; realistic NN-interactions; No-Core
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1 Introduction

Interest in the tetraneutron was revived by a recent experiment [1] where a few events
were detected which were interpreted as a resonant state in the four-neutron system
with an energy of 0.83 ± 0.65 (stat.) ± 1.25 (syst.) MeV and a width not exceed-
ing 2 MeV. As indicated in a historical review of the studies of few-neutron systems
of Ref. [2], this is the first observation of the tetraneutron resonance which has been
sought for more than fifty years [3]. The possibility of a bound tetraneutron state
was proposed 15 year ago in Ref. [4] in the 14Be breakup reaction 14Be → 10Be + 4n.
This experimental result, however, has not been confirmed.

The state-of-the-art theoretical studies conclude [5–14] that the tetraneutron can-
not be bound without a significant altering of modern nuclear forces that will spoil
a description of other nuclei. There are some indications on the existence of a low-
lying tetraneutron resonance based on an artificial binding of the tetraneutron by
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strengthening the NN interaction [5] or by putting the four-neutron system in a
trap [15] and by extrapolating these bound states to the case when the strength-
ening parameter is continuously reduced or the trap is continuously removed. Such
extrapolations cannot predict the width of the resonance and should not be regarded
as a firm proof of the resonant state. Existing calculations that explicitly account
for the continuum [6,9–14] using various approaches [hyperspherical harmonics (HH),
Faddeev–Yakubovsky equations, no-core Gamow shell model, complex scaling, etc.]
with various realistic inter-nucleon forces resulted in the absence of a low-lying tetra-
neutron resonance narrow enough to be detected experimentally.

However, in our recent theoretical study [16], we obtained the tetraneutron res-
onance with the energy Er = 0.8 MeV and the width Γ = 1.4 MeV. To the best of
our knowledge, this is an only theoretical prediction consistent with the experimen-
tal finding of Ref. [1]. These calculations utilized the NN interaction JISP16 [17]
and were performed within the so-called SS-HORSE (single state harmonic oscil-
lator representation of scattering equations) extension [18–22] of the no-core shell
model (NCSM) [23] adapted in Ref. [16] to the description of democratic decays (also
known as a true four-body scattering or 4 → 4 scattering) [24, 25]. So, it is impor-
tant to understand whether this low-lying resonance should be associated with the
JISP16 NN interaction which was used in the tetraneutron studies only in Ref. [16]
or with the new democratic NCSM-SS-HORSE approach able to describe correctly
some specific features of the four-particle decay which are likely beyond the scope of
other methods.

To this end, we perform here the NCSM-SS-HORSE calculations of the tetra-
neutron resonance with additional contemporary NN interactions. In particular, we
adopt a new NN interaction Daejeon16 [26] which is better fitted to observables in
light nuclei than JISP16. We also adopt the chiral NN interaction Idaho N3LO [27],
both unperturbed (‘bare’) and softened by the methods of the Similarity Renormal-
ization Group (SRG) [28, 29] with flow parameters Λ = 1.5 fm−1 and 2.0 fm−1.
We note that the Daejeon16 interaction was obtained by applying phase-equivalent
transformations to the SRG-evolved with Λ = 1.5 fm−1 Idaho N3LO which adjust
the interaction to describe light nuclei without referring to three-nucleon forces.

The next Section presents a brief description of the SS-HORSE method and its
application to calculating democratic four-body decays within the NCSM. The tetra-
neutron calculation results with the Daejeon16, SRG-evolved and ‘bare’ Idaho N3LO
interactions are given in Sections 3, 4, and 5 respectively. The last Section summarizes
these studies.

2 SS-HORSE method for the 4 → 4 scattering

We use here the same theoretical approach as in our previous paper [16]. That is, we
utilize the democratic decay approximation [24,25] to describe the four-neutron decay
channel within the NCSM-SS-HORSE approach. A decay of a system into A particles
is called ‘democratic’ if none of subsystems built of these A particles has a bound state.
In particular, the tetraneutron presents a nice example of nuclear system decaying
through a four-body democratic channel only, and the study of the tetraneutron of
Ref. [30] is one of the first applications of the democratic decay approximation.
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It is natural to study democratic decays within the HH method, which intro-

duces a ‘democratic’ collective coordinate, the hyperradius ρ =
√∑A

i=1(ri −R)2 (ri

are the coordinates of individual nucleons and R is the center-of-mass coordinate),
and describes the dynamics of a system in terms of this coordinate. Formally, the
democratic decay channel involves a superposition of an infinite number of HH with
hypermomenta K = Kmin, Kmin + 2, ..., where Kmin is the minimal hypermomentum
consistent with the Pauli principle for a given nucleus; however, in practical applica-
tions, one usually uses a restricted set of HH adequate for the description of the decay
channel. We use here the minimal approximation for the tetraneutron decay mode,
i. e., we retain only the HH with hypermomentum K = Kmin = 2. This approxima-
tion relies on the fact that the decay in the hyperspherical states with K > Kmin is
strongly suppressed by a large hyperspherical centrifugal barrier L(L + 1)/ρ2, where
the effective angular momentum

