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Preface

The International Conference on Nuclear Theory in the Supercomputing Era — 2016
(NTSE-2016) brought together experts in nuclear theory and high-performance com-
puting in Khabarovsk, Russia, from September 19 to September, 2016. This con-
ference series was started in 2012 by the NTSE-2012 and HITES-2012 conferences
which were proceeded later under the common title NTSE. The NTSE conferences
focus on forefront challenges in physics, namely the fundamentals of nuclear structure
and reactions, the origin of the strong inter-nucleon interactions from QCD, and com-
putational nuclear physics with leadership class supercomputer facilities to provide
forefront simulations leading to new discoveries.

The conference welcomed many young scientists, including graduate students in
nuclear physics, computational science and applied mathematics. All participants
together made the conference a great success.

The conference topics,

(1) Ab initio nuclear structure;
(2) Microscopic approaches to nuclear reactions;
(3) Origin and properties of the strong interactions; and
(4) Computational science and applied mathematics,

reflect current world-wide research interests and encompass a broad area of funda-
mental physics and high-performance computing.

We would like to express our appreciation to all participants of the NTSE-2016
conference, to all contributors to these proceedings, to all members of the Scientific
Advisory Committee and to the NTSE-2016 sponsors including Pacific National Uni-
versity and the Russian Foundation for Basic Research.

The organizing committee:

Sergey Ivanchenko (Chair), Pacific National University, Russia

Sergey Burkov, Pacific National University, Russia

Alexander Mazur (Scientific secretary), Pacific National University, Russia

Igor Mazur, Pacific National University, Russia

Vladimir Rimlyand, Pacific National University, Russia

Andrey Shirokov (Vice Chair), Moscow State University, Russia

Tatiana Sytnikova, Pacific National University, Russia

Yurii Tchuvil’sky (Vice Chair),Moscow State University, Russia

James Vary (Vice Chair), Iowa State University, USA
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Modern two-nucleon forces in three-nucleon reactions

1:20–2:20pm Lunch break

Chair: Noritaka Shimizu

2:20–3:20pm Xingbo Zhao
Time-dependent Basis Function Approach to Nuclear Scattering

3:20-4:20pm Kai Wen
The Inertial Mass and Collective Path in Nuclear Fusion/Fission
Reactions

4:20-5:10pm Nikolay Khokhlov
Deuteron Wave Function and Elastic eD Scattering

5:10–5:30pm Coffee break

Room 201

Discussion leader: James Vary

5:30–6:50pm Discussions, additional questions to speakers



8 NTSE–2016 program

Wednesday, September 21

Conference Hall

Chair: John Hill

9:00–10:00am Joel Lynn
Quantum Monte Carlo Calculations with Chiral Effective Field
Theory Interactions

10:00–11:00am Youngman Kim
QCD Fossils in Nuclei?

11:00–11:20am Coffee break

Chair: Sergey Yakovlev

11:20–12:20pm Shan-Gui Zhou
Nuclear Tetrahedral Shapes from MDC-CDFT

12:20–1:20pm Junchen Pei
Continuum DFT Studies of Exotic Nuclei and Dynamics

1:20–2:20pm Lunch break

Chair: Yuri Tshuvil′sky

2:20–3:20pm Noritaka Shimizu
Large-Scale Shell-Model Studies for Exotic Nuclei and Nuclear
Level Densities

3:20-4:20pm Alexander Mazur
Analysis of Resonant States within the SS-HORSE Method

4:20-4:50pm Myeong-Hvan Mun
Study of Low-Energy Phase Shift using NCSM
with Three Different NN Interactions

4:50–5:10pm Coffee break

Room 201

Discussion leader: Luigi Coraggio

5:10–6:30pm Discussions, additional questions to speakers



NTSE–2016 program 9

Thursday, September 22

Conference Hall

Chair: Alexander Motovilov

9:00–10:00am Olga Rubtsova
Solution of Few-Body Scattering Problems
in a Discrete Representation by Using GPU

10:00–11:00am Luigi Coraggio
Large-Scale Shell-Model Challenges within the RIB Era

11:00–11:20am Coffee break

Chair: Carlo Barbieri

11:20–12:20am Sergey Yakovlev
Scattering in the System of Three Charged Particles

12:20–1:00pm Sergey Zaytsev
Electron Correlations in the Framework of Quasi Sturmian
Functions Approach

1:00–2:00pm Lunch break

Room 201

Discussion leader: Furong Xu

2:00–3:10pm Discussions, additional questions to speakers

3:10–7:30pm Excursion
7:30pm Conference dinner



10 NTSE–2016 program

Friday, September 23

Conference Hall

Chair: Youngman Kim

9:00–10:00am John Hill
Highlights from the 15 Year Heavy Ion Program at the PHENIX
Experiment

10:00–11:00am Yurii Tchuvil′sky
Asymptotic Properties of Resonance and Weakly-Bound States
in the Shell-Model Calculations

11:00–11:20am Coffee break

Chair: Shan-Gui Zhou

11:20–12:10pm Alexander Soloviev
The Algebraic Versions of the Resonating Group Model and the
Orthogonality Conditions Model as Fundamentals of Theoretical
Approaches for Describing Nuclear Reactions

12:10–12:50pm Igor Mazur
Energy and Width of the Resonance in the 4n System

12:50–1:20pm Vasily Kulikov
S-matrix Method for Extrapolation of the Results of No-Core
Shell Model Calculations

1:20–2:20pm Lunch break

Public Lectures

2:20–3:20pm James Vary
Role of Supercomputers in Basic Science Simulations

3:20–4:20pm Victor Efros
Quantum Mechanics of Reactions with Many Open Channels
(in Russian)

4:20–4:40pm Coffee break

Room 201

Discussion leader: Andrey Shirokov

4:40–6:00pm Discussions, additional questions to speakers
6:00pm Conference closing

Saturday, September 24

Public Lectures

10:00–11:00am Yurii Tchuvil′sky
Current Status and Prospects of Nuclear Physics Research
(in Russian)



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

NTSE-2016 Scientific Advisory Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

NTSE-2016 Organizing Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Program of International Conference on Nuclear Theory in the Supercomputing
Era — 2016 (NTSE-2016) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Invited talks:

James P. Vary, Robert Basili, Weijie Du, Matthew Lockner, Pieter Maris, Dossay
Oryspayev, Soham Pal, Shiplu Sarker, Hasan Metin Aktulga, Esmond Ng,
Meiyue Shao and Chao Yang, Ab initio No Core Shell Model with Leadership-
class supercomputers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

F. Raimondi and C. Barbieri, Irreducible 3-body force contributions to the self-
energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Zhonghao Sun, Qiang Wu and Furong Xu, Green’s function calculations of light

nuclei . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Kimiko Sekiguchi, Experiments of few-nucleon scattering and three-nucleon

forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

V. D. Efros, Approach to computation of few/many-body multichannel reactions . . 66

L. Hlophe and Ch. Elster, Energy dependent separable optical potentials for (d, p)
reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
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Abstract

Nuclear structure and reaction theory is undergoing a major renaissance
with advances in many-body methods, strong interactions with greatly improved
links to Quantum Chromodynamics (QCD), the advent of high performance
computing, and improved computational algorithms. Predictive power, with
well-quantified uncertainty, is emerging from non-perturbative approaches along
with the potential for guiding experiments to new discoveries. We present an
overview of some of our recent developments and discuss challenges that lie
ahead. Our foci include: (1) strong interactions derived from chiral effective
field theory; (2) advances in solving the large sparse matrix eigenvalue problem
on leadership-class supercomputers; (3) selected observables in light nuclei with
the JISP16 interaction; (4) effective electroweak operators consistent with the
Hamiltonian; and (5) discussion of A = 48 system as an opportunity for the
no-core approach with the reintroduction of the core.

Keywords: No Core Shell Model; chiral Hamiltonians; LENPIC interaction;
JISP16 interaction; Petascale computers; Exascale computers

1 Introduction

With continuing advances in leadership-class supercomputers and plans for further
developments leading to Exascale systems [defined as having capabilities for 1018

floating-point operations per second (flops)], theoreticians are developing quantum
many-body approaches that portend a new era of research and discovery in physics
as well as in other disciplines. In particular, the nuclear physics quantum many-
body problem presents unique challenges that include the need to simultaneously
develop (1) strong inter-nucleon interactions with ties to QCD in order to control

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 15.

http://www.ntse-2016.khb.ru/Proc/Vary.pdf.
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the concomitant freedoms; (2) non-perturbative methods that respect all the under-
lying symmetries such as translational invariance; and (3) new algorithms that prove
efficient in solving the quantum many-body problem on leadership-class supercom-
puters. This triad of forefront requirements impels multi-disciplinary collaborations
that include physicists, applied mathematicians and computer scientists.

While the physics goals for computational nuclear structure and reactions may
seem obvious — i. e., retaining predictive power and quantifying the uncertainties —
the opportunities and challenges presented with the continuing rapid development
of supercomputer architectures is less obvious to the broader community; so we will
introduce some of these issues in this work. With the need to develop and apply fully
microscopic approaches to heavier nuclei as well as to include multi-nucleon interac-
tions and coupling to the continuum, even Exascale computers will be insufficient to
meet all our plans. We therefore must also work to develop renormalization schemes
that reduce the computational burden without loss of fidelity to the underlying theory.

2 Strong inter-nucleon interactions linked to QCD

Major theoretical advances have been made in the last few years in developing the
theory of nuclear strong interaction Hamiltonians from the underlying theory QCD
using chiral effective field theory (EFT) [1, 2]. The chiral EFT provides a hierar-
chy of two-nucleon (NN), three-nucleon (3N), four-nucleon (4N) interactions, etc.,
with increasing chiral order where chiral order is defined in terms of a dimensionless
parameter Q/Λ. Here Q represents a characteristic low-momentum scale, which is
frequently taken to be the mass of the pion or the momentum transfer in the case of
scattering, and Λ is the confinement (symmetry breaking) scale of QCD which is usu-
ally in the range of 4–7 times the mass of the pion. Most recently, a new generation
of chiral interactions is becoming available [3,4] that aims for improved consistency of
the NN and multi-N interactions. These developments motivate us to adopt chiral
EFT Hamiltonians in our current and planned applications.

One hallmark of the development of the newest generation of chiral Hamiltonians
is the close collaboration of the few-body teams traditionally leading the Hamilto-
nian developments and the many-body applications teams that have traditionally
been on the receiving end of the Hamiltonians once they are released. This team-
work is exemplified by the Low Energy Nuclear Physics International Collaboration
(LENPIC) [4, 5] which has a workflow portrayed in Fig. 1. In this new paradigm,
there is a close interplay between the Hamiltonian developers and the many-nucleon
applicators so that there is now feedback on important issues such as the choice of
regulators and the determination of the low-energy constants (LECs) that cannot yet
be determined directly from QCD. In principle, this will lead to a selection of the
ingredients in the chiral EFT that are more harmonious with improved convergence
rates, predictive power and quantified uncertainties.

At the present time, only the new chiral NN interactions are available [6] and the
consistent chiral 3N and 4N interactions are under development with an expected
release in 2018. The results with the new chiral NN interactions are very encouraging
yet still indicate the need for consistent 3N interactions to accurately describe the
properties of light nuclei [3, 4]. In order to reach such a conclusion, new methods
of uncertainty quantification were developed and applied [3, 4, 6]. For the purposes
of this work we will adopt alternative state-of-the-art NN interactions to illustrate
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Figure 1: Workflow of the Low Energy Nuclear Physics International Collaboration
(LENPIC) depicting a one-pass effort [5]. Multiple passes through the entire workflow
and/or subareas of the workflow are performed in order to arrive at a final regulated
chiral EFT interaction with quantified uncertainties in the LECs.

calculated nuclear properties and uncertainty quantification with leadership-class su-
percomputers.

3 Ab initio No Core Shell Model

The ab initio No Core Shell Model (NCSM) formulates the nuclear quantum many-
body problem as a non-relativistic Hamiltonian eigenvalue problem in an adopted
basis space [most frequently a harmonic oscillator (HO) basis] where all nucleons in
the nucleus are treated on the same footing [7–14]. This representation of the Hamil-
tonian in a basis, using NN , 3N and 4N interactions, generates a large sparse matrix
eigenvalue problem for which we seek the low-lying eigenvalues and eigenvectors in
order to compare with experimental data and to make testable predictions.
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Since the interactions are strong, inducing short-range correlations, the challenge
is to perform the calculations in a sufficiently large basis to obtain convergence. Al-
ternatively, one may perform a sequence of calculations in ever-increasing basis spaces
and extrapolate the eigenvalues, as well as other observables, to the infinite matrix
limit. We refer to this approach for obtaining the converged results and quantified
uncertainties as the No-Core Full Configuration (NCFC) method.

The reach of the NCFC method with fixed uncertainty is limited by the available
computational resources. To minimize uncertainties while increasing the range of
accessible atomic numbers A, we seek to efficiently use the largest and fastest available
supercomputers.

To achieve this goal within a constantly evolving leadership-class supercomputing
environment (see the following section) requires collaborations of physicists, com-
puter scientists and applied mathematicians. Such collaborations have resulted in a
string of successes in the areas of eigensolver algorithms, memory management and
communications [15–30].

In order to characterize the level of effort required to achieve a target level of
uncertainty, we can take the example of the NCSM/NCFC application to light nuclei
within a HO basis where we employ a many-body cutoff parameter Nmax. Nmax

is defined as the maximum number of HO quanta (summed over the single-particle
states in each basis state) allowed above the minimum needed to satisfy the Pauli
principle. The basis is also constrained by total parity and total angular momentum
projection M . The latter constraint is available since we work in an M -scheme basis
rather than in a basis of good total angular momentum J . With a given choice of M ,
all states of good J ≥ |M | are accessible in the same calculation and we evaluate J in a
post-analysis using the produced eigenfunctions. OnceNmax and the other constraints
are determined, the matrix dimension is known. The left panel of Fig. 2 shows a semi-
log plot of the rapid rise of matrix dimension with Nmax at M = 0 for natural parity
states in a selection of nuclei. In order to obtain convergence for bound states with
realistic interactions (those that accurately describe NN scattering) and achieve a
reasonable uncertainty, we find it highly desirable to have results at Nmax = 10 or
above as indicated by the vertical line in the left panel of Fig. 2.

The right panel of Fig. 2 illustrates a useful measure of the computational effort —
the number of non-zero (NNZ) many-body matrix elements as a function of the matrix
dimension. Here we adopt the same cases shown in the left panel and present the
NNZs for both NN -only calculations and calculations with 3N interactions. Note
that the NNZs rise with nearly linear trajectories on this log-log plot and they are
tightly bunched so as to suggest a reasonable independence of A for each trajectory.
Since the computational effort (consisting of both the time to evaluate and store
the many-body Hamiltonian, and the amount of memory needed) is based primarily
on the NNZs, we can estimate the computational resources needed once the matrix
dimension is known (as in the left panel of Fig. 2) and the interaction is specified.
This process is illustrated by the arrows reaching from the left panel to the right panel
of Fig. 2 for the case of 12C at Nmax = 10 for either a pure NN or a 3N interaction.
With the NNZs fixed, we know whether a given calculation fits within the memory
of the chosen leadership-class supercomputer as indicated by the labels on the two
arrows. With the requirement to store the many-body Hamiltonian in core and to use
it for the diagonalization process on Titan or Mira, we determine that we can solve
for the low-lying spectra of 12C at Nmax = 10 with an NN -only interaction but not
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with 3N interactions. A simple functional form relating the matrix dimension D to
the NNZs for 2-body interactions is [16]

NNZ = D +D1+ 12
14+lnD . (1)

It should be noted that these NCSM/NCFC successes in low-energy nuclear physics
have applications in other areas of strong-interaction physics. For example, Hamilto-
nian methods are gaining popularity in non-perturbative solutions of quantum field
theory [31–41] motivated, in part, by the advances being made by our teams in solving
the ab initio NCSM/NCFC. Recent applications, in what is called the Basis Light-
Front Quantization (BLFQ) approach [31–33], include non-perturbative solutions of
positronium at strong coupling [38, 42–46] and solutions for the mass spectra, de-
cay constants, form factors and vector meson production rates for heavy quarko-
nia [47–54]. Remarkably, results for QED in the BLFQ approach have been achieved
with Hamiltonian matrix dimensions exceeding 18 billion basis states [40, 41].

In addition to the use of relativistic Hamiltonian methods for static properties of
strongly-interacting systems, time-dependent scattering with strong fields in quan-
tum field theory has been introduced and successfully applied using the interaction
picture. This is referred to as the time-dependent BLFQ (tBLFQ) approach [55–58].
In the tBLFQ approach, one first solves the relevant bound state problems in BLFQ
and then evolves the system in light-front time with the possible addition of strong
time-dependent external fields. This quantum time evolution approach leads to the
total scattering amplitude from which projections to specific final channels can be
performed and relativistic observables evaluated. Analogous development and appli-
cations of a time-dependent NCSM approach to non-relativistic strong interaction
problems is underway [59] adapting techniques from tBLFQ.

Following the next two sections devoted to a perspective on supercomputer re-
sources (Section 4) and algorithm improvements (Section 5), we present a selection
of recent results and outline challenges that lie ahead. Our aim with this limited
choice of applications is to complement other presentations at this meeting that cover
closely-related topics. We note especially the papers at this meeting related to the
NCSM/NCFC, new Hamiltonians and NCSM extensions to scattering theory by Shi-
rokov, by Skibinski [60], by Zhao [59], by A. Mazur [61], by I. Mazur [62], and by
Kulikov. We therefore focus here on the following recent results: (1) nuclear binding
energies, excitation energies and magnetic moments of light nuclei with a realistic NN
interaction; (2) construction of effective electroweak interactions for nuclear moments
and transitions; and (3) outline of an approach for calculating A = 48 nuclei for eval-
uating nuclear double beta-decay matrix elements both with and without neutrinos.

4 Leadership-class supercomputers

The list of the world’s top 500 supercomputers is updated every six months [63]
where one observes that China’s TaihuLight has topped the list for the past few cy-
cles. TaihuLight has more than 10 million cores and is rated at 93 PetaFlops or
nearly 1017 floating point operations per second. In the United States, we currently
refer to leadership-class supercomputers as those rated at about one-tenth of the
TaihuLight rating. For the United States, this includes facilities available for general
scientific computing such as Titan at Oak Ridge National Laboratory (rated num-
ber 4 with 17.6 PetaFlops), Cori at Lawrence Berkeley National Laboratory/NERSC
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Figure 3: Sketch of the change in computer architecture providing new levels of
challenges for algorithms and software. The traditional single-level of random-access
memory (RAM) is replaced by a memory hierarchy that, to be used efficiently, requires
careful analysis of data locality and usage intensity.

(rated number 6 with 14 PetaFlops) and Mira at Argonne National Laboratory (rated
number 9 with 8.6 PetaFlops). Researchers using other leadership-class supercom-
puters are also attending this meeting and will likely credit their own facilities while
the results that we present have most frequently been produced on these three above-
mentioned US facilities by our group at Iowa State University and by our collabora-
tors.

Here, we would also like to mention that each facility has a different architecture
and that each architecture requires extensive efforts by physicists, applied mathemati-
cians and computer scientists to enable forefront research with efficient algorithms and
finely-tuned parallel computing codes. For these purposes, we have benefitted greatly
from more than ten years of support from the US Department of Energy’s SciDAC
program [64] that supports the collaborative research on the ab initio NCSM/NCFC
algorithms and codes keeping them competitive over cycles in disruptive architecture
changes. As an illustration of some of the newer architectures, Fig. 3 sketches the
move into hierarchical memories. Multiple communication topologies within nodes
and among nodes further increase the complexities.

While today’s leadership-class supercomputers are certainly impressive technolog-
ical achievements empowering forefront discoveries, there is a race to design, fund
and build even larger machines to reach the Exascale capability level of 1018 float-
ing point operations per second, more than an order of magnitude increase over the
current top supercomputer, TaihuLight, in China. Policies have been announced to
achieve this goal within 5 years. Past experience supports the belief that the tech-
nology will be further disruptive and will require major efforts by the same teams at
work today in order to achieve forefront physics results with algorithms and codes
that run efficiently at Exascale. Those efforts have to begin years before the machine
comes into operation in order to fully capitalize on the major investments to design,
build and operate it. Fortunately, the US Department of Energy is continuing its sup-
port through SciDAC and we can remain optimistic that theoretical nuclear physics
will benefit greatly from the Exascale machine when it is delivered. In the interim,
leadership-class supercomputers with capabilities in the hundreds of PetaFlops are
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under construction now and will become available in 2018–19 to provide an interme-
diate step from the current machines to the Exascale machines and we plan to fully
utilize these new facilities for ab initio nuclear structure and nuclear reactions.

5 Algorithmic improvements for the NCSM/NCFC

Efficient methods to construct and diagonalize the sparse nuclear Hamiltonian of the
ab initio NCSM on leadership-class supercomputers have been implemented in the
software package MFDn (Many Fermion Dynamics for nuclear structure) [19, 21, 28].
MFDn uses the Lanczos algorithm [65, 66] to compute the desired eigenvalues and
eigenvectors. Using the eigenvectors, MFDn then produces additional experimental
observables such as electromagnetic and weak interaction transition rates. There is
flexibility to use only NN interactions or NN plus 3N interactions as an input.

Over the last several years, we have developed a number of techniques to improve
the computational efficiency of MFDn including:

• an efficient scalable parallel scheme for constructing the Hamiltonian matrix
[15],

• efficient data distribution schemes that take into account the topology of the
interconnect [20],

• techniques to overlap communication with computation in a hybrid
MPI/OpenMP programming model [23, 24],

• an efficient scheme to multiply the sparse matrix Hamiltonian with a number
of vectors [29],

• introduction of an accelerated eigensolver that employs a preconditioned block
iterative method [30].

As the number of cores has been increasing dramatically during the past decade,
one faces an increasing challenge to minimize the time spent on inter-processor com-
munications. Among our accomplishments, we developed distribution schemes for
the computations that reduce communication times as illustrated in the left panel of
Fig. 4 where we sketch the distribution of unique partitions of the symmetric matrix
among processors Pij . This distribution achieves a balance of the MPI reduce (and
subsequent broadcast) operations for rows and columns of processors that perform
the matrix–vector multiplies for both the Hamiltonian matrix and its transpose.

The most recent development [30] introduces a new eigensolver into MFDn, the Lo-
cally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm [67].
The use of a block iterative method allows us to improve the memory access pattern
of the computation and make use of approximations to several eigenvectors at the
same time. To make this algorithm efficient, as shown in the right panel of Fig. 4, we
identified an effective preconditioner coupled with techniques to generate good initial
guesses that significantly accelerate the convergence of the LOBPCG algorithm on
large-scale distributed-memory clusters.

Further efforts are underway to speed up communications among nodes and to
develop a post processor for efficiently evaluating transitions between nuclear systems.
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nications during the Lanczos process. Right panel shows improved convergence rates
of the LOBPCG algorithm achieved by preconditioning and by good initialization [30].

The latter is needed for planned calculations of the nuclear matrix elements for double-
beta decay, both with and without neutrinos. Additional efforts are underway to
develop scripts for a broad set of standard applications that facilitate conversion from
one architecture to another.

6 Results for light nuclei with JISP16

In this section, we briefly review selected results for light nuclei using the realistic
JISP16 NN interaction [68, 69] within the NCFC approach [10, 11, 13, 14]. Fig. 5
presents ground state energies for 24 light nuclei in the left panel. While JISP16 was
tuned with phase-equivalent transformations to the properties of nuclei up to A = 7,
it was only approximately tuned to the ground state energy of 16O. It is therefore
not surprising that JISP16 overbinds nuclei at the upper end of the p-shell begin-
ning with A = 10. We note that the recently-developed Daejeon16 NN interaction
succeeds in improving the agreement between theory and experiment for the ground
state energies of the p-shell nuclei as well as other properties of light nuclei [70].

Applications of JISP16 to the Lithium isotopes and the Beryllium isotopes already
have an extensive track record due both to experimental interests and to NCFC ad-
vances that provide results with increasing precision over time. An earlier detailed in-
vestigation of the Lithium isotopes with JISP16 [71] provides NCFC results that serve
as a baseline for recent extensive investigations of 6Li [72] as well as 7Li and 7Be [73].
Among other improvements, these recent works achieve spectral and electroweak prop-
erties in larger model spaces than previously feasible. That is, they provide results
closer to convergence which, upon extrapolation, provide NCFC observables with
diminished uncertainties.

We accumulate a sample of the results for the 6Li extrapolated ground state (g. s.)
energy with the JISP16 interaction in Table 1. Results from both the NCFC and
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Table 1: Dependence on the many-body method, on the extrapolation method, and
on the model space cutoff of the theoretical g. s. energy (in MeV) of 6Li with JISP16.
The results are arranged vertically in chronological order from earliest to most re-
cent. The Nmax cutoff of the NCFC method and the Kmax of the Hyperspherical
Harmonics (HH) method are not directly related except that both should be taken
to infinity to obtain the exact result. For comparison, the experimental 6Li g. s. en-
ergy is −31.995 MeV and the NCFC result with Daejeon16 using results up through
Nmax = 14 is −31.98(2) MeV [70]. For completeness, we note that Ref. [72] quotes an
extrapolated RMS charge radius of 2.28(3) fm for 6Li which is to be compared with
the experimental result of 2.38(3) fm.

NCFC Nmax Ref. HH Kmax Ref.
−31.00(31) 12 [69] −31.46(5) 14 [74]
−31.47(9) 16 [10] −31.67(3) 12 [75]
−31.49(3) 16 [71]
−31.49(6) 16 [13]
−31.42(5) 16 [14]
−31.46(3) 14 [72]
−31.51(3) 16 [72]
−31.53(2) 18 [72]

the Hyperspherical Harmonics (HH) method are included with the reference for each
result quoted. In general, there is a consistency among these results with the possible
exception of the earliest NCFC result extrapolating from the smallest basis space. An-
other exception may be the HH result of Ref. [75] that extrapolated results obtained
with the OLS renormalization (second entry in the HH column). It is interesting to
note that the NCFC results have tended to drift towards increased binding and to-
wards the experimental result as results from larger basis spaces have become available
over time. The difference between the experimental and theoretical g. s. energy is now
at 470(20) keV. It is also interesting to note that the extrapolated root-mean-square
(RMS) radius is tending in the direction of the experimental result (from below) as
the use of larger basis spaces become available [72].