L = K +
3A− 6

2
= K + 3. (1)

Note, the minimal approximation is used for the description of the decay channel
only, i. e., for the description of the wave function asymptotics, while all possible HH
are retained in the NCSM basis. The accuracy of this approximation was confirmed
in studies of democratic decays in cluster models [31–34].

The NCSM utilizes the harmonic oscillator basis, and a natural extension of the
NCSM to the continuum can be achieved within the J-matrix [35] (also known as the
HORSE [36]) formalism in scattering theory, in particular, in an efficient SS-HORSE
version [18–22] of this formalism. The general theory of the democratic decay within
the HORSE formalism was proposed in Refs. [37, 38]; a derivation of the democratic
SS-HORSE version along the lines suggested in Refs. [18, 19] is strightforward [16].

Within the minimal approximation, the S-matrix of the four-body decay is ex-
pressed through the hyperspherical phase shift δ as

S = e2iδ. (2)

The SS-HORSE formalism provides the following expression for the phase shifts at
the eigenenergies Eν of the NCSM Hamiltonian [16, 18, 19]:

tan δ(Eν) = −SN+2,L(Eν/~Ω)

CN+2,L(Eν/~Ω)
. (3)

Here, SNL and CNL are linearly-independent solutions of the infinite tridiagonal
free Hamiltonian matrix in the hyperspherical harmonic oscillator basis for which
analytical expressions can be found in Refs. [37, 38], and N is the maximal total
quanta of many-body oscillator states included in the NCSM basis,

N = Nmax +Nmin, (4)

Nmin = 2 is the quanta of the lowest possible oscillator state of the 4n system,
and Nmax is the maximal excitation quanta in the NCSM basis.

Varying Nmax and ~Ω in the NCSM calculations, we obtain the phase shifts and
S-matrix in some energy interval. Parametrizing the S-matrix in this energy interval,
we obtain information about its nearby poles and hence resonances in the system.
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Note, the phase shifts used for the parametrization should form some curve as a
function of energy. However some phase shifts calculated by Eq. (3), especially those
corresponding to the NCSM results obtained in small enough model spaces, deviate
from the common curve signaling that convergence is not achieved. Therefore, before
parametrizing the phase shifts, one needs to preselect the NCSM results retaining
only those that are sufficiently converged so as to lie on the common curve.

Due to S-matrix symmetry properties [39,40], the hyperspherical phase shift δ(E)
should be an odd function of momentum k ∼

√
E,

δ(E) = v1
√
E + v3

(√
E
)3

+ ...+ v9
(√
E
)9

+ v11
(√
E
)11

+ ... (5)

On the other hand, at low energies, i. e., in the limit k → 0, the phase shifts should
behave as δ ∼ k2L+1 [39, 40]. In the case of 4 → 4 scattering, L = Kmin + 3 = 5 and
therefore the expansion (5) starts at the eleventh power, i. e.,

v1 = v3 = ... = v9 = 0. (6)

To parametrize the phase shifts, we use the equation

− arctan
SNmax+4,5(E/~Ω)

CNmax+4,5(E/~Ω)
=
∑

p

δp(E) + φ(E), (7)

which is obtained by rewriting Eq. (3) with the help of Eq. (4). Here φ(E) is a
background phase, which is expected to be a smooth function parametrized as a Padé
approximant,

φ(E) = −
w1

√
E + w3

(√
E
)3

+ c
(√
E
)5

1 + w2E + w4E2 + w6E3 + dE4
. (8)

The sum in the rhs of Eq. (7) presents rapidly changing with E contributions from pole
terms associated with the S-matrix poles located close to the origin of the complex
momentum plane, in particular, resonant poles (p = r), false (redundant) poles at
a positive imaginary momentum (p = f) which does not correspond to a bound
state [39,40], or virtual state poles at a negative imaginary momentum (p = v) [39,40].
The respective phase shifts are

δr(E) = − arctan
a
√
E

E − b2
, (9a)

δf (E) = − arctan

√
E

|Ef |
, (9b)

δv(E) = arctan

√
E

|Ev|
. (9c)

The resonance energy Er and width Γ are expressed through parameters a and b as

Er = b2 − a2/2, Γ = a
√

4b2 − a2. (10)

We attempted various fits including one, two, or three pole terms in Eq. (7) aimed
to obtain a smooth background phase φ(E). The parameters w1, w2, w3, w4, and w6
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should guarantee that Eq. (6) is satisfied [note, the pole terms contribute to the low-
order expansion terms in Eq. (5)]. The parameters c and d entering Eq. (8) together
with the parameters a, b, Ef , and Ev of the included pole terms are used as fit
parameters.

For each set of parameters, we solve Eq. (7) to find the energies E(i) = E(N i
max, ~Ωi)

for each combination of N i
max and ~Ωi values and search for the parameter set mini-

mizing the rms deviation

Ξ =

√√√√ 1

D

D∑

i=1

(
E

(i)
0 − E(i)

)2
(11)

of E(i) from the selected set of the lowest NCSM eigenenergies Ei
0 obtained with the

same N i
max and ~Ωi.

3 Results with Daejeon16

We performed the NCSM calculations using the code MFDn [41,42] for the tetraneu-
tron with Nmax values ranging from 2 to 20 and ~Ω values ranging from 1 to 50 MeV.
As in Refs. [16,18–22], we select for the phase shift parametrization the NCSM results
generating the phase shifts according to Eq. (3) that form approximately a common
curve as a function of energy E. Additionally, we do not include in the analysis the
NCSM eigenenergies above 7 MeV thus improving the description of the resonance
region. The eigenenergy selection is shown by the shaded area in left panel of Fig. 1.
The right panel of Fig. 1 shows the phase shifts obtained directly from the selected
NCSM results using Eq. (3).
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Figure 1: Left panel: the lowest 0+ tetraneutron states obtained in the NCSM with
the Daejeon16NN interaction (symbols) with variousNmax as functions of ~Ω and the
energies E(i) (solid curves) obtained from the phase shifts parametrization; the shaded
area shows the NCSM result selection for the phase shift parametrization. Right panel:
the 4 → 4 phase shift parametrization (solid curve) and phase shifts obtained directly
from the selected NCSM results using Eq. (3) (symbols); contributions to the phase
shifts of the resonant pole, the false pole and the background phase are shown by
dashed, dashed-dotted and dashed-double-dotted curves respectively.
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Table 1: Tetraneutron resonance energy Er and width Γ and other fit parameters
including the energy of the false pole Ef and of the virtual state |Ev| as well as
the rms deviation of energies Ξ characterizing the quality of the fit, obtained with
JISP16 [16], Daejeon16, SRG-evolved with flow parameters Λ = 1.5 and 2.0 fm−1

Idaho N3LO, and ‘bare’ Idaho N3LO NN interactions.

Interaction JISP16, Daejeon16 Idaho N3LO, SRG Idaho N3LO
Ref. [16] Λ = 1.5 fm−1 Λ = 2.0 fm−1

a (MeV
1
2 ) 0.701 0.749 0.613 0.662 —

b2 (MeV) 1.09 1.28 0.970 1.07 —

c (MeV− 5
2 ) −27.0 −16.2 −31.6 −28.1 4960

d (MeV−4) 0.281 0.717 0.720 0.776 2330
Er (MeV) 0.844 0.997 0.783 0.846 —
Γ (MeV) 1.38 1.60 1.15 1.29 —
Ef (keV) −54.9 −63.4 −52.1 −54.5 —
|Ev| (keV) — — — — 15.2
Ξ (keV) 43.8 47.9 29.0 31.7 19.4

We can accurately describe the NCSM results using only one resonant pole term.
However this parametrization, as in the case of JISP16 [16], results in a very rapid
changes of the background phase signaling the presence of another S-matrix pole in
the vicinity of zero energy. A description of the selected NCSM eigenenergies approx-
imately with the same rms deviation is achieved also by a parametrization with two
pole terms associated with a resonant state and a false state. This parametrization
essentially decreases the variation of the background phase and appears to be accept-
able from the physical viewpoint. The resulting phase shifts are presented in the right
panel of Fig. 1 while the fit parameters including the resonance energy and width and
the energy of the false pole are given in Table 1. It is seen that the Daejeon16 NN
interaction suggests a low-lying resonance in the system of four neutrons with energy
about 1 MeV and width about 1.6 MeV consistent with the experimental observations
of Ref. [1].