In the right panel of Fig. 5, we present a comparison between theory and exper-
iment for 23 magnetic moments of states in light nuclei, where such a comparison
is feasible. In two cases, we present predictions for comparison with possible future
experiments. We evaluate these magnetic moments using only the bare operator.
Overall, the agreement is good considering the level of the approximation for the
magnetic dipole operator. In the future, we plan to incorporate 2-body current cor-
rections. We anticipate that these corrections will be of the order of a few percent
and will further improve the agreement between theory and experiment. We base
these estimations on the results presented in Ref. [76] where similar differences be-
tween theory and experiment are obtained before 2-body currents are introduced.
Those 2-body currents are found to further improve the agreement between theory
and experiment.

In the previous conference in this series, we reviewed [28] NCFC results for the
Beryllium isotopes with JISP16 where emergent collective motion is evident in the
spectra, magnetic dipole moments, M1 transitions, quadrupole moments and E2
transitions. Recent efforts further support and extend the claims of emergent collec-
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tive rotational behavior in the Beryllium isotopes [77–79]. Multiple rotational bands
have been identified in the NCFC calculations for both natural and unnatural parity.
It is interesting to note that some of the bands are not observed to terminate at
the angular momentum naively expected from nucleons populating the p-shell orbits.
Analysis of extrapolations of the NCFC results provides rotational model parameters
in good agreement with the corresponding parameters extracted from the experimen-
tal data [77–79].

Emergent collective motion also provides inspiration for optimized basis spaces,
basis spaces that offer the promise of accelerating convergence [80–82]. With JISP16
we have investigated truncation schemes based on SU(3) symmetry in p-shell nuclei.
We have found that basis space dimensions can indeed be reduced while incurring
additional computational cost for evaluating the many-body matrix elements in the
SU(3) basis. Developments are ongoing so it will be some time before we know defini-
tively the net gains achievable with selected SU(3) basis spaces. In the meantime, the
more compact SU(3) representation of eigenfunctions promotes our physical intuition
and knowledge of the nuclear underlying symmetries predicted by the ab initio NCFC.

7 Effective electroweak interactions for the NCSM

We now turn attention to the effects that arise when consistent effective electroweak
operators are included. By consistent, we mean that the electroweak operators are
evaluated in the same formalism as the strong interactions employed in the Hamilto-
nian. In the case of interactions from chiral EFT, this implies that the electroweak
operators are also evaluated in chiral EFT to the same chiral order as the strong
interaction.

Here we will provide demonstration cases using only the two-nucleon system for the
present purposes. Specifically, we study the simple case of the g. s. of the deuteron
solved as a matrix eigenvalue problem in the HO basis as a function of the Nmax

truncation. Using the LENPIC NN interaction at chiral N2LO with the regulator
fixed at 1.0 fm [5], we present the deuteron g. s. energy in the upper-left quadrant of
Fig. 6 as a function of Nmax at ~Ω = 20 MeV. As expected the g. s. energy converges
uniformly from above with increasingNmax. In the same panel we show the g. s. energy
results in the Nmax-truncated spaces following renormalization with the Okubo–Lee–
Suzuki (OLS) method [12, 83–85]. The OLS procedure produces the exact ground
state energy to within numerical precision for every truncated model space. This
confirms the method is working as it should and we have numerical stability in our
procedures.

Next, we apply the derived OLS transformation to additional deuteron ground
state observables and display the results in the remaining three panels of Fig. 6. In
each case, we employ only the bare operator in the present demonstration in order to
gauge the size of the effects of truncation without OLS renormalization. For rRMS a
very small basis space results in about a 30% reduction which slowly falls to about 1%
at about Nmax = 40. We stress that these results, as well as those for the other
observables, are dependent on the chosen value of ~Ω which we have taken arbitrarily
to be 20 MeV in the present demonstration.

The quadrupole moment appears to fluctuate in the truncated model spaces which
can be attributed to a sensitivity to having an odd versus an even number of L = 2
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Figure 6: Comparisons of bare operators (solid dots) and OLS-renormalized opera-
tors (green squares) for the g. s. of the deuteron obtained with the LENPIC chiral
N2LO interaction [4] as a function of Nmax in a HO basis with ~Ω = 20 MeV. These
basis parameters define the model space in which the calculation is performed. The
observables include the g. s. energy (upper left panel), RMS radius rRMS (upper right
panel), quadrupole moment Q20 (lower left panel) and magnetic moment µ10 (lower
right panel). All results are plotted as a fractional difference “Fract. Diff.” defined as
(model − exact)/exact. We take the results at Nmax = 400 as the exact results since
they are converged to at least 8 significant digits. The insets present the magnitude
of the fractional difference on a log scale for an extended range of Nmax.

orbitals in the basis space. An even number of L = 2 orbitals produce a larger Q20

result with the bare operator in the truncated basis. This signals that the mixing
generated by the g. s. eigenvector in the truncated basis has favorable phases for
contributions to Q20 with an even number of L = 2 orbitals.

On the other hand, the magnetic dipole operator shown in Fig. 6 reflects minimal
renormalization effects. Note that the scale for these results is only a couple of
percent in the smallest model spaces. This is consistent with a number of many-
body applications that, with increasing model spaces, show the magnetic moments
are well converged in contrast to other long-range observables such as the rRMS , Q20

and B(E2) operators.

For each observable in Fig. 6, the size of the effects in smaller model spaces may, at
first, appear large compared with the systematic study conducted in Ref. [86] showing
long-range operators receive only minor renormalization effects from the OLS proce-
dure. However, it is important to note that our test two-nucleon problem is special
in that we can treat the OLS renormalization exactly for all observables in all model
spaces. This contrasts the cases studied in Ref. [86] where the OLS renormalization
was performed at the two-nucleon level but then applied in many-nucleon systems so
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that the induced many-nucleon correlation contributions to the effective electroweak
operators were neglected. Thus, as was emphasized in Ref. [86], one must be cautious
when drawing conclusions from many-body applications using OLS renormalization
limited to the two-nucleon level.

8 A = 48 in the NCSM with a core approach

There is considerable interest in pushing ab initio nuclear structure and nuclear re-
action methods to heavier nuclei and a number of approaches are under develop-
ment. For the NCSM, the path forward has been defined in a series of efforts [87,88].
Schematically, the approach adopts the NCSM for a chosen core such as 16O or 40Ca in
as large a basis as feasible and uses the OLS renormalization for that basis. An alter-
native would be to use the Similarity Renormalization Group (SRG) method [89–92]
for the NCSM treatment of the adopted Ac nucleon “core” system. In like manner,
one solves the Ac + 1 nucleon and Ac + 2 nucleon systems to obtain the eigenval-
ues and eigenfunctions. With the resulting eigenvalues and eigenfunctions, one then
performs another OLS treatment for the Nmax = 0 space or valence space with 2
nucleons beyond the core to derive an effective 2-valence nucleon interaction. This
valence-only interaction is guaranteed to generate the same results in the Nmax = 0
space as the original NCSM calculation for the Ac+2 nucleon system as demonstrated
in Refs. [87,88]. This logic is straightforwardly extended to derive a 3-valence nucleon
effective interaction or even 4-valence nucleon effective interaction. This process is
illustrated schematically in Fig. 7.

For an application in the pf -shell, such as the A = 48 nuclei, we envision solving
for 40Ca (the core), 41Ca (core + 1) and 42Ca (core + 2) systems in the NCSM
with Nmax = 4. Later, we would include the 43Ca (core + 3) system to obtain
a valence 3-neutron effective interaction. Once the second OLS transformation is
performed we would have the valence single-particle-energies and valence effective
two-body interactions suitable for a standard shell model calculation of 48Ca. Next,
we would seek to confirm that this provides a reasonable description of the properties
of 48Ca. Following that, we would proceed with additional calculations needed to
evaluate the double beta-decays of 48Ca, both with neutrinos and without neutrinos.
Such studies will be valuable for benchmarking other nuclear structure approaches
that are currently in use for evaluating nuclear matrix elements for double-beta decays
in heavier nuclei.

Let us examine a few more of the specifics of the double OLS approach to the
A = 48 nuclei with a particular selection of ingredients. Let us select an NN +NNN
interaction case for the NCSM treatment of 40Ca and the A = 41 and A = 42 nuclei
in the Nmax = 4 space with OLS renormalization. The largest matrix encountered is
that of 42Sc with M -scheme dimension 1, 211, 160, 184 and 54 × 1012 nonzero many-
body matrix elements. We would need to converge a minimum of 60 eigenvalues and
eigenvectors to perform the second OLS transformation needed for the 195 valence
NN interaction matrix elements with good J , T . The reason for the minimum of 60
is that we should obtain those eigenvalues whose eigenvectors have significant overlap
with the pf -space and have the requisite number for each J, T combination. These
calculations seem likely to be feasible with current technologies.
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Figure 7: Schematic of the “double OLS” procedure that first takes results from
a NCSM calculation for a core system, using an OLS procedure for a model space
defined by Nmax, as input to generate an effective interaction among valence nucleons
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max = 0 model space as described in Refs. [87,88]. That is, the OLS procedure
is first applied to derive a NCSM effective interaction for the full A-nucleon system
resulting in the “primary” effective Hamiltonian PHeffP for the chosen no-core basis
space (the “P -space”) indicated on the large square on the right of the figure in its
upper left corner. The OLS procedure is applied again by using the NCSM results
to derive the “secondary” effective Hamiltonian P ′H ′

effP
′ for the valence space (the

P ′-space with the smaller many-body cutoff N ′
max) indicated on the square in the

upper right of the figure.

9 Future prospects

Most of our applications have focused on light nuclei with atomic number A ≤ 16
where our theoretical many-body methods have achieved successes with leadership-
class facilities. However, the frontiers of our field include applications to heavier nuclei
and utilizing new and improved interactions from chiral EFT. At the same time,
we aim to evaluate observables with increasing sophistication using their operators
also derived within chiral effective field theory. We sketched a near-term project for
the A = 48 nuclei. Our approach, which aims to make contact with experimental and
other theoretical efforts in double-beta decay, is but one exciting example of frontier
research with ab initio nuclear theory. Others are also addressed at this same meeting.

We continue to face the dual challenge of advancing the underlying theoretical
physics at the same time as advancing the algorithms to keep pace with the growth
in the size and complexity of leadership-class computers. Recent history of these
efforts, with the substantial support of the funding agencies, indicates we are expe-
riencing a “Double Moore’s Law” rate of improvement — i. e. the Moore’s Law for
hardware improvements and a simultaneous Moore’s Law improvement in the algo-
rithms/software. We value this continued support of the funding agencies which has
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been and continues to be critical for our multi-disciplinary collaborations as well as
their support of the growth in leadership-class facilities. This continued support will
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Irreducible 3-body Force Contributions

to the Self-Energy
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Abstract

The inclusion of three-nucleon forces (3NFs) in ab initio many-body ap-
proaches is a formidable task, due to the computational load implied by the
treatment of their matrix elements. For this reason, practical applications have
mostly been limited to contributions where 3NFs enter as effective two-nucleon
interactions. In this contribution, we derive the algebraic diagrammatic con-
struction (ADC) working equations for a specific Feynman diagram of the self-
energy that contains a fully irreducible three-nucleon force. This diagram is
expected to be the most important among those previously neglected, because
it connects dominant excited intermediate state configurations.

Keywords: Self-consistent Green’s function; algebraic diagrammatic construc-
tion; three-nucleon forces; computational physics; ab initio nuclear theory

1 Introduction

The strong connection between advances in theoretical frameworks and empowering
of the computational resources has emerged as one of the pillars for the future de-
velopment of the nuclear theory [1]. Different methods, such as the no-core shell
model [2], coupled cluster [3], in-medium similarity renormalization group [4] and
self-consistent Green’s function (SCGF) formalism [5, 6], have been extended in re-
cent years by finding efficient algorithms capable to handle the dimensionality of the
nuclear many-body problem. Most of these efforts involved novel developments of
many-body formalism. In the context of the SCGF theory applied to nuclei, dif-
ferent applications are currently explored. For instance, the extension of the SCFG
to encompass the concept of quasiparticle in the sense of the Bogoliubov formalism,
opens the possibility to study the open shell nuclei via the solution of the Gorkov
equation [7]. Another possibility is a description of nuclear states in the continuum,
such as electromagnetic excitations and one-nucleon elastic scattering [8]. Also the
impact of three-nucleon forces (3NFs) on the mechanism of the saturation in nuclear
matter [9] and on the correlations of finite nuclei [10,11] has been extensively studied.

The formalism required for the inclusion of the 3NFs in the SCGF has been laid
down in Ref. [12], where the treatment of the 3NFs in terms of effective (i. e., aver-
aged) one- and two-nucleon forces (2NFs) is described, along with the corresponding

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 36.
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Feynman rules for the perturbative expansion of the single-particle (s.p.) propagator.
However, the working equations for interaction-irreducible 3NFs (i. e., those diagrams
that cannot simplify into effective forces) have not been investigated to date. In this
work we derive the working equations of one such self-energy Feynman diagram that
contains a 3NF insertion not implicitly included in the effective 2NFs. Among the
diagrams featuring interaction-irreducible 3NFs, we focus here on the one which is
believed to be dominant, according to the energy required to excite the intermediate
particle-hole configurations in the diagram. The equations are cast according to the
algebraic diagrammatic construction (ADC) method, a scheme devised in quantum
chemistry and applied for the first time to the perturbative expansions of the two-
particle (polarization) propagator [13] and one-body propagator [14] of finite Fermi
systems. The ADC allows for an efficient organization of different correlation terms in
the description of the self-energy, corresponding to Feynman diagrams with different
topologies such as ladder and ring series. Within this scheme, the nuclear Dyson equa-
tion is reformulated as an energy-independent Hermitian eigenvalue problem. This
simplifies the numerical solution, without resorting to the time-consuming algorithms
that scan the entire energy spectrum in search for each pole separately. The increased
dimensionality of the eigenvalue problem can be kept under control with the help of
large-scale diagonalization algorithms, such as Lanczos or Arnoldi.

We present a brief overview of the SCGF formalism in Section 2, covering the
expressions of the Dyson equation and the irreducible self-energy. In Section 3 we
review the ADC(n) formalism up to orders n = 2 and 3, and we outline the procedure
to find the working equations for the elements for the Dyson matrix [see Eq. (19)
below]. These working equations are given in Section 4.1 for n = 2 and Section 4.2
for n = 3. The formalism at the second order is worked out in full, while at the
third order we limit ourselves to the set of diagrams that involve two-particle–one-
hole (2p1h) and two-hole–one-particle (2h1p) intermediate configurations to illustrate
the approach. In particular, we focus on the interaction-irreducible 3NF Feynman
diagram that was neglected in previous works. Finally, the conclusions are given in
Section 5.

2 Basic concepts of Green’s function theory

In a microscopic approach, the description of the dynamics of nucleus is based on a
realistic interaction among the nucleons, which in principle contains different compo-
nents, from the 2NF sector until the full N -body interaction. Here, we consider up
to 3NFs and start from the nuclear Hamiltonian

Ĥ = T̂ + V̂ + Ŵ , (1)

with T̂ the kinetic energy part, V̂ the 2NF and Ŵ the 3NF.

In order to treat the interaction perturbatively, we introduce the first approxima-
tion, based on the concept of the mean field felt by the nucleons as an effective exter-
nal potential produced by the nuclear medium itself. Accordingly, the Hamiltonian
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is written as

Ĥ =
∑

αβ

h
(0)
αβ a

†
αaβ −

∑

αβ

Uαβ a
†
αaβ +

1

4

∑

αγ
βδ

Vαγ,βδ a
†
αa

†
γaδaβ

+
1

36

∑

αγǫ
βδη

Wαγǫ,βδη a
†
αa

†
γa

†
ǫaηaδaβ, (2)

with ĥ(0) ≡ T̂ + Û being the mean field part, while the remaining terms give the
residual interaction, which is treated in a perturbative way. The mean field part is
given by the sum of the kinetic energy T and the auxiliary potential U , defining the
dynamics of the zeroth-order propagator g(0) introduced below, which is referred to as
a mean-field reference state. In Eq. (2), Vαγ,βδ and Wαγǫ,βδη are the antisymmetrized
matrix elements of the 2N and 3N forces respectively, with the Greek indices α,β,γ, ...
labeling a complete set of s. p. states defining the model space used in the computation.

The peculiarity of the self-consistent Green’s functions approach consists in in-
cluding the solution of the dynamics of the A and A ± 1 nucleons systems from the
start and on the same footing. This information is conveyed by the one-body prop-
agator, or two-point Green’s function. The latter is defined as the matrix element
of the time-ordered product (T ) of an annihilation and creation field operators a(t)
and a†(t) with respect to the fully correlatedA-body wave function |ΨA

0 〉 in the ground
state, i. e.,

gαβ(t− t′) = − i

~
〈ΨA

0 |T
[
aα(t)a†β(t′)

]
|ΨA

0 〉. (3)

The function in Eq. (3) is describing both the propagation of a particle created at
time t′ in the quantum state β and destroyed at a later time t in the quantum state α,
and the propagation of a hole moving in the opposite time direction for t′ > t. This
is why g(τ) also takes the name of one-body propagator.

The time-coordinate representation in Eq. (3) can be Fourier-transformed to the
energy domain in order to obtain the Lehmann representation of the Green’s function,

gαβ(ω) =
∑

n

〈ΨA
0 |aα|ΨA+1

n 〉〈ΨA+1
n |a†β |ΨA

0 〉
~ω − (EA+1

n − EA
0 ) + iη

+
∑

k

〈ΨA
0 |a†β|ΨA−1

k 〉〈ΨA−1
k |aα|ΨA

0 〉
~ω − (EA

0 − EA−1
k ) − iη

, (4)

which contains the relevant spectroscopic informations of the A- and (A± 1)-body
systems, contained in the transition amplitudes,

Xn
β ≡ 〈ΨA+1

n |a†β|ΨA
0 〉 (5)

and

Yk
α ≡ 〈ΨA−1

k |aα|ΨA
0 〉, (6)

which are the overlap integrals related to the probability of adding a particle to an
orbital β or removing it from an orbital α in a system with A particles. In the
following, we will use the common notation,

Zi=n,k
α ≡

{
(Xn

α )∗

Yk
α ,

(7)
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with the index i valid for both forward-in-time (particle attachment) and backward-
in-time (nucleon removal) processes. Note that we use n to denote particle states
and k for hole states. The denominators in Eq. (4) contain also the one-nucleon
addition and removal energies

ε+n ≡ (EA+1
n − EA

0 ) (8)

and
ε−k ≡ (EA

0 − EA−1
k ), (9)

from which one can derive the eigenvalues corresponding to the correlated wave func-
tions |ΨA±1

n 〉, once the ground state energy EA
0 of |ΨA

0 〉 is known. In the following,
we will use the compact notations of Eqs. (5)–(9) to present our equations.

The s. p. Green’s function (4) is completely determined by solving the Dyson
equation,

gαβ(ω) = g
(0)
αβ (ω) +

∑

γδ

g(0)αγ (ω) Σ⋆
γδ(ω) gδβ(ω), (10)

which is a non-linear equation for the correlated propagator, g(ω). The unperturbed
propagator g(0)(ω) is the propagator corresponding to the Hamiltonian h(0) defining
the reference state. The irreducible self-energy Σ⋆(ω) encodes the effects of the nuclear
medium on the propagation and is equivalent to the optical potential for the states
in the continuum [8,15].

The irreducible self-energy can be separated in a term which is time-independent,
Σ∞, and an energy-dependent part Σ̃(ω) containing contributions from the dynamical
excitations given by the intermediate state configurations (ISCs) within the system:

Σ⋆
αβ(ω) = Σ∞

αβ + Σ̃αβ(ω). (11)

An inspection of the Dyson equation (10) shows that the self-energy contains all
the effects on the propagation of the s. p. that go beyond the mean-field description:
for this reason the self-energy can be regarded as an effective potential enriching
the unperturbed propagator with many-body correlations and turning it into the
“dressed” propagator. If the exact Σ⋆(ω) is know, Eq. (10) yields the equivalent of
the exact solution of the Schrödinger equation.

3 ADC formalism as matrix eigenvalue problem

In the following we apply the algebraic diagrammatic construction to the dynamic
(i. e., energy-dependent) part of the irreducible self-energy of Eq. (11). For this pur-

pose, we write Σ̃(ω) in the most general form of its spectral representation,

Σ̃αβ(ω) =
∑

jj′

M†
αj

[
1

~ω1− (E1 + C) + iη1

]

jj′

Mj′β

+
∑

kk′

Nαk

[
1

~ω1− (E1 + D) − iη1

]

kk′

N†
k′β . (12)

At this stage, the expression in Eq. (12) is a formal decomposition defining two types
of matrices with respect to the ISCs j, j′ (k, k′): the coupling matrix Mjα (Nαk),



40 F. Raimondi and C. Barbieri

and the interaction matrix Cjj′ (Dkk′ ) for the forward-in-time (backward-in-time)
part of the self-energy. The coupling matrices couple the initial and final s. p. states
of the propagator to the ISCs, while the interaction matrices C and D contain the
matrix elements of the residual interactions (up to 3NFs) among the ISCs them-
selves. In general, ISCs are multiparticle-multihole excitations resulting from the
same-time propagation of fermion lines within Feynman diagrams. For nucleon ad-
dition, with M + 1 particles and M holes, (M + 1)pMh, their unperturbed energies
are

Ej = ε+n1
+ ε+n2

+ ...+ ε+nM
+ ε+nM+1

− ε−k1
− ε−k2

− ...− ε−kM
, (13)

and similarly for nucleon removal. In the following we will make use of the shorthand
notation for the forward-in-time terms (corresponding to particle attachment)

r, r′ ≡ (n1, n2, k3)

q, q′ ≡ (n1, n2, n3, k4, k5)

}
j j′ (14)

and

s, s′ ≡ (k1, k2, n3)

u, u′ ≡ (k1, k2, k3, n4, n5)

}
k k′ (15)

for the backward-in-time terms (i.e., for particle removal). For instance, j≡(n1, n2, k3)
in the coupling matrix M(n1,n2,k3)α connects a s. p. state α to an intermediate state
composed by a 2p1h configuration. Each ISC gives a different term in Eq. (12), with
the configurations 3p2h, 4p3h and so on pertaining to more complicated, but also
energetically less important, intermediate states.

While the energy-dependence in the self-energy is a direct consequence of the
underlying dynamics in the many-body system, it gives rise to a major computational
bottleneck. In order to find all the poles of the propagator in Eq. (10), one should
scan the energy plane with an extremely fine mesh, therefore the direct search of the
s. p. energies in this way would be costly, with the possibility to leave some solutions
undetected. For this reason it is convenient to rearrange the Dyson equation in a
matrix form independent of energy. This is achieved by introducing the eigenvector

Zi† ≡
(
Zi

δ
† W i

r
† W i

s
† W i

q
† W i

u
† · · ·

)
(16)

with the first component given by the transition amplitudes of Eq. (7). The other

components contain the information on the ISCs propagated through Σ̃(ω) but eval-
uated at the specific quasiparticle energy ε±i of each solution,

W i
j ≡ Wj(ω)|~ω=εi =

∑

j′

[
1

~ω1− (E1+ C)

]

jj′

Mj′δZi
δ

∣∣∣∣∣
~ω=εi

, (17)

and

W i
k ≡ Wk(ω)|~ω=εi =

∑

k′

[
1

~ω1− (E1+ D)

]

kk′

N†
k′δZi

δ

∣∣∣∣∣
~ω=εi

. (18)

The task now is to diagonalize the following matrix, being equivalent to the original
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eigenvalue problem [16],

ǫiZ
i =




ε(0)+Σ∞
αδ M†

αr Nαs M†
αq Nαu · · ·

Mr′α Erδrr′ +Crr′ Cr′q · · ·

N†
s′α Esδss′ +Dss′ Ds′u · · ·

Mq′α Cq′r Eqδqq′ +Cq′q · · ·

N†
u′α Du′s Euδuu′ +Du′u · · ·
...

...
...

. . .




Zi,

(19)
with the normalization condition

∑

αβ

(Zi
α)† Zi

β + (W i
j)

†W i
j + (W i

k)† W i
k + ... = 1. (20)

With the procedure outlined above and the introduction of the eigenvector Zi of
Eq. (16), each energy eigenvalue is now related to an eigenvector of larger dimension.
Once Eq. (19) is diagonalized, its eigenvalues and the first portions of their eigenvec-
tors Zi yield the one-body propagator according to Eq. (4). The severe growth in the
dimension of the Dyson matrix can be handled by projecting the set of the energies
configurations to a smaller Krylov subspace, and then a multi-pivot Lanczos-type
algorithm can be applied as illustrated in Ref. [17].

The ADC is a systematic approach to find expressions for the coupling and in-
teraction matrices appearing in Eq. (19) that include the correlations due to 2NFs,
3NFs, and so on. This is achieved by expanding Eq. (12) in powers of the residual
interaction Û , the 2NF V̂ and 3NF Ŵ and then by comparing the result with the
Goldstone–Feynman perturbative expressions for the self-energy. Formally, we have:

Mjα = M
(I)
jα + M

(II)
jα + M

(III)
jα + ... , (21)

where the term M
(n)
jα is of the nth order in the residual interaction. For the backward-

in-time coupling matrices we have:

Nαk = N
(I)
αk + N

(II)
αk + N

(III)
αk + ... . (22)

The matrices C and D can only be the at first order in the residual interaction, but
they appear also at the denominators in the spectral representation (12). Thus, they
give rise to a geometrical series according to the identity

1

A−B
=

1

A
+

1

A
B

1

A−B
=

1

A
+

1

A
B

1

A
+

1

A
B

1

A
B

1

A
+ ... (23)

for A = ~ω − E and B = C, D.

Using the expressions (21)–(23) in Eq. (12) gives rise to the following expansion



42 F. Raimondi and C. Barbieri

for the energy-dependent irreducible self-energy,

Σ̃αβ(ω) =
∑

j

M
(I)†
αj

[
1

~ω − Ej + iη

]
M

(I)
jβ

+
∑

j

M
(II)†
αj

[
1

~ω − Ej + iη

]
M

(I)
jβ +

∑

j

M
(I)†
αj

[
1

~ω − Ej + iη

]
M

(II)
jβ

+
∑

jj′

M
(I)†
αj

[
1

~ω − Ej + iη

]
Cjj′

[
1

~ω − Ej′ + iη

]
M

(I)
j′β + ...

+
∑

k

N
(I)
αk

[
1

~ω − Ek − iη

]
N

(I)†
kβ

+
∑

k

N
(II)
αk

[
1

~ω − Ek − iη

]
N

(I)†
kβ +

∑

k

N
(I)
αk

[
1

~ω − Ek − iη

]
N

(II)†
kβ

+
∑

kk′

N
(I)
αk

[
1

~ω − Ek − iη

]
Dkk′

[
1

~ω − Ek′ − iη

]
N

(I)†
k′β + ... , (24)

where we show all contributions up to the second and third order. The procedure is
to compare term by term the formal expansion (24) with the calculated Goldstone-
type diagrams. One then extracts the minimal expressions for the matrices M, N, C
and D given in terms of the transitions amplitudes of Eqs. (5)–(6) and the quasipar-
ticle energies of Eqs. (8)–(9), that ensure consistency with the standard perturbative
expansion up to order n. The content of the ADC(n) expansion is far from trivial
when one moves from the second to the third order: in fact the structure of the third-
order terms in Eq. (24) as analytic functions in the energy plane, does not match the
general spectral representation of Eq. (12) which is required for the correct self-energy.
However, once M, N, C and D are found one can insert them in the correct analytical
representation of Eqs. (12) and (19). As a result, the ADC(n) approach will include
selected contributions at order higher than n, as well as all-order non-perturbative
resummations as shown by Eq. (23).

4 ADC equations up to the third order

In this section we collect the building blocks of the ADC at the second order and
present a selected set of coupling and interaction matrices that play a dominant role
at the third order in a sense to be specified in the following discussion.

All diagrams discussed in this work are one-particle irreducible, skeleton and
interaction-irreducible diagrams. When limiting oneself to interaction-irreducible dia-
grams only, one needs to substitute the original one- and two-nucleon residual interac-
tions, −Û an V̂ , by corresponding effective interactions which we label respectively Ũ
and Ṽ and represent diagrammatically as wavy lines. The latter contain averaged
contributions from 3NFs that account for the discarded interaction-reducible dia-
grams. Hence, one reduces the number of perturbative terms (i. e., diagrams) that
need to be dealt with. A detailed exposition of these aspects and the extension of
Feynman rules to the case of many-nucleon interactions is beyond the scope of the
present work. The interested reader is referred to the thorough discussion in Ref. [12].
For the present discussion, we only need to keep in mind that the 2NFs in Figs. 1a
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(a) (b)

Figure 1: One-particle irreducible, skeleton and interaction-irreducible self-energy
diagrams appearing at second order in the perturbative expansion of the self-energy.
The wiggly lines represent the effective 2NF Ṽ containing averaged 3NF components,
while the long-dashed lines represent the interaction-irreducible 3NF, Ŵ .

are effective interactions which contain the most ‘trivial’ contributions of Ŵ in the
sense that they do not require any extension of the formalism and computer codes
previously developed for pure two-body interactions.

4.1 ADC(2) building blocks

At the second order and with 3NFs, the dynamic self-energy is composed by the two
diagrams depicted in Fig. 1. The main topological difference between them is given
by the fact that Fig. 1a propagates 2p1h and 2h1p as intermediate states, whereas the
diagram of Fig. 1b contains irreducible 3NFs that generate 3p2h and 3h2p ISCs. Since
the latter are energetically less favorable, they are expected to play a minor role at the
Fermi surface and to contribute weakly to the total ground state energy. Following
the same argument, we can expect that the third-order diagrams containing 2p1h
and 2h1p ISCs discussed in Section 4.2 (see Fig. 3), are more important than those
with 3p2h and 3h2p configurations at the same order.

To define the ADC(2) approximation scheme, we present the explicit expressions of
the coupling and interaction matrices contained in the diagrams of Fig. 1. Unless oth-
erwise stated, in this section and in the rest of the paper, we adopt the Einstein’s con-
vention of summing over repeated indexes for both model-space s. p. states (α, β, ...)
and the particle and hole orbits (n1, n2, ... , k1, k2, ...). We also use collective indexes
for ISCs according to the notation set in Eqs. (14)–(15) where appropriate.

We show first the expressions for the energy-dependent self-energy of Fig. 1a,

Σ̃
(1a)
αβ (ω) =

1

2
Ṽαǫ,γρ


 ∑

n1,n2,k3

(Xn1
γ Xn2

ρ Yk3
ǫ )∗ Xn1

µ Xn2
ν Yk3

λ

~ω −
(
ε+n1

+ ε+n2
− ε−k3

)
+ iη

+
∑

k1,k2,n3

Yk1
γ Yk2

ρ Xn3
ǫ (Yk1

µ Yk2
ν Xn3

λ )∗

~ω − (ε−k1
+ ε−k2

− ε+n3
) − iη


Ṽµν,βλ. (25)
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and in Fig. 1b,

Σ̃
(1b)
αβ (ω) =

1

12
Wαγδ,ξτσ




∑

n1,n2,n3

k4,k5

(Xn1

ξ Xn2
τ Xn3

σ Yk4

δ Yk5
γ )∗ Xn1

µ Xn2
ν Xn3

λ Yk4
ρ Yk5

η

~ω −
(
ε+n1

+ ε+n2
+ ε+n3

− ε−k4
− ε−k5

)
+ iη

+
∑

k1,k2,k3
n4,n5

Yk1

ξ Yk2
τ Yk3

σ Xn4

δ Xn5
γ (Yk1

µ Yk2
ν Yk3

λ Xn4
ρ Xn5

η )∗

~ω − (ε−k1
+ ε−k2

+ ε−k3
− ε+n4

− ε+n5
) − iη


Wµνλ,βηρ. (26)

These expressions at the second order in the Feynman–Goldstone perturbative ex-
pansion, already match the second-order terms in the analogous expansion of the
self-energy [the first and fourth lines in Eq. (24)]. Since they are already in the
correct form of the spectral representation, Eq. (12), it is easy to read the coupling
matrices at the ADC(2) level directly from them. In the first line of Eq. (25), we find
the coupling matrix

M
(I-2N)
(n1n2k3)α

≡ 1√
2
Xn1

µ Xn2

ν Yk3

λ Ṽµν,αλ, (27)

while in the backward-in-time part [the second line of Eq. (25)] we have

N
(I-2N)
α(k1k2n3)

≡ 1√
2
Ṽαλ,µν Yk1

µ Yk2

ν Xn3

λ , (28)

that couples the s. p. states to the 2h1p propagator through an effective 2NF. Both
these coupling matrices can be depicted as fragments of Goldstone diagrams, as shown
in Figs. 2a and 2c.

The matrix coupling to 3p2h ISCs is found from Eq. (26) and comes from the
diagram of Fig. 1b,

M
(I-3N)
(n1n2n3k4k5)α

≡ 1√
12

Xn1

µ Xn2

ν Xn3

λ Yk4

ρ Yk5

η Wµνλ,αηρ , (29)

(a) (b)

(c) (d)

Figure 2: Diagrams of the ADC(2) coupling matrices containing effective 2N interac-

tion Ṽ (left column) and interaction-irreducible 3NF Ŵ (right column). The coupling
matrices (a) and (c) connect with 2p1h and 2h1p ISCs respectively (see Eqs. (27,28)),
while the coupling matrices (b) and (d) connect with 3p2h and 3h2p ISCs respectively

[see Eqs. (29)–(30)]. The diagrams 2a and 2b contribute to M(I), while 2c and 2d

contribute to N(I).
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while the coupling matrix to 3h2p ISCs has the following expression:

N
(I-3N)
α(k1k2k3n4n5)

≡ 1√
12
Wαηρ,µνλ Yk1

µ Yk2

ν Yk3

λ Xn4

ρ Xn5

η . (30)

Their representation as fragments of Goldstone diagrams is given in Figs. 2b and 2d,
respectively.

All four expressions of Eqs. (27)–(30) are building blocks of the ADC(2). These
complete the set of coupling matrices needed to reproduce the second order terms
(the first and fourth rows) in Eq. (24) and no interaction matrix is needed at this
order. Hence, the ADC(2) working equations are finally summarized by Eq. (13) and
the following expressions:

M
(I)
jα =

{
M(I-2N)

rα for j = r = (n1n2k3),

M(I-3N)
qα for j = q = (n1n2n3k4k5),

(31)

N
(I)
αk =

{
N(I-2N)

αs for k = s = (k1k2n3),

N(I-3N)
αu for k = u = (k1k2k3n4n5),

(32)

Cjj′ = 0, (33)

Dkk′ = 0. (34)

In ADC(2), the coupling matrices are linked directly without any intermediate inter-
action insertion, therefore the interaction matrices C and D in Eqs. (33)–(34) are set
to zero. As we show below, this is not anymore true for ADC(3), where the interaction
matrices C and D no longer vanish and give rise to infinite (and non-perturbative)
resummations of diagrams.

4.2 ADC(3) building blocks with 2p1h and 2h1p ISCs

The perturbative expansion of the self-energy generates 17 interaction-irreducible
Feynman diagrams at the third order [12]. Of these, only the three shown in Fig. 3
propagate at most 2p1h and 2h1p ISCs, whereas the remaining diagrams (not shown
here) entail at least some contribution from the 3p2h or 3h2p configurations. More-
over, Figs. 3a and 3b are the sole diagrams that do not involve any interaction-
irreducible 3N term. Given that the three-body forces are weaker for most systems
than the corresponding two-body ones1, we expect that the contributions of Fig. 3a
and 3b are the most important and that the diagram 3c is the next in order of
relevance, while the remaining 14 diagrams will not be dominant. In this section,
we present the explicit expressions of the coupling and interaction matrices entering
the ADC(3) formalism at the third order, as derived from the three aforementioned
diagrams.

As for the second order, a set of expressions for the matrices M, N, C, D and E
at ADC(3) is obtained from the direct comparison between the equations of the
Feynman diagrams of Fig. 3, with the general form of the self-energy in Eq. (24).
The different terms can be organized according to the kind of interactions appearing
in their contribution. For instance, the diagrams 3a and 3b give contributions to the
coupling matrices M(II) and N(II) that involve two effective 2N interactions and will
be labelled with a “2N 2N” superscript.

1For nuclear physics, one may estimate that < Ŵ >≈
1

10
< V̂ > [18, 19].
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(a) (b) (c)

Figure 3: Three one-particle irreducible, skeleton and interaction-irreducible self-
energy diagrams appearing at third order in the perturbative expansion of Σ̃(ω).
Only the third-order diagrams with at most 2p1h and 2h1p intermediate states are
shown.

Figures 3a and 3b generate all order summations of ladder and ring diagrams,
respectively. These contain only effective 2NFs and their ADC(3) equations are well
known [14,16]. Hence, we simply state the results here. The forward-in-time coupling
matrix arising from Fig. 3a is given by

M
(2N 2N a)
(n1n2k3)α

≡ 1

2
√

2

Xn1
ρ Xn2

σ Ṽρσ,γδ Yk4
γ Yk5

δ

ε−k4
+ ε−k5

− ε+n1
− ε+n2

(Yk4

µ Yk5

ν )∗ Yk3

λ Ṽµν,αλ. (35)

The ring diagram of Fig. 3b gives rise to the forward-in-time coupling matrix,

M
(2N 2N b)
(n1n2k3)α

=
1√
2

(
Xn2

σ Yk3

δ Ṽσρ,δγ Yk5
γ Xn4

ρ

ε−k3
− ε+n2 + ε−k5

− ε+n4

Xn1

µ (Yk5

ν Xn4

λ )∗ Ṽµν,αλ

−
Xn1

σ Yk3

δ Ṽσρ,δγ Yk5
γ Xn4

ρ

ε−k3
− ε+n1

+ ε−k5
− ε+n4

Xn2

µ (Yk5

ν Xn4

λ )∗ Ṽµν,αλ

)
, (36)

which is explicitly antisymmetrized with respect to the n1 and n2 fermion lines. The
diagrammatic representations of the two coupling matrices of Eqs. (35) and (36) are
depicted in Figs. 4a and 4b, respectively.

For the same self-energy diagrams of Figs. 3a and 3b but from the backward-in-
time Goldstone diagrams, we find the coupling matrices

N
(2N 2N a)
α(k1k2n3)

≡ 1

2
√

2
Ṽαλ,µν Xn3

λ (Xn4

µ Xn5

ν )∗
Xn4

ρ Xn5
σ Ṽρσ,γδ Yk1

γ Yk2

δ

ε−k1
+ ε−k2

− ε+n4
− ε+n5

(37)

and

N
(2N 2N b)
α(k1k2n3)

≡ 1√
2

(
Ṽαλ,µν (Yk5

λ )∗ Yk1

µ (Xn4

ν )∗
Xn4

σ Yk5

δ Ṽσρ,δγ Yk2
γ Xn3

ρ

ε−k2
− ε+n3

+ ε−k5
− ε+n4

−Ṽαλ,µν (Yk5

λ )∗ Yk2

µ (Xn4

ν )∗
Xn4

σ Yk5

δ Ṽσρ,δγ Yk1
γ Xn3

ρ

ε−k1
− ε+n3

+ ε−k5
− ε+n4

)
. (38)

Their diagrammatic representation is displayed in Figs. 4c and 4d respectively, where
it is clear that they are linked to the 2h1p propagators.
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(a) (b)

(c) (d)

Figure 4: Diagrams of the ADC(3) coupling matrices with two effective 2NFs Ṽ
that link to 2p1h ISCs (first row) and 2h1p ISCs (second row). The coupling matri-
ces (a) and (b) correspond to Eqs. (35), (36), while the coupling matrices (c) and (d)
correspond to Eqs. (37), (38).

The interaction matrices are found by comparing the third order Goldstone di-
agrams with double poles to the third and sixth lines of Eq. (24). The interaction
matrix connecting 2p1h propagators through a particle-particle (pp), ladder interac-
tion is

Cpp
(n1n2k3),(n4n5k6)

≡ 1

2
Xn1

µ Xn2

ν Ṽµν,λρ (Xn4

λ Xn5

ρ )∗ δk3k6
, (39)

while the one connecting through particle-hole (ph) rings is composed by four terms
that arise from the antisymmetrization with respect to the n1 and n2 particles to the
left and the n4 and n5 ones to the right,

Cph
(n1n2k3),(n4n5k6)

=
1

2

(
Xn2

ν Yk3

ρ Ṽµν,λρ (Xn5

λ Yk6

µ )∗ δn1n4

−Xn2

ν Yk3

ρ Ṽµν,λρ (Xn4

λ Yk6

µ )∗ δn1n5

−Xn1

ν Yk3

ρ Ṽµν,λρ (Xn5

λ Yk6

µ )∗ δn2n4

+Xn1

ν Yk3

ρ Ṽµν,λρ (Xn4

λ Yk6

µ )∗ δn2n5

)
. (40)

In the backward-in-time self-energy Goldstone diagrams, the interaction matrices
connecting 2h1p propagators through a hole-hole (hh) interaction lead to

Dhh
(k1k2n3),(k4k5n6) ≡ −1

2
(Yk1

µ Yk2

ν )∗ Ṽµν,λρ Yk4

λ Yk5

ρ δn3n6
, (41)

while the one connecting through a hole-particle (hp) interaction gives

Dhp
(k1k2n3),(k4k5n6)

=
1

2

(
(Yk2

µ Xn3

ρ )∗ Ṽµν,λρ Yk5

λ Xn6

ν δk1k4

− (Yk2

µ Xn3

ρ )∗ Ṽµν,λρ Yk4

λ Xn6

ν δk1k5

− (Yk1

µ Xn3

ρ )∗ Ṽµν,λρ Yk5

λ Xn6

ν δk2k4

+ (Yk1

µ Xn3

ρ )∗ Ṽµν,λρ Yk4

λ Xn6

ν δk2k5

)
. (42)
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We now turn to the Feynman diagram of Fig. 3c, which is the focus of the present
work. To our knowledge, the ADC formulas arising from this term have not been
presented before. The Feynman rules give the following expression for it:

Σ
(3c)
αβ (ω) = − (~)4

4

∫
dω1

2πi

∫
dω2

2πi

∫
dω3

2πi

∫
dω4

2πi

∑

γδνµǫλ
ξηθστχ

Ṽαγ,δν gξγ(ω3) gνλ(ω − ω1 + ω3)

× gδǫ(ω1)Wµǫλ,ξηθ gθτ(ω − ω2 + ω4) gησ(ω2) gχµ(ω4) Ṽστ,βχ. (43)

By performing the four integrals in the complex plane, we find six terms corresponding
to the different time orderings of three interactions. Altogether we obtain

Σ
(3c)
αβ (ω) =

1

4

∑

γδνµǫλ
ξηθστχ

Ṽαγ,δν Wǫλµ,ηθξ Ṽστ,βχ

×


−

∑

n1n2k3

n4n5k6

(Xn1

δ Xn2
ν Yk3

γ )∗ Xn1
ǫ Xn2

λ Yk3

ξ (Xn4
η Xn5

θ Yk6
µ )∗ Xn4

σ Xn5
τ Yk6

χ(
~ω − (ε+n1

+ ε+n2
− ε−k3

) + iη
)(
~ω − (ε+n4

+ ε+n5
− ε−k6

) + iη
)

+
∑

k1k2n3

n4n5k6

Yk1

δ Yk2
ν Xn3

γ (Yk1
ǫ Yk2

λ Yk6
µ Xn4

η Xn5

θ Xn3

ξ )∗ Xn4
σ Xn5

τ Yk6
χ(

ε−k1
+ ε−k2

+ ε−k6
− ε+n3

− ε+n4
− ε+n5

)(
~ω −

(
ε+n4

+ ε+n5
− ε+k6

)
+ iη

)

+
∑

k1k2n3

n4n5k6

(Xn4

δ Xn5
ν Yk6

γ )∗ Xn4
ǫ Xn5

λ Xn3
µ Yk1

η Yk2

θ Yk6

ξ (Yk1
σ Yk2

τ Xn3
χ )∗

(
~ω −

(
ε+n4

+ ε+n5
− ε−k6

)
+ iη

)(
ε−k1

+ ε−k2
+ ε−k6

− ε+n3
− ε+n4

− ε+n5

)

−
∑

k1k2n3

k4k5n6

Yk1

δ Yk2
ν Xn3

γ (Yk1
ǫ Yk2

λ Xn3

ξ )∗ Yk4
η Yk5

θ Xn6
µ (Yk4

σ Yk5
τ Xn6

χ )∗
(
~ω − (ε−k1

+ ε−k2
− ε+n3) − iη

)(
~ω − (ε−k4

+ ε−k5
− ε+n6) − iη

)

−
∑

k1k2n3

n4n5k6

Yk1

δ Yk2
ν Xn3

γ (Yk1
ǫ Yk2

λ Yk6
µ Xn4

η Xn5

θ Xn3

ξ )∗ Xn4
σ Xn5

τ Yk6
χ(

~ω −
(
ε−k1

+ ε−k2
− ε+n3

)
− iη

)(
ε−k1

+ ε−k2
+ ε−k6

− ε+n3
− ε+n4

− ε+n5

)

−
∑

k1k2n3

n4n5k6

(Xn4

δ Xn5
ν Yk6

γ )∗ Xn4
ǫ Xn5

λ Xn3
µ Yk1

η Yk2

θ Yk6

ξ (Yk1
σ Yk2

τ Xn3
χ )∗

(
ε−k1

+ ε−k2
+ ε−k6

− ε+n3
− ε+n4

− ε+n5

)(
~ω −

(
ε−k1

+ ε−k2
− ε−n3

)
− iη

)


,

(44)

where the first (last) three terms correspond to forward-in-time (backward-in-time)
Goldstone diagrams.

By comparing to the third order terms in Eq. (24), one sees that the new con-
tributions to the coupling matrices contain one effective 2NF and one interaction-
irreducible 3NF. The following forward-in-time matrix can be singled out from either
the second or third line of Eq. (44),

M
(2N 3N a)
(n1n2k3)α

≡ 1

2
√

2

Xn4

ξ Xn1
ρ Xn2

σ Wξρσ,ζηθ Yk3

ζ Yk5
η Yk6

θ

ε−k3
+ ε−k5

+ ε−k6
− ε+n1

− ε+n2
− ε+n4

(Yk5

µ Yk6

ν Xn4

λ )∗ Ṽµν,αλ , (45)
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(a) (b)

Figure 5: Diagrams of the ADC(3) coupling matrices with one effective 2NF Ṽ and
one interaction-irreducible 3NF Ŵ . The coupling matrix (a) is linked to 2p1h ISCs
and corresponds to Eq. (45), while (b) is linked to 2h1p ISCs and corresponds to
Eq. (46).

while in the last two lines of Eq. (44) we read the backward-in-time coupling matrix:

N
(2N 3N a)
α(k1k2n3)

≡ − 1

2
√

2
Ṽαλ,µν (Yk4

λ Xn5

µ Xn6

ν )∗
Xn3

ρ Xn5
σ Xn6

ξ Wρσξ,θζη Yk4

θ Yk1

ζ Yk2
η

ε−k1
+ ε−k2

+ ε−k4
− ε+n3

− ε+n5
− ε+n6

.

(46)
The diagrammatic representations of Eqs. (45) and (46) are displayed in Fig. 5.

The only interaction matrix that connects 2p1h ISCs through a 3NF is found from
the first term of Eq. (44),

C3N
(n1n2k3),(n4n5k6) ≡ −1

2
Xn1

ν Xn2

µ Yk3

ρ Wνµλ,ǫηρ (Xn4

ǫ Xn5

η Yk6

λ )∗, (47)

which is explicitly antisymmetric in the particle indexes. With Eqs. (47) and (27) we
can rewrite the first term of Eq. (44) as

M†(I-2N)
αr

1

~ω − Er
C3N

rr′
1

~ω − Er′
M

(I-2N)
r′β . (48)

The expression (48) contains only the first order contribution in the interaction matrix
expansion corresponding to the second term in the r. h. s. of Eq. (23) for B = C3N .
This is resummed to all order by diagonalizing the Dyson matrix (19), which will
automatically include all the higher order terms in the expansion.

From the fourth term of Eq. (44), we single out the only backward-in-time inter-
action matrix connecting two 2h1p configurations through the 3N interaction, that is

D3N
(k1k2n3),(k4k5n6) ≡ −1

2
(Yk1

ν Yk2

µ Xn3

ρ )∗Wνµλ,ǫηρ Yk4

ǫ Yk5

η Xn6

λ , (49)

which is also explicitly antisymmetric in the hole indexes. With Eqs. (49) and (28)
we associate the fourth term of Eq. (44) to rewrite it as

N(I-2N)
αs

1

~ω − Es
D3N

ss′
1

~ω − Es′
N

†(I-2N)
s′β . (50)

We stress again the fact that Eq. (50), being a first-order term in D3N , is resummed
with all other higher order contributions when solving the Dyson equation.

Finally, the ADC(3) working equations for the set of Feynman diagrams in Fig. 3
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is summarized by the following expressions:

M
(II)
jα = M

(2N 2N a)
(n1n2k3)α

+ M
(2N 2N b)
(n1n2k3)α

+ M
(2N 3N a)
(n1n2k3)α

, (51)

N
(II)
αk = N

(2N 2N a)
α(k1k2n3)

+ N
(2N 2N b)
α(k1k2n3)

+ N
(2N 3N a)
α(k1k2n3)

, (52)

Cjj′ = Cpp
(n1n2k3),(n4n5k6)

+ Cph
(n1n2k3),(n4n5k6)

+ C3N
(n1n2k3),(n4n5k6), (53)

Dkk′ = Dhh
(k1k2n3),(k4k5n6) + Dhp

(k1k2n3),(k4k5n6)
+ D3N

(k1k2n3),(k4k5n6). (54)

At the third order, besides the equations summarized above, there are the coupling
and interaction matrices imposed by the remaining 14 one-particle irreducible, skele-
ton and interaction-irreducible self-energy diagrams, which are topologically distinct
from Fig. 3 [12]. The expressions of the coupling and interaction matrices derived
from all these diagrams contribute to the 3p2h and 3h2p sectors of Eq. (19) [20].

5 Summary and outlook

We have shown the working equations for the ADC(3) formalism applied to the ir-
reducible self-energy in the SCGF formalism with 2NFs and 3NFs. This formalism
allows an efficient and accurate numerical implementation for the solution of the
Dyson equation, which is recast as an energy eigenvalue problem. Moreover, within a
given order, the matrix form of the Dyson equation allows the infinite resummation
of certain classes of diagrams, specifically ladder and ring diagrams, preserving the
non-perturbative nature of the SCGF approach.

The minimal expressions for both coupling and interaction matrices required to
conform to the structure of the self-energy as analytic function in the energy plane,
have been revisited completely at the ADC(2) level. We have displayed the most
important terms at the third order, and we derived for the first time the coupling and
interaction matrices of the Feynman diagram in Fig. 3c containing one interaction-
irreducible 3NF. This term is relevant because it is the only irreducible 3NF insertion
that links to the dominant ISCs in the self-energy, that is 2p1h and 2h1p intermediate
excitations. The complete ADC(3) working equations for the Dyson SCGF approach
will be presented in a forthcoming publication [20], while the extension of the Gorkov
SCGF formalism of Ref. [7] to ADC(3) is a part of future plans.
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Abstract

An influence of short-range correlations in nuclei is investigated with realis-
tic nuclear force. The nucleon-nucleon interaction is renormalized with Vlow-k

technique and applied to Green’s function calculations. The Dyson equation is
reformulated using algebraic diagrammatic constructions. We also analyze the
4He binding energy calculated with chiral and CD-Bonn potentials. The prop-
erties of Green’s function with realistic nuclear forces are also discussed.

Keywords: Green’s function, ab initio calculations, realistic nuclear forces

1 Introduction

A recent research on theoretical descriptions of nuclear structure has shown that cor-
relations beyond Hartree–Fock (HF) play a significant role. High-resolution nucleon
knockout reaction (e, e′p) experiments indicate a probability of a dilution phenomenon
in particle occupancy around the Fermi surface. The HF approach is a mean-field
method in which the ground state of the system is described with a single Slater
determinant and particles occupy only the orbitals below the Fermi surface. Many
attempts to account for correlations beyond HF have been made, such as the Jastrow
method, configuration interaction methods including the random phase approxima-
tion (RPA), the many-body perturbation theory (MBPT), the Bruckner Hartree–Fock
(BHF), and the Green’s function method.