For comparison, we present in Table 1 also the results of Ref. [16] obtained with the
JISP16 interaction with the same two-pole parametrization. It is seen that JISP16 and
Daejeon16 interactions provide very similar predictions not only for the tetraneutron
resonance energy and width but also for other fit parameters.

4 Results with SRG-evolved Idaho N3LO

As it was already noted, the Daejeon16 interaction was fitted to the observables in
light nuclei by applying phase-equivalent transformations to the SRG-evolved Idaho
N3LONN interaction with flow parameter Λ = 1.5 fm−1. Therefore it is interesting to
investigate the effect of this adjustment of the NN interaction, which makes it possible
to calculate nuclei without an explicit use of three-nucleon forces, on the tetraneutron
resonance. We perform the tetraneutron calculations with the SRG-evolved Idaho
N3LO NN interaction with flow parameters Λ = 1.5 fm−1 and Λ = 2.0 fm−1 to
examine also the dependence of the tetraneutron resonance energy and width on the
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Figure 2: NCSM results for the lowest 0+ tetraneutron states and the 4 → 4 phase
shifts obtained with SRG-evolved Idaho N3LO NN interactions with flow parame-
ters Λ = 1.5 fm−1 (upper panel) and Λ = 2.0 fm−1 (lower panel). See Fig. 1 for
details.

flow parameters Λ.

It is interesting to note here that the SRG-evolved chiral Idaho N3LO with these
values of flow parameters Λ, as well as the JISP16 and Daejeon16 interactions, provide
without three-nucleon forces ground states of the bound A = 3 and A = 4 systems
close to experiment while the original Idaho N3LO significantly underbinds these sys-
tems (see, e. g., Ref. [23,43]). For example, the SRG-evolved chiral Idaho N3LO with
our adopted flow parameters Λ, as well as the JISP16 and Daejeon16 interactions,
all provide ground state energies of A = 3 nuclei and 4He within 100 keV of exper-
iment. On the other hand, the original Idaho N3LO underbinds 3H by 620 keV and
underbinds 4He by 2.9 MeV.

We perform the calculations similar to those presented in the previous Section.
In particular, we use the same set of Nmax and ~Ω values in the NCSM calculations
and make similar though not identical selections of the NCSM results for the phase
shift parametrizations. We again come to a conclusion that physically reasonable
parametrizations should include pole terms corresponding to resonant and false states,
which suggest low-energy tetraneutron resonances. The results are presented in Fig. 2
and Table 1.

It is seen that we obtain the results similar to those obtained with JISP16 and
Daejeon16 interactions. It is interesting that the interaction with Λ = 2.0 fm−1
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results in the values of the resonance energy and width as well as in the energy of the
false state nearly identical to those obtained with JISP16. Decreasing Λ to 1.5 fm−1

causes small decreases of the resonant energy and width which become nearly 30%
smaller than the width obtained with Daejeon16 while the difference in resonance
energies is about 20%. These differences between the Daejeon16 and SRG-evolved
with Λ = 1.5 fm−1 interactions may serve as a rough estimate of the three-body force
effects in the tetraneutron since the Daejeon16, being fitted to light nuclei, mimics
three-body force effects by off-shell properties of this two-nucleon only interaction.

A close look at the phase shift parametrizations in Figs. 1 and 2 reveals that the
discrete energies, Ei

0, in the region of the extracted resonance are not as well converged
as those outside this region. This slower convergence is reasonable in light of the low
energy of the resonance which results from the delicate cancelation of small kinetic
and small potential contributions to the values of Ei

0.
Generally, the results obtained with the SRG-evolved Idaho N3LO interactions

are consistent with those from JISP16 and Daejeon16 interactions and with the ex-
periment [1].

5 Results with original Idaho N3LO

Although the original Idaho N3LO interaction significantly underbinds the bound
light nuclei with A > 2, we include results with this interaction since it does produce
an excellent description the two-nucleon data. That is, normally, one includes a three-
nucleon interaction with the original Idaho N3LO interaction to produce good binding
results for the bound light nuclei with A > 2. It is also interesting to compare our
results for this interaction with numerous studies of other authors that employed NN
interactions with a strong short-range repulsion and did not obtain a narrow low-lying
resonance in the tetraneutron.

We find that the same calculations with the ‘bare’ Idaho N3LO NN interaction
alone, without a three-nucleon interaction, bring us to a very different conclusion
about the tetraneutron resonance.