A development of modern nuclear forces makes it possible to investigate nuclear
structure from first principles and perform microscopic calculations with realistic nu-
clear forces [1]. Although we already have many theoretical methods to study exotic
nuclear structures, such as the projected shell model [2] and other phenomenological
models [3–6], a microscopic description of nucleus is of great importance for studying
fundamental problems in nuclear structure and nuclear forces. The nature of the inter-
nucleon force is determined by symmetries of the two-nucleon system; the parameters
such as coupling constants and other physical parameters, are fitted to reproduce
low-energy phase shifts. Usually, however, realistic nuclear forces cannot be exploited
directly in nuclear structure calculations because of their strong short-range repulsive
nature. Various methods have been tried to make realistic forces better adjusted for
many-body calculations, such as the energy-dependent Bloch–Horowitz method, the

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 52.
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Lee–Suzuki transformation [7], the unitary model operator approach (UMOA) [8],
and the G-matrix method. In the present study we use realistic nuclear forces for the
Green’s function calculation of 4He. The difference between the calculations with the
CD-Bonn and chiral nuclear N3LO forces is discussed herein.

2 Green’s function method

Ab initio self-consistent calculations within the Green’s function method have made
a great progress since the late 1990s [9]. A brief review of the Green’s function theory
for many-body systems follows.

Suppose that one has the ground state of a N -particle system, |Φ0〉. The one-
particle Green’s function is defined as

Sαβ(t1 − t2) = 〈Φ0|T
[
aα(t2)a†β(t1)

]
|Φ0〉, (1)

where T is the time ordering operator and aα(t) is an operator in the Heisenberg
picture:

aα(t) = exp(iHt) aα exp(−iHt). (2)

The single-particle propagator can be written as

Gαβ(t1 − t2) =

{
〈Φ0|aαei(Ĥ−E0)(t1−t2)a†β |Φ0〉, t1 ≥ t2

−〈Φ0|a†βe−i(Ĥ−E0)(t1−t2)aα|Φ0〉, t1 < t2
(3)

One can calculate an expectation value of a single-particle operator by the single-
particle propagator,

〈nα〉 = − lim
t→+0

Gαβ(t). (4)

We use an energy representation of the Green’s function Gαβ(ω) which is the
Fourier transformation of Gαβ(t). If we choose the Hartree–Fock basis as a starting
point, the Green’s function is given by the Dyson equation

Gαβ(ω) = GHF
αβ (ω) +GHF

αγ1
(ω) Σγ1γ2

(ω)Gγ2β(ω) (5)

with

GHF
αβ =

[
Θ(α− F )

ω − ǫα + iη
+

Θ(F − α)

ω − ǫα − iη

]
δαβ , (6)

where GHF is a free Green’s function built with Hartree–Fock single-particle energies,
and the self-energies Σ(ω) are defined as sums of all one-particle irreducible diagrams
(which account for all corrections from other particles [10]). In self-consistent Green’s
function calculations, the self-energies constructed using fully dressed Green’s func-
tions, are defined as

Σ(ω)ab =
1

2

∑

γδµ

∫
dω1

2πi

∫
dω2

2πi
〈aδ|V |γµ〉〈γµ|V |bδ〉 gγ(ω − ω1 + ω2) gδ(ω1) gµ(ω2).

(7)
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Figure 1: Second order self-energy: a) 2p1h and
b) 2h1p contributions. The wavy line represents
the interaction vertex and the solid line is the
Green’s function.

In the Lehmann representation, the Green’s function can be written as

Gαβ(ω) =

∫
d(t− t′) eiω(t−t′)G(t, t′)

=
∑

n

〈Φ0|cα|ΦN+1
n 〉〈ΦN+1

n |c†β |Φ0〉
ω + EN

0 − EN+1
n + iη

+
∑

m

〈Φ0|c†α|ΦN−1
m 〉〈ΦN−1

m |cβ |Φ0〉
ω + EN−1

0 − EN
0 − iη

=
∑

n

Xn
αX

n∗
β

ω − ω+ + iη
+
∑

m

Xm
α X

m∗
β

ω − ω− − iη
. (8)

The first term includes a spectroscopic factor indicating the transition from (A+ 1)
to A, and the second term corresponds to the transition from A to A− 1. The inner
structure of the self-energy contains all one-body irreducible diagrams and cannot be
calculated exactly; the self-energy is calculated perturbatively using the HF propaga-
tor (see Fig. 1). Hereon the Dyson equation can be solved.

The expectation values of single-particle operators can be calculated as

〈Ψ0|Ô|Ψ0〉 =

∫

C

dω

2πi

∑

αβ

〈α|Ô|β〉Gαβ(ω), (9)

where the integration contour encompasses all poles of the Green’s function below the
Fermi surface (Fig. 2). The particle number conservation is not guaranteed since the
self-energy is not calculated with the fully-dressed Green’s function.

We calculate the self-energy to the second order and use the algebraic diagram-
matic construction (ADC) method to transform the Dyson equation to an eigenvalue
problem (details can be found in Ref. [11]),




H0 aT AT

a e 0
A 0 E






X
XP

XQ


 = ωn




X
XP

XQ


, (10)

C

f

Im( )

Re( )

Figure 2: Integration
contour for one-body
operators wraps the
upper half plain en-
compassing all poles
below the Fermi sur-
face εf.
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where H0 is the diagonal matrix of Hartree–Fock energies, a is the coupling between
single particles,

aiα = 〈αh|V |p1p2〉, (11)

P is the space spanned by all 2p1h states |p1p2h〉i, and A is the coupling to the Q
space spanned with all 2h1p states |h1h2p〉j ,

Ajα = 〈αp|V |h1h2〉. (12)

Respectively, e = diag{e(p1,p2,h)
i } and E = diag{e(h1,h2,p)

i } are the unperturbed en-
ergies in the P and Q spaces. By solving the secular equation (10), one obtains the
pole ωn and corresponding spectroscopic amplitudes Xn defined in Eq. (8)

3 Renormalization of bare nuclear forces

Since 1980s, several modern nuclear forces have been developed based on the funda-
mental symmetries of nuclear interaction. The local potential Argonne V18 [12] is
established with all two-body operators that obey the symmetries of angular momen-
tum, parity, and isospin. The parameters are fitted to reproduce low-energy phase
shifts and the deuteron binding energy. The CD-Bonn potential [13] is defined in
the momentum space and based on the one-boson-exchange mechanism. Chiral in-
teractions are built upon the chiral symmetry breaking of low-energy QCD [14,15].
The soft potential JISP is based on the inverse scattering method [16,17]. All realis-
tic nuclear forces have a similar long-range behavior as they are fitted to low-energy
phase shifts (typically up to 350 MeV). The short-range parts of nuclear forces can
be however different. A nuclear system is typically dominated by the long-range and
intermediate-range parts of nuclear forces. However the couplings between different
energy scales of the nuclear force need to be treated properly in order to preserve
the symmetries and favour a better perturbation behavior in the system. Some bare
forces can be considered as already renormalized [18] and therefore can be directly
applied to nuclear structure calculations.

Advanced computer resources make it possible to use bare NN forces in ab initio
calculations within large model spaces. However the computational burden is re-
markably reduced by using renormalization procedures without losing the low-energy
physics. Several renormalizing techniques are available. TheG-matrix [19,20] sums up
the ladder diagrams to infinite orders. The similarity renormalization group(SRG) [21]
uses a series of similarity transformations to reduce off-diagonal matrix elements that
are responsible for the coupling between the low-energy and high-energy components
of nuclear forces. The unitary correlation operator method (UCOM) [22,23] intro-
duces short-range central and tensor correlations into the uncorrelated many-body
states by a unitary transformation. The Vlow-k approach uses the Lee–Suzuki trans-
formation to decouple the high and low momenta in nuclear forces. By utilizing the
similarity transformation, the effective interaction can be decoupled into low- and
high-momentum parts thus leading to a faster convergence of calculations. However,
the reduction of the model space always generates many-body forces originating from
the high-momentum contributions of nuclear force. It has been found that the effects
of induced many-body forces are dependent on the model space cutoff. One may
find an optimal truncation to neglect the many-body forces. In the present study,
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we use the N3LO and CD-Bonn forces. The NN potential is renormalized with the
Okamoto–Lee–Suzuki transformation in momentum space [24].

Let H be a full Hamiltonian H with a set of eigenvalues Ek and eigenvectors |k〉,

H |k〉 = Ek|k〉. (13)

In practice, H is the Hamiltonian of a certain channel in momentum space or center-
of-mass harmonic oscillator basis. The main purpose is to choose a model space P
spanned with d vectors |αP 〉 and the complementary space Q spanned by |αQ〉,
P +Q = 1. We seek for a unitary transformation H = e−ωHeω resulting in zero
coupling between P and Q spaces, i. e.,

Qe−ωHeωP = 0. (14)

Equation (14) is the decoupling condition; the transformation operator ω is known
as a correlation operator which is determined by solving Eq. (14). According to the
definition of ω that recovers the Q-space component from the projected wave function,
one has

PωP = QωQ = PωQ = 0, ω2 = 0, (15)

and a linear form of the transformation is eω = 1 + ω. Due to the decoupling equa-
tion, the effective low-energy interaction which reproduces the d states of the full
Hamiltonian, can be written as

PHP = EkP |k〉,
ωP |k〉 = Q|k〉. (16)

To obtain ω explicitly, one can use

〈αQ|k〉 =
∑

αP

〈αQ|ω|αP 〉〈αP |k〉. (17)

One can find that ω is just a wave operator and corresponds to infinite order
corrections to the projected wave function in perturbation. In matrix form, one can
rewrite ω in terms of vector components generated by a diagonalization of the full
Hamiltonian,

〈αQ|ω|αP 〉 =
∑

k∈K

〈αQ|k〉〈k̃|αP 〉, (18)

where 〈k̃|αP 〉 is the biorthogonal vector to a projected P -space state vector, i. e.,∑
αP
〈k̃|αP 〉〈αP |k′〉 = δkk′ . Once the transformation operator ω is constructed, a

Hermitian effective Hamiltonian can be found as [24]

Heff =
P + Pω†Q√
P (1 + ω†ω)P

H
QωP + P√
P (1 + ω†ω)P

. (19)

The unitary transformation is not unique. A detailed discussion can be found in
Ref. [25].
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4 Calculations and discussion

In order to investigate high-momentum contributions in the N3LO and CD-Bonn NN
potentials, we renormalize the bare forces with Vlow-k procedure with the momentum
space cutoff Λ varying from 1.9 fm−1 to 2.6 fm−1. The N3LO interaction should be
accompanied by a generic three-body force which contains counter-terms in renormal-
ization of the two-body part. An additional three-body force originates due to the
Vlow-k procedure used for the further reduction of model space. In our calculations
the induced three-body force is neglected. However, as we increase the momentum
cutoff, the Hartree–Fock calculations of 4He result in decrease of the binding energy
(Fig. 3). This result stems from the fact that the short-range repulsive part of the
nuclear forces becames stronger. As discussed above, by including configuration in-
teraction in the Green’s function, we can obtain the correct binding energy. We see
that the Green’s function calculations provide a much better convergence than the
HF calculations. Figure 4 displays the convergence of HF and Green’s function cal-
culations with respect to ~ω. A good convergence is obtained in both the HF and
Green’s function methods, but the Green’s function provides a much better binding
energy as compared with the experimental data. This result implies that high-order
contributions which are beyond the HF are important.

5 Conclusion

Starting with realistic nucleon-nucleon interactions and modern renormalization tech-
nique, we performed ab initio calculations of 4He with the Green’s function method.
High-order correlations can be well described by including the 2p1h and 2h1p configu-
rations. In order to consider short-range correlations, one has to include higher-order
terms in the self-energy calculations. In addition, the induced three-body force has
to be treated exactly.
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Experiments of Few-Nucleon Scattering

and Three-Nucleon Forces

Kimiko Sekiguchi

Department of Physics, Tohoku University, Sendai, 980-8578, Japan

Abstract

We have measured a complete set of deuteron analyzing powers in deuteron–
proton elastic scattering at 190, 250, and 294 MeV/nucleon. The obtained data
are compared with Faddeev calculations based on modern nucleon-nucleon forces
together with the Tucson–Melbourne’99 and UrbanaIX three-nucleon forces.
The data are also presented with the calculations based on the N4LO NN
potentials of the chiral effective field theory.

Keywords: Three-nucleon force, 1H(d, d)1H reaction, iT11, T20, T21, T22

1 Introduction

One of the main interests in nuclear physics is understanding of forces acting between
nuclear constituents. A hot topic in the study of nuclear forces is to clarify the
roles of three-nucleon forces (3NFs) in nuclei, and to describe various phenomena of
nuclei by explicitly taking into account nucleon-nucleon (NN) interactions combined
with 3NFs. The 3NFs arise naturally in the standard meson exchange picture [1] as
well as in the framework of chiral effective field theory (χEFT) which has a link to
QCD [2,3].

The first evidence for a 3NF was found in the three-nucleon bound states, 3H
and 3He [4, 5]. The binding energies of these nuclei are not reproduced by exact
solutions of three-nucleon Faddeev equations employing modern NN forces only, i. e.,
AV18 [6], CD-Bonn [7], Nijmegen I, II [8]. The underbinding of 3H and 3He is removed
by adding a 3NF, mostly based on 2π-exchange, acting between three nucleons [4,
5, 9]. The importance of 3NFs is further supported by the binding energies of light-
mass nuclei, and by the empirical saturation point of symmetric nuclear matter. Ab
initio microscopic calculations of light mass nuclei, such as Green’s Function Monte
Carlo [10] and no-core shell model calculations [11], highlight the necessity of including
3NFs to explain the binding energies and low-lying levels of these nuclei. As for the
density of symmetric nuclear matter, it has been reported that all NN potentials
provide saturation at too high density, and the inclusion of a short-range repulsive
3NF is a possibility to shift the theoretical results to the empirical point [12]. In
the past decade, low energy scattering, binding energies of light [13] and medium
mass nuclei [14, 15] and nuclear matter [16] have been extensively studied also in
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the framework of chiral effective field theory (χEFT). In all these investigations, it
became evident that 3NFs are taken as the key element to understand various nuclear
phenomena. Therefore, they should be investigated in a wide momentum region to
understand their properties in detail.

In order to study the dynamical aspects of 3NFs, such as momentum, spin, and
isospin dependences, the three-nucleon scattering system is an attractive probe be-
cause various kinematical conditions allow to measure not only differential cross sec-
tions but also a rich set of polarization observables. The importance of 3NFs in three-
nucleon scattering has been shown in the Nd elastic scattering for the first time in
Ref. [17]. Clear signals from 3NFs has been found around the cross section minimum
occurring at c. m. angle θc.m. ≈ 120◦ for incident energies above 60 MeV/nucleon.
Since then the pd/nd scattering experiments at 60–200 MeV/nucleon were performed
at various facilities, e. g., RIKEN, RCNP, KVI, and IUCF, providing precise data
of the cross sections as well as various types of spin observables [18]. At RIKEN
we performed the measurements of the cross sections and spin observables with the
polarized deuteron beams at the incident energies up to 135 MeV/nucleon [19]. Re-
cently we extended the measurements at the RIKEN RI Beam Factory (RIBF) with
the polarized deuteron beams to the energies of 250 and 300 MeV/nucleon which are
slightly above the pion emission threshold energy of 210 MeV [20,21].

In the following sections the recent achievements in the study of 3NFs via mea-
surements of the dp scattering at the RIKEN RIBF are discussed.

2 Experiment at RIKEN

At the RIBF the vector and tensor polarized deuteron beam was provided by the po-
larized ion source and was accelerated by the AVF, RRC and SRC. The measurement
for elastic dp scattering was performed with the detector system BigDpol which was
installed at the extraction beam line of the SRC. A polyethylene (CH2) target with a
thickness of 330 mg/cm2 was used as a hydrogen target. In the BigDpol four pairs of
plastic scintillators coupled with photo-multiplier tubes were placed symmetrically in
the directions of azimuthal angles to left, right, up and down. Scattered deuterons and
recoil protons were detected in a kinematical coincidence condition by each pair of the
detectors. The measured angles in the center of mass system are θc.m. = 40◦−160◦.
In the experiment the deuteron beams were stopped in the Faraday cup which was
installed at the focal plane F0 of the BigRIPS spectrometer.

The beam polarizations were monitored continuously with a beam line polarimeter
Dpol prior to acceleration by the SRC using the reaction of elastic dp scattering at 70,
90 and 100 MeV/nucleon. At the RIKEN RIBF the single-turn extractions were
available for all cyclotrons used for the experiments. Therefore depolarizations were
expected to be small during beam acceleration. In the measurement, typical values
of the beam polarizations were 80% of the theoretical maximum values.

3 Results

The obtained data of the deuteron analyzing powers iT11 and T22 at 190 and
250 MeV/nucleon are shown in Fig. 1 with open circles together with the previously
reported data at 135 MeV/nucleon [19]. Statistical errors are only shown. The data
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Figure 1: Deuteron analyzing powers iT11, T22 for elastic Nd scattering at 135, 190
and 250 MeV/nucleon. See the text for the descriptions of calculations.

are compared with the Faddeev calculations based on the modern nucleon-nucleon
forces combined with the three-nucleon forces. The red (blue) bands in the figure are
the Faddeev calculations with (w/o) Tucson–Melbourne’99 (TM99) 3NF [22] based
on the modern NN potentials, namely CDBonn [7], AV18 [23], Nijmegen I and II [8].
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Figure 2: Deuteron analyzing powers iT11, T22 for elastic Nd scattering at 135 and
190 MeV/nucleon. See the text for the descriptions of calculations.

The solid lines are the calculations with the Urbana IX 3NF [24] and the AV18 NN
potential.

For the vector analyzing power iT11 the discrepancies between the data and the
predictions based on 2NFs (blue bands) are seen at the angles θc.m. ∼ 120◦. At 135
and 190 MeV/nucleon, the data have good agreements to the predictions with the
3NFs while at 250 MeV/nucleon a discrepancy exists at backward angles θc.m. & 120◦.
The tensor analyzing power T22 reveals a different energy dependence from that
of iT11. At 135 MeV/nucleon adding the 3NFs worsens the description of data in a
large angular region. It is contrary to what happens at 190 and 250 MeV/nucleon,
where large 3NF effects are supported by the measured data. The results of compar-
ison shows that the 3NF is definitely needed in Nd elastic scattering. However the
spin dependent parts of the 3NF may be deficient.

It is interesting to see how the potential of the chiral effective field theory (χEFT)
describes the deuteron analyzing powers for the dp elastic scattering. In Fig. 2 the data
are compared with the calculations based on the χEFT N4LO NN potentials [25].
The vector analyzing power iT11 data are well described by the χEFT N4LO NN
potential, while large discrepancies are found for the tensor analyzing power T22. In
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order to see how χEFT 3NFs describe the data, the theoretical treatments are now
in progress [26].

4 Summary and Outlook

3NFs are now accepted as the key elements in understanding various nuclear phenom-
ena, e. g., properties of light mass nuclei and equation of state for nuclear matter. The
Nd scattering data provide rich sources to explore the properties of 3NFs such as mo-
mentum and spin dependence. In this talk, the experiments performed with polarized
deuteron beams at RIKEN are presented and the recent achievements of the study
of 3NFs via dp scattering at 100–300 MeV/nucleon are discussed. The energy and
angular dependent results of the cross sections as well as the polarization observables
show that (1) clear signatures of the 3NF effects are found in the cross section, (2)
the spin dependent parts of the 3NFs may be deficient, and (3) shorter-range com-
ponents of the 3NFs are probably required for the description of the cross sections as
well as of the spin observables at backward angles with contributions increasing with
incident energies.

As the next step of 3NF study in the few nucleon scattering it would be interesting
to see new theoretical approaches, e. g., an inclusion of 3NFs other than of the 2π-
exchange type. Recently the calculations based on the χ EFT potentials become
available for the Nd scattering up to 200 MeV/nucleon in which the NN forces
up to the next-to-next-to-next-to-next-to leading order are taken into account [25].
The results show possible signatures of 3NF effects at backward angles. Theoretical
analyses with 3NFs which include not only the 2π-exchange type but also other
various diagrams of the 3NFs, are now in progress. Together with this, it should be
also mentioned that careful treatments for the effects of π-emission might be necessary
for Nd scattering around and above the π-creation threshold energy. So far we have
expected that the cross sections for the π emission are quite small in analogy with
the total cross section of the pp scattering [27].

Experimentally, it is interesting to measure spin correlation coefficients as well
as polarization transfer coefficients for elastic dp scattering at higher energies 200–
400 MeV/nucleon. Various kinematic configurations of the exclusive pd breakup re-
actions should also be measured in order to study the properties of 3NFs as well
as relativistic effects. As a first step from few- to many-body systems it is interest-
ing to extend the measurements to 4N scattering systems, e. g., p +3 He scattering,
which would provide a valuable source of information on 3NFs including their isospin
dependences.
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of Few/Many-Body Multichannel Reactions
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Abstract

A method to calculate reactions in quantum mechanics is outlined. It is
advantageous, in particular, in problems with many open channels of various
nature, i. e., when the energy is not low. Within this method, there is no need
to specify reaction channels in a dynamics calculation. These channels come
into play at merely the kinematics level and only after the dynamics calculation
is done. Such a calculation is of a bound-state type and continuum spectrum
states never enter the game.

Keywords: Multichannel reactions; microscopic calculations; method of inte-
gral transforms

1 Overview

An approach reviewed in this paper is advantageous, in particular, in problems with
many open channels of various nature, i. e., when the energy is not low. Conventional
approaches dealing with continuum wave functions are impractical in such problems
at least at A > 3. The approach was successfully applied in nuclear reaction prob-
lems with 3 ≤ A ≤ 7 and also recently for A = 12 and 16 proceeding from NN
or NN + NNN forces. Many cases of reactions induced by a perturbation, i. e.,
electromagnetic or weak interaction, were considered. Both inclusive (mostly) and
exclusive processes were studied. Reactions induced by strong interaction still were
not considered although this can be done in a similar way, see below.

The main features of the approach are the following. In a dynamics calculation
within its framework there is no need to specify reaction channels at all. These come
into play at merely the kinematics level and only after the dynamics calculation is
done. Such a calculation is of a bound-state type.

Correspondingly, continuum spectrum states never enter the game. In place of
them, “response-like” functions of the type of Eq. (1) below, are the basic ingredients
of the approach. Reaction observables are expressed in terms of these functions as
quadratures, see Eqs. (3)–(6) below. It should also be noted that, in some problems of
importance, the quantities of the form of Eq. (1) are of interest themselves representing
observable response functions for inclusive perturbation-induced reactions.
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The “response-like” functions of the form of Eq. (1) are obtained not in terms
of complicated continuum spectrum states entering their definition but via a bound-
state type calculation. As the first step, an integral transform of such a function is
performed. This transform is expressed in a closed form and represents a “continuum
sum rule” depending on a σ parameter, see Eq. (12). It is evaluated via a bound-
state type calculation. As the next step, this sum rule is considered as an equation
determining the “response-like” function, i. e., its inversion is performed. Once this
is done, the above mentioned quadratures giving the reaction observables are readily
obtained.
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Figure 1: Comparison of Faddeev and LIT results for the total 3H photoabsorption
cross section in unretarded dipole approximation a) with NN (AV18) force only and
b) with NN(AV18) + NNN(UrbIX) force. Dots are the Faddeev results and two
curves represent the bounds for the LIT inversion. Dotted curve in b) is the result
with AV18 only.
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Thus, as claimed above, a specification of reaction channels in the dynamics cal-
culation and dealing with continuum wave functions are avoided in this approach. A
criterion of accuracy is the stability of the response-like function obtained.

In addition to the stability checks, comparisons with more conventional calcula-
tions that deal with continuum wave functions, have been performed. In the bench-
mark paper [1], the Faddeev results for the 3H photoabsorption total cross section
are compared with the results [2] obtained via the above described approach. In the
framework of this approach, the Lorentz integral transform (LIT), see the next sec-
tion, was used. The Argonne V18 NN interaction and the Urbana IX NNN potential
have been employed. The results are shown in Fig. 1.

A compete agreement is observed in the case when only the NN force is retained,
while in the case when the NNN force is added, such an agreement is observed
everywhere except for the peak region where a slight difference is present. In Ref. [3]
the LIT results in the same problem have been obtained employing expansions over
two different bases at solving the dynamics equation, the correlated hyperspherical
basis (CHH) and the effective interaction hyperspherical basis (EIHH). The results
are shown in Fig. 2.
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Figure 2: (a) The same cross section calculated with the same NN + NNN force
as in Fig. 1(b) (Eγ → ω). It is obtained with the help of LIT at solving the
dynamics equation in two ways. Full and dashed curves represent the results
gained using the CHH and EIHH expansions, respectively. (b) Relative difference
∆σ = [σ(CHH) − σ(EIHH)]/σ(CHH) between these cross sections.
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Figure 3: (a) Total 3He
photoabsorption cross
section in the threshold
region calculated with
the MT NN potential.
Full curve — LIT
results; plus signs —
direct calculation utiliz-
ing explicit continuum
wave functions. (b) The
same as (a) but rescaled
in order to determine
the S-factor. The
inversion error bounds
are shown by dashed
lines. E denotes the
p−d relative motion
energy.

These results practically coincide with each other which testifies to that the LIT
results in Fig. 1(b) are accurate.

One more test [4] is presented in Fig. 3. The total cross section of the 3He(γ, p)d
reaction in the threshold region is calculated in two ways, by means of the LIT as
discussed above, and via a direct calculation of the pd continuum wave functions.
In this case, there is no real need to use the method of integral transforms since the
problem is single-channel. Another point is that the problem considered is unfavorable
for this method since the cross section at the threshold is tiny, and the values of the
response function at such energies contribute extremely little to the integral pertaining
to the corresponding integral equation (12) and therefore to the input to solving
this equation. Despite this, a complete agreement of the results of two methods is
observed. This is most clearly seen from Fig. 3(b) where the quickly varying Gamow
factor is factored out from the cross section, and the remaining astrophysical S-
factor is presented. The central Malfliet–Tjon NN potential was employed in this
calculation. Let us also mention that the pd continuum wave functions that have led
to the results in Fig. 3, provide the phase shifts practically indistinguishable from
those of another group [5].

The basic points of the approach are presented in the next Section, and Section 3
contains further comments.
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2 Basics of the method

As said above, “response-like” quantities of the type

R(E) =
∑

n

〈Q′|Ψn〉〈Ψn|Q〉 δ(E − En) +
∑∫

dγ 〈Q′|Ψγ〉〈Ψγ |Q〉 δ(E − Eγ) (1)

are the basic ingredients of the approach. Here Ψn are bound states and Ψγ are con-
tinuum spectrum states. They represent a complete set of eigenstates of the Hamil-
tonian of a problem. The subscript γ denotes collectively a set of continuous and
discrete variables labeling the states which is symbolized in the summation over inte-
gration notation. The normalizations 〈Ψn|Ψn′〉 = δn,n′ and 〈Ψγ |Ψγ′〉 = δ(γ − γ′) are
adopted, so that ∑

n

|Ψn〉〈Ψn| +
∑∫

dγ |Ψγ〉〈Ψγ | = I, (2)

I being the identity operator.
In the method discussed, the quantities R(E) of Eq. (1) are obtained not in terms

of complicated states Ψγ entering their definition but via a bound-state type calcula-
tion. Reaction observables are expressed in terms of R(E) as quadratures.

Let us first explain the latter of these points. Consider a strong interaction in-
duced reaction. Denote Aφi(E) and Aφf (E) the antisymmetrized “channel free-
motion states”. Here the subscript i (f) refers to the initial (final) state of the
reaction, φi,f (E) are products of fragment bound states and of factors describing
their free relative motion [6], and A denotes the operator realizing antisymmetriza-
tion with respect to identical particles (A2 = A) [6]. Denote φ̄i(E) = A(H − E)φi(E)

and φ̄f (E) = A(H − E)φf (E) where H is the Hamiltonian. One has φ̄i = AV res
i φi

and φ̄f = AV res
f φf , where V res

i,f are interactions between fragments in the initial and

final states. Here it is assumed that these interactions are of a short range so that
the outer parts of the long-range inter-fragment Coulomb interaction are disregarded.
This point is reconsidered below.

The T matrix determining the reaction rates is [6]

Tfi = TBorn
fi + 〈φ̄f (E)|(E −H + iǫ)−1|φ̄i(E)〉, ǫ→ +0. (3)

Here TBorn
fi is the simple Born contribution,

TBorn
fi = 〈φf |φ̄i〉 = 〈φ̄f |φi〉,

and the main problem is a calculation of the second term in Eq. (3) that includes the
Green function (E −H + iǫ)−1. This contribution may be presented as
∫
dE′RE(E′) (E − E′ + iǫ)−1 ≡ −iπRE(E) + P

∫
dE′RE(E′) (E − E′)−1, (4)

where

RE(E′) =
∑

n

〈φ̄f (E)|Ψn〉〈Ψn|φ̄i(E)〉 δ(E′ − En)

+
∑∫

dγ 〈φ̄f (E)|Ψγ〉〈Ψγ |φ̄i(E)〉 δ(E′ − Eγ). (5)
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The quantity (5) is just of the structure of Eq. (1) (with the E → E′ replacement).
Thus, indeed, to calculate matrix elements of the T matrix it is sufficient to have the
quantities of this structure. Once they are available, the integrations in Eq. (4) are
readily done.

The amplitude of a perturbation-induced reaction is 〈Ψ−
f |Ô|Ψ0〉 where Ô is a per-

turbation, Ψ0 is an unperturbed initial bound state, and Ψ−
f is a continuum spectrum

state. To calculate this amplitude, let us substitute 〈Ψ−
f | in it by the expression [6]

〈Ψ−
f | = 〈φf | + 〈φ̄f |(E −H + iǫ)−1.

Then
〈Ψ−

f |Ô|Ψ0〉 = 〈φf |Ô|Ψ0〉 + 〈φ̄f |(E −H + iǫ)−1|ÔΨ0〉, (6)

and one may proceed as above with the replacement φ̄i → ÔΨ0.
Modifications of the above relations required to incorporate the long-range inter-

fragment Coulomb interaction are outlined in Ref. [7]. (If the response function itself
is the objective of the calculation, the Coulomb interaction does not require a special
consideration as will be seen below.) These modifications consist in changes of the Q
and Q′ states which include the Coulomb functions in the inner region of the relative
motion of fragments. Of course, it is very easy to obtain such Coulomb functions in
the case of two-fragment reaction channels.

Now let us explain the above mentioned point by calculating the quantities ex-
pressed by Eq. (1). Let us rewrite Eq. (1) as

R(E) =
∑

n

Rn δ(E − En) + f(E), Rn = 〈Q′|Ψn〉〈Ψn|Q〉, (7)

f(E) =
∑∫

dγ 〈Q′|Ψγ〉〈Ψγ |Q〉 δ(E − Eγ). (8)

The contribution (8) includes an integration over few- or many-body continuum
states Ψγ that are very complicated except for low energies, and the main prob-
lem is just the calculation of this contribution. If Ethr denotes the threshold value
for the continuum state energies then f(E) is different from zero at Ethr ≤ E ≤ ∞.

An easy task is the sum rule calculation. Using Eq. (2) one gets
∫ ∞

Ethr

f(E) dE +
∑

n

Rn = 〈Q′|Q〉. (9)

Obviously, knowing the quantity (9) is not enough to reconstruct the R(E) itself. To
achieve this goal, let us consider “generalized sums” of the form

∫
K(σ,E)R(E) dE. (10)

These sums are equal to

∑∫
dγ 〈Q′|Ψγ〉K(σ,Eγ)〈Ψγ |Q〉 +

∑

n

〈Q′|Ψn〉K(σ,En)〈Ψn|Q〉. (11)

Since Eq. (2) is valid, this quantity is equal to 〈Q′|K(σ,H)|Q〉 where, as above, H is
the Hamiltonian of a problem. Thus one comes to the relation
∫ ∞

Ethr

K(σ,E) f(E)dE+
∑

n

K(σ,En)Rn = Φ(σ), Φ(σ) ≡ 〈Q′|K(σ,H)|Q〉, (12)
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where f(E) and Rn are the continuous part and discrete contributions to the response-
like function R(E), see Eqs. (8) and (7). Since this relation is valid for any σ, it may
be considered as an equation to determine R(E), i. e., f(E) and Rn, provided that
one is able to calculate the quantity 〈Q′|K(σ,H)|Q〉.

3 Further comments

Thus an equation of the form given by Eq. (12) is to be solved. First, one needs to
calculate the right-hand side input. If one is able to diagonalize the Hamiltonian on
a sufficiently big subspace of basis functions this can be readily done. In this case,
one can use an approximation of the type

〈Q′|K(σ,H)|Q〉 ≃
N∑

n=1

〈Q′|ϕN
n 〉K(σ,EN

n )〈ϕN
n |Q〉. (13)

Here N is the dimensionality of the subspace and other notations are obvious. Sup-
pose, for example, that the kernel K(σ,E) = exp[−(σ − E)2/σ2

0 ] is employed. At a
given accuracy of the input Φ(σ), smaller σ0 values would lead to a better reproduc-
tion of details of f(E) at solving Eq. (12). Indeed, at large σ0 values, contributions
to Φ(σ) from peculiarities of f(E) are spread over large σ intervals, and sizes of these
contributions may be comparable with sizes of inaccuracies in calculated Φ(σ). At
the same time, smaller σ0 values require use of subspaces of basis functions of higher
dimensionality. Indeed, accurate Φ(σ) values emerge only at such sizes of these sub-
spaces that (at σ values of significance) the energy ranges σ−σ0 ≤ E ≤ σ+σ0 contain
sufficiently large numbers of EN

n eigenvalues.

The right-hand side of Eq. (13) represents the result of smoothing the pseudo-
response

N∑

n=1

〈Q′|ϕN
n 〉〈ϕN

n |Q〉 δ(E − EN
n )

with the help of the smoothing function K(σ,E). Such type smoothings were per-
formed in the literature and their results were considered as approximations to true
responses for perturbation-induced inclusive reactions. Contrary to this, within the
present approach such results are not adopted as approximations to the true responses.
Here they play the role of an input to the integral equation which solution provides
the final true responses. This refinement makes it possible to obtain more accurate
and consistent results.

At some choices of the kernel K, it is possible to calculate the input Φ(σ) to
Eq. (12) without the diagonalization of the Hamiltonian. The simplest example is the
Stieltjes kernel K(σ,E) = (σ+E)−1 where σ is real and lies apart from the spectrum
of the Hamiltonian. In this case one has

Φ(σ) = 〈Q′|ψ̃〉, ψ̃ = (H + σ)−1Q, (14)

i. e., ψ̃ is a solution of the inhomogeneous Schrödinger-like equation

(H + σ)ψ̃ = Q. (15)
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From the fact that 〈Q|Q〉 is finite it follows that the solution is localized, and such a
solution is unique. Another example is the so-called Lorentz kernel,

K(σ = σR + iσI , E) = 1/[(σR − E)2 + σ2
I ]. (16)

By writing

1

(σR − E)2 + σ2
I

=
1

2iσI

(
1

σR − E − iσI
− 1

σR − E + iσI

)
, (17)

one reduces the calculation in this case to that with the Stieltjes complex kernels.
The solutions of respective equations of the type of Eq. (15) are also localized and
unique.

Since the Lorentz kernel has a limited range, the inversion of the transform is more
accurate than in the case of the Stieltjes kernel at the same accuracy in the input, cf.
the reasoning above. Still, if an expansion over a basis is applied to solve Eq. (15),
the convergence of Φ(σ) in the Stieltjes case is faster than that in the Lorentz case
with a small σI . Indeed, at σI → 0, the continuum spectrum regime is recovered
at σR values of interest belonging to the scattering line.

One more example is the Laplace kernel K(σ,E) = exp(−σE). The corresponding
input 〈Q′|e−σH |Q〉 may be calculated with the Green’s Function Monte Carlo method.

We shall not discuss here methods of solving Eq. (12), i. e., the inversion of the
transform, referring for this to the literature. Let us mention only that such an
equation represents a classical “ill-posed problem” (this does not mean at all that the
problem is a very difficult one!). A standard regularization procedure was applied
in practical calculations and convergent results have been obtained. Still, with such
a procedure, a sufficient accuracy of the input Φ(σ) may be harder to achieve in
problems with not a small number of particles. A new method to solve Eq. (12) has
been proposed recently [8]. In this method, the number of maxima and minima of
the desired solution is imposed as an additional constraint. The method does not
require a regularization. It has been proved that the method is convergent at least
everywhere except for the points of maxima and minima of f(E). Thus, apart from
this restriction, the problem becomes a well-posed one with the constraint imposed.
With the same approximate inputs, the method provides much more accurate results
than the standard regularization procedure in simple examples considered. However
its further study is still required.

The discrete contributions Rn in Eq. (12) may be calculated separately. A conve-
nient way to do this in the cases of the Lorentz or Stieltjes transforms can be found in
Ref. [7]. Another option is the following. A general algorithm for solving Eq. (12) sug-
gests to express f(E) through some parameters and to fit these parameters to Φ(σ).
The Rn amplitudes may be included in the set of such parameters.

A limitation of the present approach is that in order to reproduce very fine details
of spectra of reactions, such as widths of narrow resonances, an increased accuracy
in the input Φ(σ) is required. The reason is the same as the discussed above in
connection with Eq. (13). This feature is similar to the situation with extracting, say,
widths of narrow resonances from experiments measuring scattering or reaction cross
sections. However narrow resonances are usually located at low energies whereas the
present method is designed for calculations of reactions with many open channels, i. e.,
not at low energies. Furthermore, the information on the widths of narrow resonances
taken from experiment or from alternative calculations may be readily incorporated
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in the algorithm of solving Eq. (12). Anyway, the inaccuracies in widths of resonances
at low energies in the present method would not lead to inaccuracies at reproducing
reaction spectra at higher energy. In addition, the widths of resonances in light nuclei
are normally not so narrow. The width about 200 KeV of such a resonance in 4He
was reproduced in Ref. [9] with a reasonable accuracy in the framework of the present
approach; see also Fig. 3 in this respect.

In conclusion, the relevant literature is listed in addition to the references above.
The approach to calculate reactions described in Sec. 2 has been introduced in Ref. [10].
Its presentation here is close to Ref. [7]. The bound-state type, i. e., the sum rule calcu-
lation of the integral transforms of observable responses R(E), i. e., pertaining to the
inclusive perturbation-induced reactions, has been suggested in Ref. [11] in the case of
the Stieltjes transform and in Ref. [12] in the case of the Laplace transform. Inversions
of the transforms were not considered in those works. An alternative approach [13]
in which an observable R(E) is reconstructed from its moments of the type 〈E−n〉,
n = 0, ... , N , has been also developed. The quantity of Eq. (9) represents in this case
the zero moment. The subsequent moments are calculated recursively. Contrary to
the above described method [10] of treatment of general type reactions, i. e., exclu-
sive perturbation- and strong interaction-induced ones, the approach of Ref. [13] is
applicable only to the inclusive perturbation-induced reactions. The described way
to calculate Φ(σ) involving Eq. (13) was suggested in Ref. [7] (although at too restric-
tive conditions imposed on Q and Q′). The Lorentz transform has been introduced in
the present context in Ref. [14]. Its evaluation in the form listed above was given in
Ref. [7]. In Ref. [15] an efficient algorithm to calculate Φ(σ) by solving Eq. (15) with
the help of an expansion in a series of basis functions, has been developed. In the
review papers [7] and [16] the transform inversion in the framework of a conventional
approach is considered. In Ref. [16] earlier applications performed with the help of
the Lorentz transform are reviewed as well. Among later applications, advances in
studies of heavier nuclei [17, 18] are to be mentioned.
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Abstract

An important ingredient for applications of nuclear physics to, e. g., astro-
physics or nuclear energy are the cross sections for reactions of neutrons with
rare isotopes. Since direct measurements are often not possible, indirect meth-
ods like (d, p) reactions must be used instead. Those (d, p) reactions may be
viewed as effective three-body reactions and described with Faddeev techniques.
An additional challenge posed by (d, p) reactions involving heavier nuclei is the
treatment of the Coulomb force. To avoid numerical complications in dealing
with the screening of the Coulomb force, recently a new approach using the
Coulomb distorted basis in momentum space was suggested. In order to imple-
ment this suggestion separable representations of neutron- and proton-nucleus
optical potentials, which are not only complex but also energy dependent, need
to be introduced. Including excitations of the nucleus in the calculation requires
a multichannel optical potential, and thus separable representations thereof.

Keywords: Energy dependent separable representation of optical potentials,
multi-channel optical potentials, nonlocal optical potentials, (d, p) reactions

1 Introduction

Nuclear reactions are an important probe to learn about the structure of unstable
nuclei. Due to the short lifetimes involved, direct measurements are usually not pos-
sible. Therefore indirect measurements using (d, p) reactions have been proposed
(see, e. g., Refs. [1–3]). Deuteron induced reactions are particularly attractive from
an experimental perspective since deuterated targets are readily available. From a
theoretical perspective they are equally attractive because the scattering problem can
be reduced to an effective three-body problem [4]. Traditionally deuteron-induced
single-neutron transfer (d, p) reactions have been used to study the shell structure
in stable nuclei, nowadays experimental techniques are available to apply the same
approaches to exotic beams (see, e. g., Ref. [5]). Deuteron induced (d, p) or (d, n)
reactions in inverse kinematics are also useful to extract neutron or proton capture
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puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 76.
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rates on unstable nuclei of astrophysical relevance. Given the many ongoing experi-
mental programs worldwide using these reactions, a reliable reaction theory for (d, p)
reactions is critical.

One of the most challenging aspects of solving the three-body problem for nu-
clear reactions is the repulsive Coulomb interaction. While for very light nuclei,
exact calculations of (d, p) reactions based on momentum-space Faddeev equations in
the Alt–Grassberger–Sandhas (AGS) [6] formulation can be carried out [7] by using a
screening and renormalization procedure [8,9], this technique leads to increasing tech-
nical difficulties when moving to computing (d, p) reactions with heavier nuclei [10].
Therefore, a new formulation of the Faddeev–AGS equations which does not rely on
the screening procedure, was presented in Ref. [11]. Here the Faddeev–AGS equations
are cast in the momentum-space Coulomb-distorted partial-wave representation in-
stead of the plane-wave basis. Thus all operators, specifically the interactions in the
two-body subsystems, must be evaluated in the Coulomb basis, which is a nontrivial
task (performed recently for the neutron-nucleus interaction [12]). The formulation
of Ref. [11] requires the interactions in the subsystems to be of separable form.

Separable representations of the forces between constituents forming the subsys-
tems in the Faddeev approach have a long tradition, specifically when considering
the nucleon-nucleon (NN) interaction (see, e. g., Ref. [13–15]) or meson-nucleon in-
teractions [16, 17]. Here the underlying potentials are Hermitian, and a scheme for
deriving separable representations suggested by Ernst–Shakin–Thaler [18] (EST) is
well suited, specifically when working in momentum space. It has a nice property that
the on-shell and half-off-shell transition matrix elements of the separable representa-
tion are exact at predetermined energies, the so-called EST support points. However,
when dealing with neutron-nucleus (nA) or proton-nucleus (pA) phenomenological
optical potentials, which are in general complex to account for absorptive channels
that are not explicitly treated, as well as energy-dependent, extensions of the EST
scheme have to be made.

2 Separable representation of single channel

energy dependent optical potentials

The pioneering work by Ernst, Shakin and Thaler [18] constructed separable repre-
sentations of Hermitian potentials. To apply this formalism to optical potentials, it
needs to be extended to handle complex potentials [19]. We briefly recall the most
important features, namely that a separable representation for a complex, energy-
independent potential Ul in a fixed partial wave of orbital angular momentum l is
given by [19]

ul =
∑

ij

Ul|ψ+
l,i〉λ

(l)
ij 〈ψ−

l,j |Ul, (1)

where |ψ+
l,i〉 is a solution of the Hamiltonian H = H0 + Ul with outgoing boundary

conditions at energy Ei, and |ψ−
l,i〉 is a solution of the Hamiltonian H = H0 + U∗

l

with incoming boundary conditions. The energies Ei are referred to as EST support
points. The free Hamiltonian H0 has eigenstates |ki〉 with k2i = 2µEi, µ being the
reduced mass of the neutron-nucleus system. The EST scheme constrains the matrix
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λ
(l)
ij with the conditions

δkj =
∑

i

〈ψ−
l,k|Ul|ψ+

l,i〉λ
(l)
ij ,

δik =
∑

j

λ
(l)
ij 〈ψ−

l,j |Ul|ψ+
l,k〉,

(2)

where the subscript i = 1, ... , N and N indicates the rank of the separable potential.

Those two constraints of Eq. (2) on λ
(l)
ij are an essential feature of the EST scheme

and ensure that at the EST support points Ei both, the original U and the separable
potential u, have identical wave functions or half-shell t-matrices. The corresponding
separable t-matrix takes the form

tl(E) =
∑

ij

Ul|ψ+
l,i〉τ

(l)
ij (E)〈ψ−

l,j |Ul, (3)

with (
τ
(l)
ij (E)

)−1

= 〈ψ−
l,i|Ul − Ul g0(E)Ul|ψ+

l,j〉. (4)

Here g0(E) = (E −H0 + iε)−1 is the free propagator. The form factors are given as
half-shell t-matrices

Tl(Ei)|ki〉 ≡ Ul|ψ+
l,i〉, (5)

and are obtained through solving a momentum space Lippmann–Schwinger (LS) equa-
tion. However, when applying the same formulation to an energy-dependent complex
potential U(E), one obtains

ul =
∑

ij

Ul(Ei)|ψ+
l,i〉λ

(l)
ij 〈ψ−

l,j |Ul(Ej), (6)

with the constraints

δkj =
∑

i

〈ψ−
l,k|Ul(Ei)|ψ+

l,i〉λ
(l)
ij ,

δik =
∑

j

λ
(l)
ij 〈ψ−

l,j |Ul(Ej)|ψ+
l,k〉.

(7)

Omitting the partial wave index l, the two constraints on λ can be written in matrix
form as

U tλ = 1 = λU , (8)

with
Uij = 〈ψ−

i |U(Ei)|ψ+
j 〉. (9)

For a separable potential of rank N > 1 it is obvious that the matrix Uij is not
symmetric in the indices i and j. This leads to an asymmetric matrix λ and thus a
t-matrix which violates reciprocity. Therefore, a different approach must be taken in
order to construct separable representations for energy-dependent potentials. Here we
note that although the potential u contains some of the energy dependence of U(E)
through the form factors calculated at the different fixed energy support points Ei,
it has no explicit energy dependence. Thus, this separable construction needs to be
considered as energy-independent EST representation.
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A separable expansion for energy-dependent Hermitian potentials was suggested
by Pearce [20]. It is straightforward to apply this suggestion to complex potentials
by using the insights previously gained in Ref. [19]. In analogy, we define the EST
separable representation for complex, energy-dependent potentials (eEST) by allowing
an explicit energy dependence of the coupling matrix elements λij .

u(E) =
∑

ij

U(Ei)|ψ+
i 〉λij(E)〈ψ−

j |U(Ej), (10)

where the partial wave index l has been omitted for simplicity. In order to obtain
a constraint on the matrix λ(E), we require that the matrix elements of the poten-
tial U(E) and its separable form u(E) between the states |ψ+

i 〉 be the same at all
energies E. This condition ensures that the potentials U(E) and u(E) lead to iden-
tical wave functions at the EST support points, just like in the energy-independent
EST scheme.

The constraints on λij(E) become

〈ψ−
m|U(E)|ψ+

n 〉 = 〈ψ−
m|u(E)|ψ+

n 〉 =
∑

i

〈ψ−
m|U(Ei)|ψ+

i 〉λij(E)〈ψ−
j |U(Ej)|ψ+

n 〉. (11)

The corresponding separable t-matrix then takes the form

t(E) =
∑

ij

U(Ei)|ψ+
i 〉τij(E)〈ψ−

j |U(Ej). (12)

Substituting Eqs. (10)−(12) into the LS equation leads to constraint for the ma-
trix τ(E) such that

R(E) · τ(E) ≡ M(E), (13)

where

Rij(E) = 〈ψ−
i |U(Ei)|ψ+

j 〉 −
∑

n

Min(E)〈ψ−
n |U(En) g0(E)U(Ej)|ψ+

j 〉, (14)

with

Min(E) ≡ [Ue(E) · U−1]in. (15)

The matrix elements of U are defined in Eq. (9), and

Ue
ij(E) ≡ 〈ψ−

i |U(E)|ψ+
j 〉. (16)

For energy-independent potentials, Ue(E) becomes U and the matrix M(E) is the
unit matrix. The matrix element Ue

ij(E) is explicitly given as

Ue
ij(E) = U(ki, kj , E) +

∞∫

0

dp p2 T (p, ki;Ei) g0(Ei, p)U(p, kj , E)

+

∞∫

0

dp p2 U(ki, p, E) g0(Ej , p)T (p, kj;Ej)

+

∞∫

0

dp p2
∞∫

0

dp′p′2 T (p, ki;Ei) g0(Ei, p)U(p, p′, E) g0(Ej , p
′)T (p′, kj ;Ej), (17)
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Figure 1: s-wave off-shell t-matrix for the n+ 48Ca system calculated from the CH89
optical potential [23] as a function of the off-shell momenta k and k′ at 20 MeV
incident neutron laboratory kinetic energy. (a) and (c) — real and imaginary t-matrix
elements corresponding to the CH89 global optical potential; (b) and (d) — real and
imaginary parts of the eEST separable representation of the off-shell t-matrix. The
on-shell momentum is k = 0.978 fm−1.

where g0(E, p) = [E − p2/2µ+ iε]−1. For the evaluation of Ue
ij(E) for all energies E

within the relevant energy regime, the form factors T (p′, kj ;Ej) are needed at the
specified EST support points and the matrix elements of the potential U(p′, p, E) at
all energies. The explicit derivation of the above expressions is given in Refs. [21, 22]
together with suggestions to simplify the calculation of U(p′, p, E). The difference
between the energy-dependent separable representation and its energy-independent
counterpart is illustrated in Fig. 1 for the s-wave off-shell t-matrix for the n+ 48Ca
system.

To apply the formulation to proton-nucleus scattering, one first realizes that the
proton-nucleus potential consists of the point Coulomb force V c together with a short-
ranged nuclear as well as a short-ranged Coulomb interaction representing the charge
distribution of the nucleus which we refer to as Us(E). While the point Coulomb
potential has a simple analytical form, an optical potential is employed to model the
short-range nuclear potential. The extension of the energy-independent EST separa-
ble representation to proton-nucleus optical potentials was carried out in Ref. [24].
In that work it was shown that the form factors of the separable representation are
solutions of the LS equation in the Coulomb basis, and that they are obtained using
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methods introduced in Refs. [25, 26]. It was also demonstrated that the extension of
the energy-independent EST separable representation scheme to proton-nucleus scat-

tering involves two steps. First, the nuclear wave functions |ψ(+)
l,i 〉 are replaced by

Coulomb-distorted nuclear wavefunctions |ψsc (+)
l,i 〉. Second, the free resolvent g0(E)

is replaced by the Coulomb Green’s function, gc(E) = (E − H0 − V c + iε)−1, and
third, the energy-dependent scheme must be generalized.

Upon suppressing the index l we obtain a constraint similar to Eq. (13),

Rc(E) · τc(E) = Mc
ij(E), (18)

with the matrix elements of Rc(E) satisfying

Rc
ij(E) = 〈ψsc (−)

i |Us(Ei)|ψsc (+)
j 〉

−
∑

i

Mc
in(E)〈ψsc (−)

n |Us(En) gc(E)Us(Ej)|ψsc (+)
j 〉. (19)

The matrix Mc(E) is the Coulomb distorted counterpart of M(E) of Eq. (15), and
is defined as

Mc
in(E) =

[
Ue,sc(E) · (Usc)−1

]
in
, (20)

with

Usc
ij ≡ 〈ψsc (−)

i |Us(Ei)|ψsc (+)
j 〉,

Ue,sc
ij (E) ≡ 〈ψsc (−)

ki
|Us(E)|ψsc (+)

kj
〉.

(21)

If the potential is energy-independent the matrix Mc(E) becomes a unit matrix just
like M(E). Further details for the explicit evaluation are given in Refs. [21, 22].

In order to illustrate the quality of the separable representation of energy-depen-
dent optical potentials for neutron as well as proton elastic scattering, the differential
cross sections for proton scattering off 48Ca at laboratory kinetic energy 38 MeV
and 208Pb at 45 MeV are shown in Fig. 2 and compared to the equivalent coordinate
space calculations. We observe that the separable representation provides an excellent
description on both cases. The power of a separable representation based on the
EST scheme lies in the choice of the basis, namely here the half-shell t-matrices
calculated at specific energies. This basis contains a lot of information about the
system considered, and thus only a small number of basis states, represented by the
rank of the separable potential, are needed to have this excellent representation.