The NCSM calculations are performed in the same range of Nmax, 2 ≤ Nmax ≤ 20,
and ~Ω, 1 MeV ≤ ~Ω ≤ 20 MeV; Fig. 3 shows the low-energy fraction (below 6 MeV)
of the obtained NCSM results for the tetraneutron ground state together with the
selection of eigenstates for the further SS-HORSE analysis. The phase shifts obtained
directly from all NCSM results using Eq. (3) are shown in the left panel of Fig. 4.
Contrary to other interactions discussed above, we have a convergence with the ‘bare’
N3LO only at low enough energies, below approximately 6 MeV, where the phase shifts
with increasing Nmax tend to a common curve formed by the phase shifts from the
largest available model spaces. Therefore we select for the phase shift parametrization
only the NCSM results with Nmax = 16, 18, and 20 lying below 6 MeV. Starting from
the energies of 6 MeV, the convergence is clearly not achieved. One can speculate
that the tendency of the phase shifts in this energy region suggests that the converged
phase shift will form an additional smooth increase between 6 and 15 MeV that may
indicate a presence of a wide resonant state with energy around 10 MeV, which, most
probably, will be not possible to detect experimentally. There is also an indication
that the convergence is achieved at energies around 20 MeV and higher which are of
no interest for our analysis.

The behavior of the converged phase shifts in the right panel of Fig. 4 which
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Figure 4: 4 → 4 phase shifts obtained directly from all available (left panel) and from
the selected (right panel) NCSM results using Eq. (3) (symbols) together with the
4 → 4 phase shift parametrization (solid curve).

are increasing smoothly up to approximately 80◦ in a wide enough energy interval,
suggests an absence of a narrow resonance; however, this phase shift increase may
be caused by a wide resonance or by a low-lying virtual state as well as by some
combination of S-matrix poles of different types. We have studied various possibilities
and have come to the conclusion that the only way to describe the NCSM results
with the unperturbed Idaho N3LO NN interaction is to introduce a single pole term
associated with a virtual state with a very small energy of 15.2 keV. The fit parameters
are listed in Table 1, the fitted hyperspherical phase sifts are depicted in the right
panel of Fig. 4.

6 Summary and conclusions

We have studied in a democratic NCSM-SS-HORSE approach with various NN in-
teractions a low-lying resonance in a system of four neutrons, which was recently
observed in a RIKEN experiment [1]. We found that a narrow resonance consistent
with experimental data is supported by soft NN interactions, in particular, by JISP16
and Daejeon16 interactions accurately describing the two-nucleon data and fitted to
properties of light nuclei without making use of three-nucleon forses as well as by the
SRG-evolved chiral Idaho N3LO NN interactions with flow parameters Λ = 1.5 fm−1
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and 2.0 fm−1. All these interactions provide similar results indicating a resonance
with energy between 0.7 and 1.0 MeV and width between 1.1 and 1.7 MeV. On the
other hand, the original Idaho N3LO, which underbinds light nuclei in the absence of
a three-body interaction, does not support a tetraneutron resonance but predicts a
very low-lying tetraneutron virtual state with the energy of 15 keV. This is consistent
with results of other theoretical studies of various authors who did not obtain a nar-
row low-lying tetraneutron resonance within various approaches with NN interactions
with a strong short-distance repulsion. However, it appears that nobody before was
searching for a virtual state in the four-neutron system.

Regarding the comparison with the experiment [1], we note that the experimen-
talists are not studying the S-matrix poles in the system of four neutrons but are
studying cross sections of a complicated reaction 4He(8He, 8Be), where the reaction
mechanism plays a very important role. This reaction mechanism can reveal the
tetraneutron resonance but, probably, at a somewhat shifted energy, or just mimic a
resonance behavior in a system that has no low-lying resonance but a broad contin-
uum structure as discussed in Ref. [9]. It is also possible that the virtual tetraneutron
state can manifest itself as a resonant structure of the cross section due to some fea-
tures of the reaction mechanism. Therefore it would be very interesting to study the
reaction 4He(8He, 8Be) in a realistic reaction-theory approach which will account for
the pole structure of the tetraneutron.

It would also be interesting to study the tetraneutron with a combination of mod-
ern NN and three-nucleon forces. We experience technical difficulties in allowing
for three-nucleon forces in our approach. In particular, we need matrix elements
of a three-nucleon force in oscillator bases with large Nmax and very small ~Ω val-
ues which presents a real challenge. This need arises since the NCSM results with
large Nmax and small ~Ω are of special importance for calculating low-energy behav-
ior of the S-matrix and for locating its poles. We, however, hope to overcome this
difficulty in future studies. The effects of the three-nucleon force on the tetraneutron
resonance properties are roughly estimated to be around 20–30% by comparing the
results obtained with Daejeon16 and SRG-evolved N3LO interactions.
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