3 Coordinate space separable representation

of single channel optical potentials

A formal scheme for deriving separable representations for Hermitian potentials was
given by Ernst, Shakin, and Thaler in Ref. [18], and an application of the scheme to
a two-body coordinate space potential representing an s-wave bound and scattering
state in can be found in Ref. [28]. The authors chose to carry out their construction
of the separable representation in the coordinate space, which makes the procedure
more cumbersome compared to the momentum space construction we employ, leading
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Figure 2: Unpolarized differential cross section for elastic scattering of protons by 48Ca
(upper) and 208Pb (lower) as a function of the c. m. angle. For 48Ca the cross section
is calculated at a laboratory kinetic energy of 38 MeV and is scaled by a factor of 4.
The calculation for 208Pb is carried out at Elab = 45 MeV. Solid curves (i) — the cross
section calculated in momentum space based on the rank-5 separable representation
of the phenomenological optical potential CH89 [23], crosses (ii) — the corresponding
coordinate space calculations [27].

to a momentum space separable representation of either the transition matrix or the
potential.

Since coordinate space techniques have long tradition in nuclear physics, it can be
useful to consider an EST based separable representation of potentials in coordinate
space. Separable potentials are inherently nonlocal. Using the EST formulation leads
to a well defined behavior of this non-locality. However, instead of implementing the
EST construction in the coordinate space, one can carry out the entire scheme in
the momentum space and then Fourier transform the momentum space result to the
coordinate space. This is quite simple since it involves only a one-dimensional Fourier
transform of the form factors.

To illustrate the coordinate space realization of the EST separable representa-
tion, we show in Fig. 3 the form factors hl,i as a function of the momentum p for
the n+ 48Ca system in panel (a) together with their Fourier transformed counter-
parts in the coordinate space in panel (b). The index i refers to the EST support
points used. The form factors are well behaved functions in the momentum space as
well as in the coordinate space. In Fig. 4 the s-wave form factors for the n+ 208Pb
system are shown, and we note that for the heavier nucleus 208Pb they extend to
larger values of r as should be expected considering the larger size of the heavier
nucleus.

The separable representation of the coordinate space potential in a given partial
wave is obtained by summing over the rank of the potential according to Eq. (1).
The resulting nonlocal separable coordinate space representation of the CH89 optical
potential is shown in Fig. 5 for the n + 48Ca system for the s1/2 and p3/2 channels.
The non-locality is symmetric in r and r′ as required by reciprocity and its extension
in r and r′ is given by the fall-off behavior of the form factors. It also shows a
more intricate behavior than the often employed Perey–Buck Gaussian-type [29] non-
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potential [23]. Panel (a) illustrates the form factors as a function of the momentum p
while panel (b) depicts its Fourier transform as a function of the position coordinate r.
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Figure 5: Off-shell potential elements u
jp
l (r′, r, E) of the separable representation of

the CH89 optical potential [23] for the n + 48Ca system as a function of the coordi-
nates r and r′ at E = 20 MeV incident neutron laboratory kinetic energy. (a) and
(c) — real and imaginary potential matrix elements for the s1/2 partial wave; (b) and
(d) — real and imaginary parts of the p3/2 separable potential.

locality construct. Employing the nonlocal separable representation in solving the
integro-differential Schrödinger equation [30] reveals that the resulting coordinate
space wave function exactly agree with the wavefunctions obtained from solving the
Schrödinger equation with the local CH89 optical potential [31].

4 Separable representation of multi-channel

energy dependent optical potentials

To generalize the energy-dependent EST (eEST) scheme to multichannel potentials,
we proceed analogously to Ref. [32] and replace the single-channel scattering wave-
functions with their multichannel counterparts, leading to a multichannel separable
potential

u(E) =
∑

ρσ

∑

ij



∑

γJM

U(Ei)
∣∣γJMΨ

J(+)
γρ,i

〉

λρσij (E)



∑

γJM

〈
Ψ

J(−)
γσ,j γJM

∣∣U(Ej)


. (22)
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The indices i and j stand for the EST support points. Using the definition of the
multichannel half-shell t-matrix [33],

T (Ei)|ρJM kρi 〉 =
∑

γ

U(Ei)|γJMΨJ(+)
γρ 〉, (23)

Eq. (22) can be recasted as

u(E) =
∑

JM

∑

J′M ′

∑

ρσ

∑

ij

T (Ei)
∣∣ρJMkρi

〉
λρσij (E)

〈
kσj σJ

′M ′
∣∣T (Ej). (24)

To determine the constraint on u(E), we first generalize the matrices Ue(E) and U
to multichannel potentials. This is accomplished by replacing the single-channel scat-
tering states by the multichannel scattering states so that

Ue,αβ
mn (E) ≡

∑

γν

〈
ΨJ(−)

γα,m γJM |U(E)|νJMΨ
J(+)
νβ,n〉 =

∑

γν

〈
ΨJ(−)

γα,m|UJ
γν(E)|ΨJ(+)

νβ,n 〉, (25)

and
Uαβ
mn ≡ Ue,αβ

mn (Em) =
∑

γν

〈
ΨJ(−)

γα,m

∣∣UJ
γν(Em)

∣∣ΨJ(+)
νβ,n

〉
. (26)

The J dependence of matrix elements Ue,αβ
mn (E) and Uαβ

mn is omitted for simplicity.
On one hand, Eq. (26) shows that the matrix U depends only on the support energies
Em and En. On the other hand, we see from Eq. (25) that Ue(E) depends on the
projectile energy E as well as the support energies. The constraint on the separable
potential is obtained by substituting the multichannel matrices Ue and U into Eq. (11)
leading to

Ue,αβ
mn (E) =

∑

ρσ

∑

ij

(
U t
)αρ
mi

λρσij (E) Uσβ
jn =

[
U t · λ(E) · U

]αβ
mn
. (27)

To evaluate the separable multichannel t-matrix, we insert Eqs. (24)–(27) into a multi-
channel LS equation and obtain

t(E) =
∑

ρσ

∑

ij



∑

γJM

U(Ei)
∣∣γJMΨ

J(+)
γρ,i

〉

τρσij (E)



∑

γJM

〈
Ψ

J(−)
γσ,j γJM

∣∣U(Ej)




=
∑

JM

∑

J′M ′

∑

ρσ

∑

ij

T (Ei)
∣∣ρJMkρi

〉
τρσij (E)

〈
kσj σJ

′M ′
∣∣T (Ej). (28)

The coupling matrix elements τρσij (E) fit the equation

R(E) · τ(E) = M(E), (29)

where

Rρσ
ij (E) =

〈
kρi

∣∣∣T J
ρσ(Ei) +

∑

β

T J
ρβ(Ei)Gβ(Ej)T

J
βσ(Ej)

∣∣∣kσj
〉

−
∑

ββ′

∑

n

Mρβ
in 〈kβn

∣∣∣T J
ββ′(En)Gβ′(E)T J

β′σ(Ej)
∣∣∣kσj
〉
, (30)
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Figure 6: Differential cross sections for scattering in the n + 12C system computed
at various incident neutron energies with the eEST separable representation of the
Olsson et al. DOMP [34] (solid curves). Left (right) panel shows the results for the
elastic scattering (inelastic scattering to the 2+ state of 12C). Dashed curves indicate
the cross sections computed with the spherical OMP of Olsson et al. [34]. Filled
diamonds are the data taken from Ref. [34]. The cross sections are scaled up by the
multiples of 10, e. g., the results at 21.6 MeV are multiplied by 10, those at 20.9 MeV
are multiplied by 100, etc.

and

Mρσ
ij (E) =

[
Ue(E) · U−1

]ρσ
ij
. (31)

The expression for the matrix Rρσ
ij (E) is analogous to the one for the single-channel

case except for the extra channel indices.

To illustrate the implementation of the multichannel eEST separable representa-
tion scheme, we consider the scattering of neutrons by the 12C nucleus. The 12C nu-
cleus possesses selected excited states, with the first and second levels having Iπ = 2+

and Iπ = 4+ and located at 4.43 and 14.08 MeV above the 0+ ground state. The col-
lective rotational model [35] is assumed to describe the coupling between the ground
state and these excited states. We consider here the elastic scattering and the inelas-
tic scattering to the 2+ rotational state. To test the multichannel eEST separable
representation, we use the deformed optical potential model (DOMP) derived by Ols-
son et al. [34] and fitted to elastic and inelastic scattering data at laboratory kinetic
energies between 16 and 22 MeV. In Fig. 6, the differential cross sections for the elastic
and inelastic scattering in the n+ 12C system are shown at various incident neutron
energies. The left hand panel shows the differential cross section of the elastic scat-
tering, and the right hand panel presents the differential cross section of the inelastic
scattering to the 2+ state of 12C. The support points are at Elab = 6 and 40 MeV. The
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separable representation describes both differential cross sections very well. In addi-
tion, it is in good agreement with the coupled-channel calculations shown in Fig. 1 of
Ref. [34]. The dashed curves indicate the cross sections computed with the spherical
OMP of Olsson et al. [34].

5 Summary and outlook

In a series of steps we developed the input that will serve as a basis for Faddeev-
AGS three-body calculations of (d, p) reactions which will not rely on the screening
of the Coulomb force. To achieve this, Ref. [11] formulated the Faddeev-AGS equa-
tions in the Coulomb basis using separable interactions in the two-body subsystems.
We developed separable representations of phenomenological optical potentials of the
Woods–Saxon type for neutrons and protons. First we concentrated on the neutron-
nucleus optical potentials and generalized the EST scheme [18] so that it can be
applied to complex and energy-dependent optical potentials [19,21]. In order to con-
sider the proton-nucleus optical potentials, we further extended the EST scheme so
that it can be applied to the scattering of charged particles with a repulsive Coulomb
force [24]. Finally we extended the EST formulation to incorporate multi-channel
optical potentials [36].

The results demonstrate that separable representations based on a generalized
EST scheme reproduce the standard coordinate space calculations of neutron and
proton scattering cross sections very well. We also showed that the coordinate space
separable representations can be obtained from the corresponding momentum space
representations using Fourier transforms of the form factors. From those solutions,
observables for (d, p) transfer reactions using the Faddeev-AGS formulation should be
readily calculated. Work along these lines is in progress.
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Abstract

Elastic nucleon-deuteron scattering is investigated at low and medium en-
ergies within the formalism of the Faddeev equations. We present various ob-
servables for this process obtained using the recently developed JISP16 nucleon-
nucleon interaction and the chiral two-nucleon N4LO force with the semi-local
regularization. Comparison with data demonstrates, in general, good behavior
of these two interactions at low energies but also reveals inadequacies of the
JISP16 force for some observables. The origin of the observed problems lies in
drawbacks of the P -wave interactions implemented in the JISP16 model.

Keywords: Elastic nucleon-deuteron scattering, nucleon-nucleon force, few-
body systems

1 Introduction

The complex structure of nuclear interactions is one of the reasons why nuclear physics
is still a significant intellectual challenge. Unfortunately, a derivation of nuclear sys-
tem properties directly from Quantum Chromodynamics is still beyond the realms
of possibility, despite the first ongoing attempts [1, 2]. This situation implies that
the effective models of nuclear interactions are considered and used in practical ab
initio calculations. Most of such models are semi-phenomenological and among the
most advanced ones let us mention the Nijmegen [3, 4], the Argonne V18 (AV18) [5]
and the Charge-Dependent Bonn (CD Bonn) [6, 7] forces. These potentials depend
on several dozens of free parameters to be fixed from experimental data in the two-
nucleon sector. These semi-phenomenological models describe experimental data for
proton-proton (pp) and neutron-proton (np) scattering up to the two-nucleon energy
of about 350 MeV very well, yielding χ2/data′99 = 1.01 in the case of the CD Bonn [8]
and χ2/data′99 = 1.35 for the AV18 [8]

The nucleon-nucleon potential JISP16 [9] is one of the newest semi-phenomeno-
logical forces. This force is a successor of the J-matrix Inverse Scattering Potential [10]
which in turn follows the Inverse Scattering Tridiagonal Potential (ISTP) developed
within the inverse scattering methods in [11]. The free parameters of the JISP6 force
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puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
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have been fixed from the bound and resonance states of nuclei up to A = 6 [10].
Correspondingly, bound and resonance states of nuclei up to 16O have been used
to determine the JISP16 parameters [9]. The JISP forces also describe two-nucleon
scattering data with a precision comparable to other modern potentials, reaching
χ2=1.03(1.05) for the JISP6 with the neutron-proton data’1992(1999). The main
motivation behind developing the JISP16 model was a derivation of the two-body
interaction which, at least partially, accommodates effects of many-body forces. This
should result in a substantial improvement of the convergence of the nuclear structure
calculations, especially ones performed within the No-Core Shell Model [12]. This aim
has been achieved and indeed the JISP16 force works very well in investigations of
bound and resonant states, as was documented for example in Refs. [13–15]. In
this contribution we use the JISP16 interaction to study the elastic nucleon-deuteron
scattering performing the first test of this force in few-body reactions.

The chiral approach to the nuclear forces has been developed simultaneously with
the semi-phenomenological methods described above. The nuclear interaction is con-
structed in a framework of the effective field theory for nucleon and pion fields with
incorporated chiral symmetry, see, e. g., Ref. [16] for a detailed review. Within this
approach, it is possible to derive the nuclear interaction perturbatively by expanding

the Lagrangian in powers ν of the parameter
(

Q
Λχ

)
, where Q is the scale of typi-

cal values of nucleon momenta in the initial and final states, and Λχ ≈ 1 GeV is
the scale of chiral symmetry breaking. The ν parameter can be related to geomet-
rical properties (like the number of vertices, number of loops, etc.) of the graphs
representing a given contribution to the potential. The resulting dominant contribu-
tion to the nucleon-nucleon interaction comes from the one-pion exchange force. On
top of that also two-nucleon contact terms are present. They describe a short-ranged
nucleon-nucleon interaction which in the semi-phenomenological models is represented
by heavier meson (like σ, ρ or ω) exchanges.

The chiral potentials, starting from the smallest possible value of ν = 0 [the
leading order (LO)], ν = 2 [the next-to-leading order (NLO)], have been completely
constructed up to ν = 5 (N4LO). Moreover, some dominant contributions arising at
N5LO have been also derived [17]. The most advanced two- and consistent three-
nucleon chiral forces have been derived by the Bochum/Jülich group [18–22]. The
newest version of the two-body force presented in Refs. [21, 22] includes all terms of
the chiral expansion up to N4LO and benefits from an improved way in which values
of the low-energy constants in the long-range part of the interaction are established.
Namely, in Refs. [21, 22] the values of these constants are taken directly from the
pion-nucleon scattering without additional fine tuning applied in the previous model.
Secondly, an improved regularization method has been used. In the older model,
matrix elements of the potential V , 〈~p|V |~p′〉, were multiplied by the exponential fac-

tor exp[−(p6 + p′6)/Λ6], where ~p′ and ~p are the relative momenta of nucleons in the

initial and final states, respectively, p′ =| ~p′ |, p =| ~p | and Λ ≈ 550 MeV is the regular-
ization parameter. Such a non-local regularization implemented in the same way for
all partial waves, leads to unwelcome artifacts in the long-range part of the nucleon-
nucleon force and does not completely eliminate unwanted short-range components of
the two-pion exchange. The same non-local regularization has been also utilized for
the three-nucleon (3N) force [23] affecting the description of observables in the 3N
sector, see Refs. [24] and [25] for applications in the nucleon-deuteron elastic scatter-
ing and in the neutron induced deuteron breakup, respectively. The extensive tests
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of electroweak processes using the older chiral models, can be found in Refs. [26–28].
These works have revealed that the cut-off dependence of the nuclear forces employed
there is too strong (especially at N3LO) and precludes precise conclusions about the
investigated processes.

Within the improved model of Refs. [21,22], the semi-local regularization has been
applied. It means that the long-range component of the interaction in the coordinate
space is multiplied by the function f(r) = [1 − exp (−r2/R2)]6 while the contact
interactions are regularized using a non-local Gaussian regulator in the momentum
space. The values of the cut-off parameter R are chosen in the 0.8–1.2 fm range,
however they do not describe the two-nucleon phase shifts equally well — the best
description (up to Elab = 300 MeV) is obtained for R of 0.9 and 1.0 fm. The first
applications of this newest two-body chiral force to the studies of the elastic nucleon-
deuteron scattering have been announced in Ref. [29] and investigations of various
electroweak processes have been described in Ref. [30]. These first tests demonstrate
a good quality of the chiral interaction, a weak regulator dependence, a fast chiral
convergence and a good behavior at high energies. In this paper we present results
which are based on the N4LO chiral nucleon-nucleon force [21, 22] with semi-local
regularization and choose the regulator R = 0.9 fm.

A transition from the two- to the three-nucleon system entails substantial compli-
cations of theoretical and numerical methods required for a precise analysis of scatter-
ing processes. Even the simplest three-nucleon reaction, the elastic nucleon-deuteron
scattering, reveals the differences between various models of the nucleon-nucleon force.
A review of numerous observables and their sensitivity to the interaction details can
be found in Refs. [31] and [32]. In the case of the chiral forces an additional uncer-
tainty of theoretical predictions stems from the regularization methods which employ
unknown a priori regularization parameters. However, as demonstrated in Ref. [29],
the model of Refs. [21, 22] shows at N4LO only a weak dependence on the regulator
values from the range suggested by the two-body phase shift analysis.

The elastic nucleon-deuteron scattering process has been also intensively inves-
tigated experimentally, see, e. g., Refs. [33–35] for recent reviews. The comparison
of theoretical predictions for the elastic nucleon-deuteron scattering obtained within
various theoretical approaches [31, 32, 36–38], shows that the three-nucleon force is
important for this process at energies above approx 30 MeV. However, in this work,
we restrict ourselves only to the nucleon-nucleon interactions and present just a single
set of predictions obtained with the Urbana IX three-nucleon force combined with the
AV18 nucleon-nucleon interaction to give the reader an idea about a magnitude of
expected three-nucleon force effects. The lack of some contributions in the present-
day models of the three-nucleon force is considered as a probable source of remaining
discrepancies observed in the nucleon-deuteron scattering at low and medium energies.

The elastic nucleon-deuteron scattering process can also be used to study rela-
tivistic effects observed in the cross section at energies around 200 MeV. Inclusion
of such relativistic features as the relativistic correction to the nucleon-nucleon force,
the boost of the potential and Wigner spin rotations, leads to noticeable effects, es-
pecially at backward scattering angles [39]. However up to now, the existing models
of the three-nucleon force even combined with the relativistic ingredients are not
fully able to explain the data. A comparison with the proton-deuteron data also
indicates that neglecting the Coulomb force in the theoretical analysis increases the
observed discrepancies, especially at low energies. The differential cross section for
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the proton-deuteron elastic scattering at very forward angles at energies below ap-
proximately 20 MeV is a good example. The inclusion of the Coulomb force improves
the description of the proton-deuteron data in that region of angles [40].

The paper is organized as follows: we briefly summarize our theoretical approach
in Section 2 and present the results for the elastic nucleon-deuteron scattering in
Section 3. We summarize in Section 4.

2 Formalism

Working in momentum space, in the nonrelativistic regime, and assuming only two-
body interactions, we obtain observables for the elastic nucleon-deuteron scattering
from an auxiliary state T |ψ〉 which fits a Faddeev-like equation [31]

T |ψ〉 = tP |ψ〉 + tPG0T |ψ〉. (1)

Allowing also for the three-body potential, leads to a more complicated Faddeev
equation [32] with two additional terms involving the three-nucleon force:

T |ψ〉 = tP |ψ〉+ tPG0T |ψ〉+(1+ tG0)V
(1)
4 (1+P )|ψ〉+(1+ tG0)V

(1)
4 (1+P )T |ψ〉. (2)

In Eqs. (1) and (2), the initial state |ψ〉 is composed of a deuteron and a momentum
eigenstate of the projectile nucleon, P is a permutation operator which takes into
account the identity of the nucleons and G0 is the free three-nucleon propagator. The

2N interaction V together with the two-nucleon free propagator G̃0 enters Eqs. (1)
and (2) through a solution of the Lippmann–Schwinger equation for the t-matrix:

t = V + V G̃0t. (3)

In Eq. (2), the V
(1)
4 is a part of the three-nucleon force which is symmetric under the

exchange of nucleons 2 and 3.

We solve Eqs. (1) and (2) in the partial wave scheme. We use the |p, q, α〉 basis
states with p = |~p| and q = |~q| being the magnitudes of the relative Jacobi momenta ~p
and ~q. Further, α represents the set of discrete quantum numbers for three-nucleon
system in the jI-coupling:

α =
(
(l, s)j; (λ,

1

2
)I; (j, I)JMJ ; (t,

1

2
)TMT

)
. (4)

Here l, s, j and t denote the orbital angular momentum, total spin, total angular
momentum and total isospin of the 2-3 subsystem. Further, λ and I are the orbital
and total angular momenta of particle 1 with respect to the centre of mass of the
2-3 subsystem. Finally, J , MJ , T and MT are the the total angular momentum of
the 3N system, its projection on the quantization axis, the total 3N isospin and its
projection, respectively.

Using the completeness relation for the |p, q, α〉 states,

∑

α

∫
dp p2

∫
dq q2 |p, q, α〉〈p, q, α| = 1, (5)
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Eq. (1) can be rewritten as

〈p, q, α|T |ψ〉 =
∑

α′

∫
dp′ p′2

∫
dq′ q′2 〈p, q, α|t|p′, q′, α′〉〈p′, q′, α′|P |ψ〉

+
∑

α′

∫
dp′ p′2

∫
dq′ q′2 〈p, q, α|t|p′, q′, α′〉〈p′, q′, α′|PG0T |ψ〉. (6)

This form reveals that while solving Eq. (6), the two-nucleon force matrix elements
present in the t-operator, clearly interfere which can significantly affect the observ-
ables. We solve Eq. (6) by generating its Neumann series and summing it up using the
Padé method [31]. In the results presented here we use all partial waves with j ≤ 4
and J ≤ 25

2 . These values are sufficient to obtain fully converged solutions at the en-
ergies considered here. More details about our numerical performance can be found
in Ref. [31]. Results presented in the next Section have been obtained using, in the
case of all interaction models, only the neutron-proton force (including the neutron-
neutron subsystem). The reason for this is that the JISP16 model assumes charge
independence. This assumption has only a small influence on the magnitudes of the
observables presented here.

3 Results

In the following we discuss results for various observables in the neutron-deuteron elas-
tic scattering process at two laboratory energies of the incoming neutron: E = 5 MeV
and E = 65 MeV. We present our predictions for the differential cross section dσ

dΩ ,
neutron analyzing power AY (N), deuteron vector analyzing power iT11 and deuteron
tensor analyzing power T21 in Figs. 1–4. In all figures, the black solid, red dashed, blue
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Figure 1: Differential cross section dσ/dΩ of elastic neutron-deuteron scattering at ini-
tial neutron laboratory energy E = 5 MeV (left) and E = 65 MeV (right). The black
solid, red dashed, violet dotted and blue dash-dotted curves represent predictions
based on the JISP16, AV18, AV18 + Urbana IX and chiral N4LO (with regularization
parameter R=0.9 fm) forces, respectively. The data at E = 5 MeV are from Ref. [41]
and the data at E = 65 MeV are from Ref. [42] (pd crosses) and [43] (nd circles).
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Figure 2: Nucleon analyzing power AY (N) at the same energies as in Fig. 1. Curves
are the same as in Fig. 1. Data at E = 5 MeV are from Ref. [41] (pd crosses), [44]
(nd circles) and [45] (x-es). Data at E = 65 MeV are from Ref. [42] (pd crosses) and
Ref. [43] (nd circles).

dash-dotted and violet dotted curves represent the predictions obtained with JISP16,
AV18, chiral N4LO with R=0.9 fm and AV18 + Urbana IX forces, respectively.

All these interaction models lead to very similar results for the differential cross
section at E = 5 MeV delivering excellent data description, as is documented in Fig. 1.
Note, the discrepancy between the predictions and the proton-deuteron data clearly
visible at very forward scattering angles, originates from neglecting the Coulomb
force in our theoretical calculations. A deviation among various predictions is seen
atE = 65 MeV. While the chiral and the AV18 results are practically indistinguishable
and underestimate the data, the JISP16 results are on the opposite side of the data.
Only the AV18 + Urbana IX predictions correctly describe the data.

The polarization observables are more sensitive to the details of nuclear inter-
actions. In the case of the neutron analyzing power AY (N) shown in Fig. 2, the
difference between the JISP16 predictions and those based on the AV18 or the chi-
ral interactions appears already at E = 5 MeV. At the maximum of the AY (N),
the JISP16 overpredicts the experimental data while the AV18 and the chiral results
are below the data. At small scattering angles all theoretical models underestimate
the experimental results. At E = 65 MeV all models of nuclear forces give very
similar results, in agreement with the data, for the scattering angles below approxi-
mately θc.m. = 110◦. At larger angles, the JISP16 predictions differ from the remain-
ing ones suggesting a poor data description. For this observable, at both energies,
the three-nucleon force effects are negligible, thus the AV18 + Urbana IX predictions
practically overlap with those employing the AV18 nucleon-nucleon force alone.

A big difference between the JISP16 results and those based on the other models
used here can be observed in the case of the deuteron vector analyzing power iT11
at E = 5 MeV (see Fig. 3). At the maximum of the iT11, the JISP16 predictions
are twice as big as the others. This picture changes when moving to E = 65 MeV
where all predictions are much closer to each other although some difference be-
tween predictions based on the JISP16 model and other results remains, especially
in the 90◦ < θc.m. < 150◦ range. The three-nucleon force effects are small at both
energies and the AV18 and chiral predictions follow the data at E = 65 MeV. The
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Figure 3: Deuteron analyzing power iT11 at the same energies as in Fig. 1. Curves
are the same as in Fig. 1. Data at E = 65 MeV are from Ref. [46].

explanation of the puzzling behavior of the JISP16 potential at the lower energy has
required a more detailed study and is discussed below.

Finally, in Fig. 4, T21 is shown as an example of the deuteron tensor analyzing
powers. At both energies all interaction models predict qualitatively similar values
of T21 and are in agreement with the data at E = 65 MeV. A closer look at Fig. 4b
reveals that the JISP16 results are closer to the data at forward and at the very
backward scattering angles while at medium angles the chiral N4LO model delivers
the best data description. The three-nucleon force effects are again small and the
AV18 + Urbana IX predictions usually overlap with those for the N4LO force.

The puzzling behavior of the JISP16 model in the case of the deuteron vector an-
alyzing power iT11 has encouraged us to study this case in more detail. We present in
Fig. 5 (in a restricted range of scattering angles) the results of calculations performed
in such a way that for solving Eq. (6) the individual t-matrix elements for the JISP16
force in the two-nucleon subspace are replaced in given channels (defined by the l, s
and j quantum numbers) by the same matrix elements taken from the chiral N4LO
interaction. Thus the mixed interaction is used: in all partial waves the JISP16 force
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Figure 4: Deuteron tensor analyzing power T21 at the same energies as in Fig. 1.
Curves are the same as in Fig. 1. Data at E = 65 MeV are from Ref. [46].
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Figure 5: Deuteron vector analyzing power iT11 at E = 5 MeV. Predictions have
been obtained with the JISP16 t-matrix with replacing its individual elements by the
chiral N4LO ones (see text for more details) in 3P0 (thin black dashed curve), 1S0

and 3S1−3D1 (thick black dotted curve), 1P1 (thin black dotted curve), 3P1 (thick
brown dashed curve), 1D2 (red dash-dotted curve), 3P2−3F 2 (magenta dash-double-
dotted curve) or 3D2 (thin blue solid curve) partial wave. The thick black solid curve
represents the JISP16 results and the thick blue dash-dotted curve shows the chiral
N4LO predictions.

is taken except for the one where it is replaced by the N4LO force. The results given
in Fig. 5 demonstrate that different partial waves contribute to the iT11 with different
strengths. The biggest change is caused by replacing the 3P2−3F 2 t-matrix which
reduces the difference between the JISP16 and the chiral N4LO predictions by more
than 50%. The 3P0 and the 1P1 channels are the next to produce the biggest changes
in the iT11 values.

However, none of the exchanges of the individual partial wave in the t-matrix is
able to explain completely the discrepancy between the JISP16 and the chiral N4LO
predictions. Thus, in Fig.6, we show what happens when not only a single individual
partial wave is swapped but when a pair or more channels are replaced at the same
time. We start from the simultaneous replacement of the 3P2−3F 2 and 3P0 partial
waves (the orange dashed curve). This reduces further the observed discrepancy
by approximately 75%. A consecutive replacing of also the 3P1 t-matrix does not
introduce any visible shift but the interchanging in the 1P1 partial wave on top of
the 3P2 −3 F2 and 3P0 channels (the red dash-dotted curve) shifts the predictions in
the proximity to the chiral results. Finally, exchanging all partial waves with j ≤ 2
gives predictions overlapping with the pure N4LO results. This shows trivially that
at this energy the higher partial waves can be neglected, but it demonstrates also
that the difference in the deuteron wave function supported by the JISP16 and N4LO
potentials, is unimportant in this case.

It is needed to check how the replacement of the P -waves influences predictions for
other observables. In Fig. 7 we give an example of the nucleon analyzing power AY (N)
and the deuteron tensor analyzing power T21 at E = 5 MeV. In both cases we observe
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Figure 6: Deuteron vector analyzing power iT11 at E = 5 MeV. The thick black
solid, thick blue dash-dotted and magenta dash-double-dotted curves are the same as
in Fig. 5. Other curves present the predictions obtained with the JISP16 t-matrix
with replacing some combinations of its matrix elements by the chiral N4LO ones: in
the 3P0 and 3P2−3F 2 partial waves (orange dashed), in the 3P0, 3P1 and 3P2−3F 2

partial waves (thick green solid) and in the 1P1, 3P0 and 3P2−3F 2 partial waves (red
dash-dotted). The thick dotted curve shows the results obtained with the JISP16
t-matrix replaced by the chiral N4LO one in all partial waves with j ≤ 2.

the anticipated behavior: when more partial waves are replaced, the predictions are
shifted closer to the N4LO ones. This is also true for the differential cross section
(not shown here), however the changes are practically negligible for this observable.
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Figure 7: Nucleon analyzing power AY (N) (left) and deuteron tensor analyzing
power T21 (right) at E = 5 MeV. Curves are the same as in Fig. 6. Experimen-
tal data are the same as in Fig. 2.
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4 Summary

In this contribution we present the first application of the JISP16 nucleon-nucleon in-
teraction to the elastic nucleon-deuteron scattering process at incoming nucleon labo-
ratory energies E = 5 MeV and E = 65 MeV. In addition to JISP16, the chiral N4LO
interaction with a semi-local regularization using the regulator value of R = 0.9 fm
and the semi-phenomenological AV18 nucleon-nucleon force are used. We present also
the results obtained with the AV18 two-body force supplemented by the three-nucleon
Urbana IX interaction.

For most of the observables, the N4LO predictions agree with those obtained using
the AV18 interaction. The picture is more complicated for the JISP16 model. For
some observables like the differential cross section or the deuteron tensor analyzing
power T21, the JISP16 results, in general, follow the data and predictions based on
the remaining potentials. However, for other observables like the deuteron vector
analyzing power iT11, even at the lower energy, an essential discrepancy between
the JISP16 results and predictions based on other applied interactions exists. The
description of the three-nucleon scattering data obtained with the JISP16 model is
not as good as the description of energy levels in nuclei observed for this force.

Comparing the AV18 + Urbana IX results with those based on the two-body
JISP16 force only, we cannot conclude that the JISP16 results are closer to the pre-
dictions based on the two- and three-body potentials than the predictions obtained
with other models of the nucleon-nucleon interaction.

We have found that the observed discrepancies originate from the off-shell behavior
of the t-matrix operator for different P -waves derived from the JISP16 force. This
in turn leads to the conclusion that in the future models of nuclear forces derived
within the inverse scattering methods, the polarization observables should also be
included into the set of observables used to fix parameters of the potential. Such an
investigation is planned.
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[12] B. R. Barrett, P. Navrátil and J. P. Vary, Prog. Part. Nucl. Phys. 69, 131 (2013).

[13] T. Heng, J. P. Vary and P. Maris, Phys. Rev. C 95, 014306 (2017).

[14] A. M. Shirokov, A. G. Negoita, J. P. Vary, S. K. Bogner, A. I. Mazur, E. A. Mazur
and D. Gogny, Phys. Rev. C 90, 024324 (2014).

[15] A. M. Shirokov, V. A. Kulikov, P. Maris and J. P. Vary, in NN and 3N inter-
actions, eds. L. D. Blokhintsev and I. I. Strakovsky. Nova Science, Hauppauge,
NY, 2014, Chap. 8, p. 231,
http://www.novapublishers.com/catalog/product_info.php?products_id=50945.

[16] E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006).

[17] D. R. Entem, N. Kaiser, R. Machleidt and Y. Nosyk, Phys. Rev. C 92, 064001
(2015).
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Abstract

We develop and test an ab initio time-dependent Basis Function (tBF)
method to solve non-perturbative and time-dependent problems in quantum
mechanics. For our test problem, we apply this method to the Coulomb exci-
tation of the deuteron by an impinging heavy ion. In the tBF method applied
to deuterium, we employ wave functions for its bound and excited states to
calculate its transition probabilities and the r.m.s. radius during the scattering
process. For comparison, corresponding results based on first-order perturba-
tion theory are also provided. For the Coulomb excitation process in a weak and
time-varying Coulomb field, where higher-order effects are negligible, we obtain
a good agreement of the results based on these two methods. The tBF method
is then applied to the Coulomb excitation process with stronger external field.
The higher-order effects, such as those appearing in the reorientation of the po-
larization of the deuteron system, are analyzed.

Keywords: Coulomb excitation; non-perturbative; ab initio method

1 Introduction

The importance of Coulomb excitation and its application in nuclear physics are well
known (see, e. g., Ref. [1] and references therein). A target nucleus transitions to
excited states when scattered by the electromagnetic (E&M) field produced by a
projectile heavy ion. First order perturbation theory works well when the field is
weak. When the field is strong (from, e. g., a highly charged ion), higher order effects,
such as reorientation, become important. For a precise description, the numerical
solution obtained from direct treatment of the time-dependent Schrödinger equation
is necessary [2]. In this work, we present a non-perturbative method to solve the
time-dependent Schrödinger equation, called the time-dependent basis function (tBF)
method. It is closely related to our previous work on time-dependent Basis Light-
Front Quantization (tBLFQ) [3, 4]. It enables tracking the evolution of quantum
states as a function of time. The dynamics of the quantum system is revealed at the
amplitude level. The tBF method will be especially useful when the interactions are
strong, in which cases the perturbative calculations are not reliable.

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 102.
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In this paper, the deuteron Coulomb excitation problem is studied as a first test.
The heavy ion impinges along a fixed impact parameter so the center of mass of the
deuteron is held fixed during the collision process. The impact parameter is set to
be sufficiently large such that the strong nuclear force does not affect the scattering.
The projectile ion generates both time-varying electric (Coulomb) field and magnetic
field. While both the neutron and the proton interact with the magnetic field, only the
proton gets repelled by the Coulomb field. After the scattering, the polarization of the
deuteron system has been reoriented. For our initial test application, we will consider
only the Coulomb excitation effects modeled through the electric dipole transition
operator.

2 Theory and properties of the test application

For the purposes of introducing our tBF approach, we will take the specific example
of a peripheral heavy-ion collision with a deuteron and consider only its Coulomb
excitation. The target can easily be generalized to other systems such as 6Li or 12C.
Each of the simplifications will be lifted in future efforts as our main purpose here is to
introduce the method and provide initial tests. A main feature of our approach is that
we employ ab initio solutions for the ground and excited states of the target system
based on a realistic inter-nucleon interaction. Of course, phenomenological target
wave functions may also be employed and may be necessary for heavier targets.

2.1 Target properties

Within our application of the tBF method, the state wave functions of the target,
the neutron-proton (np) system, are solved with JISP16 NN interaction [5–7]. A
multipole expansion is conducted for the Coulomb field [8] produced by the heavy
ion and only the E1 multipole component is taken into account. The interaction
between the field and the np system can be expressed in terms of the nuclear matrix
elements that determine the radiative transitions. The time-dependent state wave
functions of the np system are solved numerically and then applied to calculate the
transition probabilities between states as well as the r.m.s. radius of the np system.
We demonstrate how the tBF method provides a complete dynamic picture of the
evolution of the np system, where all the higher-order effects are taken into account.

2.2 Peripheral scattering setup

The scattering plane is set to be the x-z plane, as shown in Fig. 1. The heavy ion,
with charge Ze, moves straight with a constant velocity parallel to the ẑ-axis. The
speed is taken as 0.1 (note we adopt the natural units and set ~ = c = 1 throughout
the paper) for our numerical results. The impact parameter is sufficiently large (taken
as 7.5 fm for our numerical application) such that the strong nuclear force does not
play a role. The nucleon mass is taken to be 938.92 MeV and the unit charge of the
deuteron target is carried by the proton. No meson exchange current is evaluated.
As an approximation, we consider the case where the impact parameter is constant
throughout the collision process so that the center of mass of the target is always
fixed at the origin. In this work, we consider only the E1 multipole contribution
for the Coulomb excitation, though other multipole components, e. g., E0, M1, E2,
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Figure 1: Schematic view of the scattering between the heavy ion and the deuteron
target. The scattering plane is set to be in the x-z plane. The heavy ion moves in a
straight trajectory parallel to the ẑ-axis. The center of mass of the target is fixed at
the origin. No recoil of the target is considered when the heavy ion skims over. b is
the impact parameter, v is the constant speed of the heavy ion projectile (along the
ẑ-axis), L0 is the horizontal distance to cut off the Coulomb interaction between the
np system and the heavy ion, θ is the polar angle of the position of the heavy ion, R
is the distance from the center of heavy ion to the origin, r is the separation between
the proton and the neutron.

etc., contribute to the full problem. A cut-off distance is introduced for the Coulomb
interaction, beyond which no significant transition takes place.

2.3 Hamiltonian

In the relative coordinates of the np system, the full Hamiltonian Hfull (for the target
interacting with external E&M field generated by the moving heavy ion) consists of
two parts

Hfull = H0 + Vint, (1)

where
H0 = HKE + VNN +Hext (2)

is the time-independent Hamiltonian for the np system. The HKE is the intrinsic
kinetic energy of the np system. The VNN describes the realistic nucleon-nucleon
(NN) interaction. In this work, it is taken to be the JISP16 NN interaction [5–7].
Since the np system is weakly bound, a small external harmonic oscillator (HO)
trap Hext with ω = 5 MeV is introduced to regulate the continuum states and produce
a discretized representation of the continuum. In future works, we will employ a basis
space regulator that does not affect the ground state while discretizing the continuum
without an external field.

All the eigenstates of H0 are obtained by diagonalization in a sufficiently large
model space

H0|βj〉 = Ej |βj〉. (3)

These energy eigenstates form the complete basis set {|βj〉} of the np system in our
test problem. The time-dependent background field Vint induces transitions between
eigenstates of the np system in the trap.
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2.4 Background field

Vint is the time-dependent part of the full Hamiltonian. It is evaluated locally through
the coupling between the four potential Aµ = (ϕ, ~A) from the moving charge and the
four current of the np system Jµ = (ρ,~j),

Vint(t) =

∫
AµJ

µ d~r =

∫
ρ(~r, t) ϕ(~r, t) d~r −

∫
~j(~r, t) · ~A(~r, t) d~r, (4)

where the relative coordinates relate to the single-particle coordinates of the np system
as ~r = ~rp − ~rn. The second term in Eq. (4) is neglected since the heavy ion is moving
with low velocity in our initial application. Only the interaction between the Coulomb
field of the incident heavy ion and the charge of the np system is evaluated. Moreover,
the multipole expansion of the Coulomb field [8] is performed and only the E1 term
is kept.

2.5 Interaction picture

The basis set is formed by the eigenstates of the free Hamiltonian H0. The transi-
tions between these eigenstates are described in the interaction picture, in which the
equation of motion (EOM) of the np system is

i
∂

∂t
|ψ; t〉I = eiH0t Vint(t) e

−iH0t |ψ; t〉I ≡ VI(t)|ψ; t〉I , (5)

where VI(t) is the interaction part of Hamiltonian in the interaction picture. The
subscript “I” is adopted to distinguish the quantities in the interaction picture from
those in the Schrödinger picture. The above EOM can be solved by integration

|ψ; t〉I = T̂

{
exp

[
− i

∫ t

t0

VI(t′) dt′

]}
|ψ; t0〉I , (6)

where T̂ is the time ordering operator towards the future. Instead of functional
expansion in perturbation theory, the above equation is evaluated numerically in the
tBF approach. For this purpose, we divide the time interval [−T, T ] into n segments,
each segment with step length δt = 2T

n . The integration in the exponent is then
replaced as

T̂

{
exp

[
− i

∫ T

−T

VI(t) dt

]}

∑
δt−−−→
[

1 − iVI(tn) δt

][
1 − iVI(tn−1) δt

]
· · ·
[

1 − iVI(t1) δt

]
. (7)

By multiple insertions of the projection operator defined from this complete basis set
in Eq. (3),

1 =
∑

j

|βj〉〈βj |, (8)

the right hand side of Eq. (7) reduces to matrix multiplications. The final state after
evolution |ψ; t〉I in Eq. (6) is therefore obtained.
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2.6 Interaction matrix

Taking only the E1 multipole component of the Coulomb field, the transition matrix
element [1, 2] is

〈βj |VI(t)|βk〉 =
4π

3
Zαei(Ej−Ek)t

∑

µ

Y ∗
1µ(ΩR̂)

|R(t)|2 〈βj |
r

2
Y1µ(Ωr̂)|βk〉, (9)

where Ej and Ek are respective eigenenergies of eigenvectors |βj〉 and |βk〉 of the
Hamiltonian H0, Yλµ(Ω) (λ = 1 for the E1 multipole contribution) denotes the spher-
ical harmonics following the Condon–Shortley convention [9], and α is the coupling
constant for the E&M interaction. In the relative coordinates of the np system, r is
the distance from the proton to the neutron, while ~R(t) is the position of the heavy ion
projectile. The kernel in Eq. (9) is the matrix element for the E1 transition between
eigenstates of the np system.

To compute the interaction matrix, the three dimensional harmonic oscillator
(3DHO) representation is adopted. We adopt a model space truncation parame-
ter 2n+ l ≤ Nmax = 60 to define our approximation to the full basis space which
leads to our definition of the complete 3DHO basis set {|nlsJM〉} for each eigenvec-
tor in the basis set {|βj〉} of the np system (specified by good quantum numbers s, J
and M):

1 =
∑

nl

|nlsJM〉〈nlsJM |. (10)

Here, for each 3DHO basis wave function, n is the radial quantum number which
denotes the number of nodes of the radial part of the wave function, l is the quan-
tum number of orbital angular momentum ~l, s is the quantum number for spin ~s, ~l
and ~s couple to the total angular momentum ~J , which is a conserved quantity of the
Hamiltonian H0. M is the magnetic quantum number of ~J along the quantization
axis (ẑ-axis in this case). The E1 matrix element in Eq. (9) becomes

〈βj |
r

2
Y1µ(r̂)|βk〉

=
∑

nl

∑

n′l′

〈ξjJjMj |nlsJjMj〉〈nlsJjMj |
r

2
Y1µ(r̂)|n′l′s′JkMk〉〈n′l′s′JkMk|ξkJkMk〉,

(11)

where

|βj〉 =
∑

nl

〈nlsJjMj|ξjJjMj〉|nlsJjMj〉 ≡
∑

nl

aj;nl|nlsJjMj〉, (12)

|βk〉 =
∑

n′l′

〈n′l′s′JkMk|ξkJkMk〉|n′l′s′JkMk〉 ≡
∑

n′l′

ak;n′l′ |n′l′s′JkMk〉, (13)

and ξj and ξk denote additional quantum numbers necessary to describe |βj〉 and |βk〉,
respectively. In this work, the amplitudes {aj;nl} and {ak;n′l′} are solved by diago-
nalization of H0 in the 3DHO representation. The middle kernel in Eq. (11) is the
E1 matrix element (r/2)Y1µ(r̂) in the 3DHO representation. It can be solved by
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converting into the coordinate representation,

〈nlsJjMj|
r

2
Y1µ(r̂)|n′l′s′JkMk〉

=
∑

mlms

∑

m′
l
m′

s

δss′δmsm′
s
(lmlsms|JjMj)(l

′m′
ls

′m′
s|JkMk)

∫
R∗

nl(r)
r

2
Rn′l′(r) r

2dr

× (−1)ml

√
3(2l+ 1)(2l′ + 1)

4π

(
l 1 l′

−ml µ m′
l

)(
l 1 l′

0 0 0

)
, (14)

where Rnl(r) is the radial part of 3DHO wave function in the coordinate representa-
tion,

Rnl(r) =

√
2n!

r30Γ(n+ l + 3
2 )

( r
r0

)l
exp

(
− r2

2r20

)
L
l+ 1

2
n

(
r2

r20

)
, (15)

with Lα
n(r2/r20) the associated Laguerre polynomial. r0 =

√
1/mω is the oscillator

length with m the reduced mass of the np system and the HO frequency ω taken to
be the same as the frequency of the trap. This definition ensures that Rnl(r) starts
positive at the origin. The radial integral in Eq. (14) is evaluated to be

∫
R∗

nl(r)
r

2
Rn′l′(r) r

2 dr

=
r0
2





√
n+ l + 3

2 δnn′ −√
n δn,n′+1 for l′ = l + 1;√

n′ + l′ + 3
2 δnn′ −

√
n′ δn′,n+1 for l = l′ + 1;

0 else.

(16)

(lmlsms|JjMj) in Eq. (14) is the CG-coefficient and

(
l 1 l′

−ml µ m′
l

)

is the 3j-symbol following the Condon–Shortley convention [9]. The angular part
determines the selection rule of the E1 transition.

2.7 Evolution of states

The method described in Eq. (7) is known as the Euler scheme. This approach is
not stable because it is not symmetric in time. The norm of the state vector |ψ; t〉I
may not be conserved under time evolution [10], which violates the conservation of
probability. We therefore adopt the MSD2 [11] scheme

|ψ, t+ δt〉I ≈ |ψ, t− δt〉I − 2iVI(t) δt |ψ, t〉I . (17)

For comparison with results from the MSD2 scheme, we also present the evolution
calculated from the first-order perturbation theory. From Eq. (7), the evolution of
state vector is evaluated to the leading order in the interaction VI ,

|ψ; tn〉I →
[

1 − i δt
(
VI(tn) + VI(tn−1) + ...+ VI(t1)

)]
|ψ; 0〉I . (18)
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2.8 Observables

During the evolution, the wave function of the np system at a certain moment in
terms of the basis set {|βj〉} is

|ψ; t〉 =
∑

j

Aj(t)|βj〉, (19)

where |βj〉 denotes the tBF basis solved from Eq. (3). The amplitudes Aj(t) are
tracked for each basis state during evolution. Applying the time-dependent np wave
function Eq. (19), we can track the r.m.s. radius of the np system as

〈
r2(t)

〉1
2 =

1

2

√
〈ψ; t|r2|ψ; t〉. (20)

3 Results and discussion

For our test problem, we consider 3 interaction channels for the np system. They
are (3S1,

3D1), 3P0 and 3P1. For each channel, the lowest states (degenerate in
magnetic quantum numbers M) of H0 are considered. The eigenenergy of each state
is also shown in Fig. 2.

The heavy ion projectile is chosen to be fully stripped (all electrons removed)
124Sn, with Z = 50. It moves in a straight trajectory parallel to the ẑ-axis with
a constant velocity which magnitude is set to 0.1 in our test problem. The center
of mass of the np system is fixed at the origin. The impact parameter is fixed to
be 7.5 fm. The exposure duration is 10 MeV−1 (6.582 × 10−21 sec), during which
time the projectile travels approximately 200 fm (100 fm before distance of closest
approach and 100 fm after that). The initial state is prepared to be polarized along
the negative ẑ-axis. That is, the initial state is selected to be the (3S1,

3D1), M = −1
state.

Applying either the tBF method or the first-order perturbation theory, we will
calculate the wave functions of the np system at selected moments during evolution.
The wave functions are then applied to calculate the transition probabilities as well
as the r.m.s. radius of the np system as a function of time. The dependence of these
properties on the strength of external Coulomb field is also investigated by altering
the coupling constant. We note that our discussion of properties at intermediate times
is allowed in quantum mechanics but only the results at asymptotic times correspond
to experimental observables.

Figure 2: Basis set of the np system
for evolution.
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Figure 3: Time evolution of the np system (characterized by 7 basis states) in the
weak and time-varying Coulomb field. The initial deuteron system is polarized along
the negative ẑ-axis. The duration is 10 MeV−1 and the coupling constant is 1/137.04.
The charge of the heavy ion projectile is Z = 50 and it moves parallel to the ẑ-axis with
a constant speed 0.1. The impact parameter is 7.5 fm. The initial state is prepared
to be the (3S1,

3D1), M = −1 ground state (the lowest basis state in our eigenbasis).
For each basis state, the red solid curve represents the probability calculated by the
MSD2 scheme during evolution, while the blue dashed curve is the result from first-
order perturbation theory.
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3.1 Results with the physical coupling constant

In Fig. 3, we plot the time evolution of the probabilities of the np system when it
is exposed to a weak, time-varying Coulomb field. The coupling constant is set to
be α = 1/137.04.

Intense probability fluctuations are found for some states at the middle of the
scattering process, when the heavy ion is close to the np system. Such fluctuations
are transient and they are signs of the virtual quantum processes. The probabilities
converge to stable values when the Coulomb field fades away. The distance for the
Coulomb field to be effective is related to the external interaction energy Vint and
internal energy gaps of the np system.

For levels that obey the E1 selection rule, good agreement for the transition prob-
abilities is obtained between calculations from the tBF method (red solid lines) and
calculations from first-order perturbation theory (blue dashed lines). This shows
that the tBF method is consistent with first-order perturbation theory when the
interaction field is weak. For states that violate the E1 selection rule, however,
differences are found between the results from the tBF method and those from first-
order perturbation theory. For example, the forbidden states, (3S1,

3D1), M = 0
state, (3S1,

3D1), M = 1 state and 3P1, M = 1 state are excited at the end of
evolution, though with relatively small probabilities. These “forbidden transitions”
result from the higher-order processes which are excluded from first-order perturba-
tion theory.

In Fig. 4, we present the r.m.s. radius for the np system during evolution. Due
to the external HO potential trap Hext in Eq. (2) introduced for constraining the np
system, its r.m.s. radius before evolution, 1.472 fm, is approximately 25% smaller
than the physical r.m.s. radius, 1.975(3) fm, of the natural deuteron [12, 13]. The
r.m.s. radius expands when the np system gets excited to high-lying levels. The tiny
difference in the r.m.s. radii given by the two approaches is due to the “forbidden
transitions” to high-lying levels, which are the higher-order effects included by the
tBF method. In general, the r.m.s. radius given by the tBF method (red solid line)
agrees with that based on the perturbation theory (blue dashed line). At the end of
evolution, both methods predict the net expansion of the order of 10−4 fm.
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Figure 4: The r.m.s. radius of the np
system during evolution. The simula-
tion conditions for the intermediate np
wave functions are the same as those
described in Fig. 3. The red solid curve
represents the r.m.s. radius calculated
from the wave function obtained via
the tBF method, while the blue dashed
curve is the r.m.s. radius based on the
wave function from first-order pertur-
bation theory.
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3.2 Results with an enlarged coupling constant

We test the tBF method for the evolution of the np system in the presence of a stronger
and time-varying Coulomb field, where the coupling constant is set to α = 1/13.704.
We perform this calculation in order to enhance the visibility of the non-perturbative
quantum effects that may become more evident with closer encounters and/or with
relativistic heavy ions.
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Figure 5: The same as in Fig. 3. However, the coupling constant is set to 1/13.704.
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Figure 6: The same as in Fig. 4. How-
ever, the coupling constant is set to
1/13.704.

For the np system, the non-perturbative tBF calculation for the transition prob-
abilities during evolution (red solid lines) are shown in Fig. 5. The transition prob-
abilities based on first-order perturbation theory are again provided (blue dashed
lines) for comparison. However, it is easily anticipated, and observed, that first-order
perturbation theory is not sufficient in this case.

The evident difference on transition probabilities is found between the calculation
based on the tBF method and that on first-order perturbation theory. This differ-
ence shows that the higher-order effects are crucial for the precise calculation of the
Coulomb excitation process in a strong field. Such higher order effects result in a
significant reorientation of the polarization of the np system. This is observed from
the large transition probabilities to levels that are forbidden by the first order E1
selection rule, e. g., to the (3S1,

3D1), M = 1 state.

We observe that the np system is not significantly excited at the end of evolution.
Though re-distributed, almost all of the population are still resident in the (3S1,

3D1)
levels. This results in a negligible expansion of the np system after the scattering
process (Fig. 6), which is at the order of 10−4 fm. Note that the r.m.s. radius is
a simple characteristic of the full final state distribution. Population of the excited
states would be expected to lead to breakup or gamma emission back to the ground
state but we do not incorporate those final state effects in our current calculations.

4 Conclusions and outlook

We have developed and applied a non-perturbative method, the time-dependent Basis
Function (tBF) method, to study scattering problems in strong and time-dependent
external fields. Since the tBF method enables calculations of intermediate state wave
functions, it enables a detailed investigation on the dynamics of a system during
evolution. As a test problem, we study the Coulomb excitation of the deuteron
target when a heavy ion projectile impinges. The target deuteron is placed in a
weak external harmonic oscillator potential trap and its center of mass is fixed. The
energy eigenfunctions of the target (np) system are calculated with the JISP16 NN -
interaction, from which only seven of them are kept as basis states for this test
problem. For simplicity, only the E1 component of the Coulomb field is considered.
Due to the Coulomb excitation, the np system gets excited during the scattering
process. We calculate the np wave functions at selected moments during evolution
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based on the tBF method. The wave functions are then applied to calculate the
transition probabilities as well as the r.m.s. radius of the np system. For comparison,
we also provide corresponding calculations which are based on first-order perturbation
theory.

We first study the Coulomb excitation problem in a weak, time-varying external
field. For those states that obey the E1 selection rule, we obtain agreement for the
transition probability between these two approaches. This confirms that the tBF
method is consistent with first-order perturbation theory in the limit of the weak
interaction field. However, for the other states that violate the E1 selection rule,
deviations from zero are obtained in the tBF approach. These deviations signify the
higher-order effects missing in first-order perturbation theory.

In scattering problems with a stronger interaction field, the higher-order effects are
expected to be important. To show this, we investigate the same Coulomb excitation
problem but with a strong, time-varying external field. We achieve this by tuning
the coupling constant to 1/13.704, while all the remaining parameters are kept the
same as those in the previous simulation. In this case, it is found that the higher-
order effects largely reorient the polarization of the deuteron system, while the r.m.s.
radius changes minimally after the evolution. At later times, differences in the level
distribution and r.m.s. radius of the np system are observed between predictions
based on the tBF method and first-order perturbation theory. This justifies a full
non-perturbative treatment in the presence of strong interaction field.

In the next step, with the validity of the tBF method confirmed, we will apply
this method to simulate the scattering process of the deuteron in the presence of
both the electromagnetic interaction and the strong interaction due to an impinging
heavy ion. In such cases, both the Coulomb interaction and the strong interaction
can modify the polarization of the deuteron system [14–16]. Specific attention will
be paid to the time-evolution of the charge and momentum distribution of the np
system. These studies will be very important for understanding the dynamics of the
deuteron breakup reaction [17, 18] and would serve as a precursor for investigating
the internal structures of larger nuclei.
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Self-Consistent Collective Motion Path

for Nuclear Fusion/Fission Reactions

Kai Wen and Takashi Nakatsukasa

Center for Computational Sciences, University of Tsukuba, Tsukuba 305-8577, Japan

Abstract

The adiabatic self-consistent collective coordinate (ASCC) method is a mi-
croscopic theoretical framework to extract an optimal form of collective coor-
dinate for the large amplitude nuclear collective motion. It also enables us to
calculate the inertial mass for the nuclear collective motion. Based on this theo-
retical framework, we develop a numerical method to realize a calculation of the
self-consistent collective motion path and inertial mass parameter for the nuclear
fusion/fission reactions. We apply our method to the reaction 8Be ↔ α+ α. The
collective motion paths, collective potentials, and inertial masses for the relative
motion are presented and discussed.

Keywords: Nuclear fission; collective motion; collective path

1 Introduction

The time-dependent density functional theory (TDDFT) [1–5] is a general microscopic
theoretical framework to study low-energy nuclear fusion and fission reactions. Based
on the TDDFT, a microscopic mechanism of nuclear collective dynamics has been
extensively studied for many years. The linear approximation of TDDFT leads to
the random-phase approximation (RPA) [5–7], which is capable of nuclear response
calculations and provides an unified description for both the nuclear structure and
collective dynamics. Despite a rich microscopic information embedded in the TDDFT
calculations, it is difficult to give a full theoretical description for the nuclear collective
dynamics. For instance, it cannot describe the sub-barrier fusion and spontaneous
fission properly, due to its semiclassical nature [1, 5, 6].

For the study of large amplitude nuclear collective dynamics in the “macroscopic”
collective level, it is of high interest to obtain an optimal form of collective variables
maximally decoupled from other intrinsic degrees of freedom, so that equations of
motion for these collective canonical variables become of closed form. The adiabatic
self-consistent collective coordinate (ASCC) method [8–11] aims at determining such
canonical variables by solving self-consistent equations. The ASCC method has been
applied to many nuclear structure problems associated with large-amplitude oscilla-
tions described by Hamiltonians with separable interactions [10–13].

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 115.
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The inertial mass of nuclear collective motion is another long-standing problem in
nuclear structure physics [6,14]. Apparently, it is very important for nuclear reaction
dynamics. Especially, the derivation of the mass after a touch of two nuclei is a
highly non-trivial problem. The calculation of the mass parameter requires properly
extracted collective coordinates and conjugate momenta, which can be provided by
the ASCC method. Thus the ASCC method is also capable of microscopic calculation
of the inertial masses for the collective motion.

Recently, by combining the imaginary-time evolution [15] and the finite amplitude
method [16–18], we proposed a numerical method to solve the ASCC equations and to
determine a collective path for the nuclear collective motion [19]. The collective coor-
dinate and momentum are obtained self-consistently. In this article we will introduce
our method and present the first applications to simplest systems, the translational
motion of a single alpha particle and the fission of 8Be.

In Section 2, we give the formulation of the basic ASCC equations in the case of
one-dimensional collective motion, introduce the method of constructing the collective
path and the coordinate transformation procedure for calculating the mass parameter.
In Section 3, we apply the method to the translational motion of a single alpha particle
and to the reaction 8Be ↔ α+ α. Summary and concluding remarks are given in
Section 4.

2 Formulation of the ASCC method

To determine an optimal collective path in the high-dimensional space of Slater de-
terminants, we first label the states on the collective path by a couple of canonical
variables (p, q), whose equation of motion can be maximally decoupled from other
intrinsic degrees of freedom. Thus q and p represent the collective coordinate and the
conjugate momentum respectively.

In the adiabatic limit, expanding the wave function ψ(q, p) in powers of p up to the
second order, the invariance principle of the SCC equation [8] leads to the equations
of the ASCC method [5,9]. Neglecting the curvature terms, it reduces to the following
set of equations:

δ〈Ψ(q)|Ĥmv|Ψ(q)〉 = 0, (1)

δ〈Ψ(q)|[Ĥmv,
1

i
P̂ (q)] − ∂2V (q)

∂q2
Q̂(q)|Ψ(q)〉 = 0, (2)

δ〈Ψ(q)|[Ĥmv, iQ̂(q)] − 1

M(q)
P̂ (q)|Ψ(q)〉 = 0, (3)

with the moving mean-field Hamiltonian Ĥmv defined as

Ĥmv = Ĥ − ∂V (q)

∂q
Q̂(q), (4)

where the potential V (q) is the expectation value of the Hamiltonian,

V (q) = 〈ψ(q)|Ĥ |ψ(q)〉, (5)

M(q) is the mass parameter of collective motion. Q̂(q) and P̂ (q) correspond to the
local generators of the variables p and q. Note that the collective motion path is
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expressed by Ψ(q), which represents the state Ψ(q, p) with p = 0. Here we consider
the one-dimensional description of collective motion without taking the pairing cor-
relation into account. Equation (1) is similar to a constrained Hartree–Fock (HF)
problem, however, the constraint operator Q̂(q) depends on the coordinate q, which
is self-consistently determined by the RPA-like Eqs. (2) and (3) called moving RPA
equations. The conventional RPA forward and backward amplitudes X and Y are
linear combinations of P̂ (q) and Q̂(q) which matrix elements Xni, Yni and Pni, Qni

satisfy the relations

Xnj =

√
ω

2
Qnj +

1√
2ω
Pnj , (6)

Ynj =

√
ω

2
Qnj −

1√
2ω
Pnj . (7)

Hereafter, indices i, j and n, m refer to the hole and particle states respectively. The
RPA eigenfrequency ω is related to the mass parameter and the second derivative of
the potential,

ω2 =
1

M(q)

∂2V (q)

∂q2
. (8)

The operators of collective momentum P̂ (q) and coordinate Q̂(q), as a pair of
canonical variables, are imposed a weak canonicity condition,

〈Ψ(q)|[iP̂ (q), Q̂(q)]|Ψ(q)〉 = 1, (9)

which is equivalent to the RPA normalization condition,
∑

n,j

(X2
nj − Y 2

nj) = 1. (10)

The collective path Ψ(q) as well as V (q) and M(q) are determined self-consistently
by Eqs. (1)–(3) and no a priori assumption is used.

The scale of the collective coordinate q in the ASCC equation set is arbitrary. It
is easy to determine the scale by mapping the coordinate q onto any other collective
quantity R as far as the one-to-one correspondence exists. For the study of nuclear
scattering and nuclear fission, we define R as the relative distance between ions. The
operator form of R can be expressed as

R̂ ≡
∫
d~r ψ̂†(~r) ψ̂(~r) z

[
θ(z − zs)

Mpro
− θ(zs − z)

Mtar

]
, (11)

where θ is the step function, and zs is an artificially introduced section plane dividing
the total system of mass A = Mpro +Mtar into the left part with mass Mpro and the
right part with mass Mtar. The relation between M(R) and M(q) reads

M(R) = M(q)

(
dq

dR

)2
. (12)

The calculation of the derivative dq/dR is straightforward once the collective path Ψ(q)
and the local generator P̂ (q) are obtained. With this equation we can calculate the
mass parameter with respect to R.
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We solve the moving RPA equations (2) and (3) by taking advantage of the finite
amplitude method (FAM) [16–18], especially of the matrix FAM prescription [18].
To solve the ASCC equations (1)–(3) self-consistently and to construct the collective
motion path Ψ(q), we adopt the following procedures: First, we calculate the HF
ground state of the nucleus before fission Ψ(q = 0); based on Ψ(q = 0), we solve the
moving RPA equations to obtain Q̂(q = 0) and P̂ (q = 0). When Ψ(q), Q̂(q), and
P̂ (q) are provided, we solve the moving HF equation to obtain the state Ψ(q+ δq) by
using the constraint condition

〈Ψ(q + δq)|Q̂(q)|Ψ(q + δq)〉 = δq. (13)

With the new state Ψ(q + δq), we may update the generators and get Q̂(q + δq)
and P̂ (q+ δq); with the updated generators, we can obtain the new state by Eq. (13)
again. Carrying on this iterative procedure, we can determine series of states Ψ(0),
Ψ(δq), Ψ(2δq), Ψ(2δq), ... and obtain the ASCC collective path. The assumption

adopted here is that Ψ(q + δq) ≃ e−iδqP̂ (q)Ψ(q).

3 Applications

3.1 Solution for the translational motion

The HF ground state is a trivial solution that satisfies the ASCC equations. Based on
the ground state, we can calculate the translational mass as a test calculation. The
calculation is done in the 3-dimensional coordinate space in a sphere with radius equal
to 7 fm. The BKN energy density functional [20] is adopted in numerical calculation.
The upper panel in Fig. 1 shows the eigenfrequency ω of several lowest RPA states for
the ground state of alpha particle. Three translational modes along x, y, z axes are
degenerate with an energy of about 1 MeV. The model space is discretized with the
mesh size of 0.8 fm. Using a finer mesh size, the eigenfrequencies of these three modes
approaches to zero. Due to a compact nature of alpha particle, the lowest physical
excited state above the translational zero-modes, is 20 MeV higher representing a
monopole vibration.

Below those three degenerated translational modes, there exists a mode with the
energy equal to zero, this solution appears due to a numerical treatment of the particle
states, namely, the particle state |m〉 is expressed through the coordinate |~r〉 in the
whole model space. This redundancy in the representation of particle states results
in additional solutions that are unphysical. This unphysical state does not affect
the physical results and we may simply neglect it. Using Eq. (12), we calculate the
translational mass parameter of the alpha particle. The model space is chosen to
be a sphere with different mesh sizes. The lower panel in Fig. 1 shows the mass
parameters of alpha particle in the translational motion along x, y and z axes and
their dependence on the mesh size. As the mesh size decrease, the results approach
the value of 4 in the units of nucleon mass, which is the correct mass number of the
alpha particle.

3.2 ASCC motion path for 8Be ↔ α + α

A numerical application of the ASCC method to establishing a collective path for
the nuclear fusion or fission reactions is a complicated computational problem. We
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Figure 1: Top:
calculated eigen-
frequencies for
the ground state
of alpha particle.
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tional motion
modes along x,
y and z axis are
shown by thick
red lines. These
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tional modes are
degenerate, five
quadrupole modes
are also degen-
erate. Bottom:
calculated transla-
tional mass of the
alpha particle in
units of nucleon’s
mass as a function
of the mesh size.

show here our first result for the spontaneous fission path of 8Be, that may be also
regarded as the fusion path of two alpha particles at low incident energy. The model
space is the three-dimensional grid space of the rectangular box size 10 × 10 × 18 fm3

with the mesh size of 0.8 fm. The BKN energy density functional [20] is adopted in
numerical calculation.

Starting from the ground state of 8Be and carrying out the iterative procedure
introduced in Section 2, we obtain the ASCC fission path of 8Be demonstrating a
smooth transformation of 8Be into two well separated alpha particles. In Fig. 2, we
show the calculated density distribution at four points on this collective path. The
inset (a) shows the density distribution of the ground state of 8Be at R = 3.55 fm
while the inset (d) shows the density distribution of two alpha particle at R = 6.40 fm.
The insets (b) and (c) show the intermediate density distributions at R = 4.10 fm
and 5.10 fm, respectively.

In the upper panel of Fig. 3, we plot the frequency ω of Eq. (8) for the solution of
the moving RPA equations on the ASCC path compared with the binding energy of
the last filled orbit as a function of R. The lower panel of Fig. 3 shows the potential
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8Be → α + α

(c)

-6 -4 -2 -0 2 4 6

z [fm]

-4

-2

 0

 2

 4

x 
[f

m
]

(a)

-6 -4 -2 -0 2 4 6

-4

-2

 0

 2

 4

x 
[f

m
]

(d)

-6 -4 -2 -0 2 4 6

z [fm]

-4

-2

 0

 2

 4

(b)

-6 -4 -2 -0 2 4 6

-4

-2

 0

 2

 4
Figure 2: Cal-
culated density
distribution at
four points on the
ASCC collective
fission path of
8Be. Insets (a),
(b), (c), and (d)
show the density
distribution in the
y−z plane of the
ground state of 8Be
at R = 3.55, 4.10,
5.10, and 6.40 fm,
respectively.

 0

 5

 10

 15

 3.5  4  4.5  5  5.5  6  6.5  7

 ω
 [

M
eV

]

 R [fm]

-40

-39

-38

-37

-36

-35

-34

-33

-32

-31

 3  4  5  6  7

 V
 [

M
eV

]

 R [fm]

Q20 cons.
ASCC

Figure 3: Top: RPA eigen-
frequency ω on the ASCC
collective fission path of
8Be as a function of R.
Solid (dashed) blue curve
shows real (imaginary) ω,
red curve demonstrates an
absolute value of the single
particle energy of the last
filled orbit in 8Be. Bot-
tom: potential energy as a
function of R. Blue curve
presents the potential on
the ASCC collective path
while the red curve is the
potential of the constrained
HF states with the con-
straint on Q20.



Collective motion path in nuclear fusion/fission reactions 121

energy as a function of R. The ground state of 8Be is at R = 3.55 fm, the Coulomb
barrier top is at R = 6.6 fm.

According to Eq. (8), ω2 is proportional to the second order derivative of the
collective potential V (q) which can be negative. In the upper panel of Fig. 3, the
imaginary ω is plotted by the dashed curve while the real one is plotted by the solid
curve. In the region 4.4 fm < R < 6.9 fm, the imaginary ω appears, where the state
is not in the minimum but on the saddle point of the energy surface corresponding
to the moving Hamiltonian Hmv. At a larger distance, ω should approach zero. As a
general trend, the frequency ω for the relative motion increases as the nuclei approach
each other. Inside the HF ground state at R < 3.6 fm, ω increases drastically and
becomes larger than the binding energy of the last filled orbit, the RPA excitation here
is above the bound threshold and in the continuum region. In this case the unbound
RPA state features depend on the choice of model space, therefore we should not take
the result in this region seriously.

3.3 Inertial mass for 8Be ↔ α + α

With the collective fission path obtained, the ASCC inertial mass MASCC(R) for this
fission path is calculated using Eq. (12) and shown in Fig. 4 in comparison with the
cranking mass Mcr(R).

The cranking inertial mass is derived by assuming a separable interaction and
taking the adiabatic limit of the RPA inertial mass. In the case of one-dimensional
motion, the widely used formula for the cranking mass reads [21]

Mcr(R) =
1

2

{
S(1)(R)

}−1

S(3)(R)
{
S(1)(R)

}−1

, (14)

where

S(k)(R) =
∑

m,i

|〈ϕm(R)|R̂|ϕi(R)〉|2
{em(R) − ei(R)}k . (15)

Here the single-particle states φ(R) and energies e(R) are defined with respect
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to hCHF(R) = hHF[ρ] − λ(R)R̂ as

hCHF(R)ϕµ(R) = eµ(R)ϕµ(R), µ = i,m. (16)

Residual fields induced by the density fluctuations are neglected in the cranking for-
mula. The calculation of the cranking mass is based on the CHF states with the
constraint on R. The model space is the same as that for the ASCC.

As is seen in Fig. 4, the ASCC mass MASCC(R) is smaller than the cranking
mass. At large distance, both produce the reduced mass of 2 in the units of nucleon
mass, which is just the reduced mass for the relative motion of two alpha particles;
the precision of cranking mass is a little worse as compared with the ASCC mass.
In the interior region after the touch of two nuclei, these masses have very different
values. The cranking mass is found to be larger than the ASCC mass, especially at
around R = 4 fm, the cranking mass has an about 40 percent larger value. This fact
shows that the residual field arising from the density fluctuations makes a significant
contribution. Compared with the cranking mass, the ASCC mass has an advantage
that the collective coordinate as well as the wave functions are not assumed artificially
but calculated self-consistently. As mentioned in the previous Subsection, we should
not take seriously the results for the ASCC mass at R < 3.6 fm, the ASCC mass is
plotted in this region by a dashed curve.

4 Summary

Based on the ASCC theory, we presented a method to determine the collective motion
path for the large amplitude nuclear collective motion, and applied this method to the
nuclear fusion/fission reaction 8Be ↔ α+ α. In the 3D coordinate space representa-
tion, the reaction path, the collective potential and the inertial mass are calculated.
Since the system under consideration presents one of the simplest cases, there is no
significant difference in the reaction path as compared with that for the CHF states.
The ASCC collective potential is similar to the potential of the CHF states. A com-
parison of the ASCC mass with the cranking mass is presented. The ASCC mass
improves the cranking mass by taking into account the residual interaction caused by
the density fluctuations. By using this method it is feasible to calculated the mass
parameter for any collective coordinate. As our first application, we use a schematic
BKN interaction, it is desired to use more realistic interactions accounting for paring
in our future study.
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Abstract

A study of the deuteron structure in the framework of relativistic quantum
mechanics is presented. The point-form (PF) relativistic quantum mechanics
(RQM) is applied to elastic eD scattering. The deuteron wave function and
neutron form factors are fitted to electromagnetic deuteron form factors. We
also compare results obtained with various realistic deuteron wave functions
stemming from Nijmegen-I, Nijmegen-II, JISP16, CD-Bonn, Paris, Argonne,
Idaho and Moscow (with forbidden states) potentials. It is shown that the elec-
tromagnetic deuteron form factors may be described without exchange currents.

Keywords: Nucleon; potential; deuteron; eD elastic scattering; electromagnetic
form factors; relativistic quantum mechanics; point-form dynamics

1 Introduction

Being the simplest nucleus, the deuteron provides the most direct test of various
nucleon-nucleon interaction models and relevant degrees of freedom. In this con-
text, the deuteron electromagnetic studies with electron or photon probes are the
simplest in theoretical and experimental aspects. These studies provide a picture of
deuteron electromagnetic structure in terms of deuteron electromagnetic (EM) form
factors (FFs). These FFs are functions of the square of the four-momentum trans-
ferred by a probe (q2 = −Q2).

During the last two decades a considerable advance has been made in the exper-
imental knowledge of deuteron electromagnetic structure. On the other hand, there
is a substantial diversity of opinions regarding an appropriate general theoretical ap-
proach. Anyhow, it seems natural as well as confirmed by a general data analysis [1]
that in the space-like region of Q2 (corresponding to the elastic scattering) a successful
theory may be obtained from a relativistic description of the NN channel only which
is supplemented by minor modifications of the short-range structure of the deuteron
EM current operator. Here, again, there are various approaches to the relativistic
description as well as to the EM current operator structure [1, 2].

A conventional assumption is that a majority of the existing data of eD elastic
scattering are described to high precision within a single-photon exchange approxi-
mation and by three electromagnetic deuteron FFs [1, 3–5]. The deuteron FFs are
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puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 124.
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calculated in the conventional model using the deuteron wave function (S and D
components) and nucleon FFs. FFs may be chosen so as to be equal in the Q2 = 0
(static) limit to the deuteron charge, magnetic and quadruple moments. The first two
FFs are described within the conventional nuclear model in terms of nucleon degrees
of freedom only. However the deuteron static electric quadrupole moment is not re-
produced well enough in modern NN potential calculations. It is generally accepted
that meson exchange contributions should be accounted for to get an agreement with
the data.

The single-photon exchange approximation assumes that the electron and deuteron
exchange a single virtual photon. It is believed that this approximation should be
valid to a high precision due to a small value of the fine-structure constant. Therefore
the elastic eD scattering allows to extract the deuteron EM FF dependencies on the
transferred 4-momentum Q in the space-like region. To extract these dependencies,
it is required to measure three independent observables of the eD elastic scattering
in this region. Two of them (structure functions A and B) are extracted from the
unpolarized differential cross section and the third one is extracted from polarization
measurements.

Simple non-relativistic calculations with various realistic NN potentials (NN
channel only) at low Q . 0.7 GeV/c ≈ 3.5 Fm−1 are in close harmony and agree
well enough with the eD elastic scattering data [1, 2]. A disagreement between cal-
culations increases with the rise of Q > 3.5 Fm−1. None of the calculations describes
data for Q & 3.5 Fm−1. This disagreement indicates that relativistic effects and
contributions of other channels may be essential at Q > 3.5 Fm−1 [1, 2]. Indeed,
an inclusion of relativistic and meson exchange corrections results in a good descrip-
tion of the data [6, 7]. However there is another problem that is not emphasized
usually. Important ingredients of the calculations are the nucleon FF dependencies
on the Q2

i transferred to an individual nucleon. These dependencies are extracted
experimentally. The proton FFs are extracted from direct measurements with pro-
ton targets. Nevertheless, even in this case, there is a notable discrepancy between
the values of the proton FF ratio, GEp/GMp, extracted from polarization and cross
section experiments. The cross sections are necessary to extract the absolute values
of GEp and GMp while the polarization transfer measurements provide information
only about the ration GEp/GMp. The discrepancy begins at Q ≈ 1 GeV/c ≈ 5 Fm−1.
It may be explained by the hard two-photon exchange process (TPE), and the data
reveal some evidence for this explanation [8]. It also should be noted that model
calculations and analyses demonstrate that the TPE significantly changes GEp while
the GMp alteration is at a few percent (∼3%) level [9,10]. The latest analytical fit to
the proton FFs is a simultaneous fit to the polarization and cross section data. The
cross section data are corrected by an additive term assuming some phenomenological
TPE corrections [11].

A free neutron target is not available. The neutron FFs are extracted from the
measurements of eD or e 3He scattering. Therefore the data analysis is affected by
uncertainties stemming from an assumed nuclear theoretical model describing the
target nucleus and reaction.

A conventional procedure for the neutron FF extraction may be exemplified as fol-
lows. The electric neutron FF was measured in Ref. [12] up to Q2 = 3.4 GeV2/c2 using

the
−−→
3He(~e, e′n)pp reaction. The extraction includes calculations of the asymmetries in

the quasi-elastic processes
−−→
3He(~e, e′n)pp and

−−→
3He(~e, e′p)np. These calculations were
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performed using the generalized eikonal approximation and included spin-dependent
final-state interactions (FSI), meson-exchange currents and the 3He wave function
resulting from the AV18 potential. Finally, to extract the GEn, a linearly interpo-
lated GMn from Ref. [13] was used. The procedure of Ref. [13] is a measurement of the
ratio R of the cross sections of the quasielastic 2H(e, e′n)p and 2H(e, e′p)n reactions.
To extract the GMn from R, the authors use: 1) Cross section calculations within
the Plane Wave Impulse Approximation (PWIA) for Q2 > 1.0 GeV2/c2, the AV18
deuteron wave function, and the Glauber theory for FSI; 2) Calculations of a nuclear
correction factor which is the ratio of the results of the full calculation and those
within the PWIA but without FSI; 3) The proton cross section (a parameterization
of Ref. [10]); 4) Parameterizations of GEn of Ref. [14,15]. Obviously, it looks like a vi-
cious circle. There is a model-insensitive technique for the GEn extraction of Ref. [16]
but it is applicable only to the d(~e, e′~n)p reaction in the quasi-free kinematics. This
technique was utilized to extract the GEn at Q2 = 0.255 GeV2 (Q ≈ 2.6 Fm−1) [17]
resulting in GEn = 0.066 ± 0.036 ± 0.009. The “scale” uncertainty (±0.009) was
estimated using independent measurements of GMn and the so-called “Arenhövel’s
model”. That sounds convincing and may mean that the Argonne V14 or other con-
temporary phenomenological potentials were used in the estimation. However there
is no an estimation of the model systematic error and the whole procedure is again
an obvious vicious circle.

There are various relativistic models [6, 18–21] for calculations of the deuteron
EM FFs. All of them look reasonable but they may produce different results. That
is not a contradiction. This issue is discussed in the last part of the paper. In this
paper, we extend our previous investigations where we described the elastic NN scat-
tering up to laboratory energy of 3 GeV [22] and electromagnetic reactions with two
nucleons: a bremsstrahlung in the pp scattering pp → ppγ [23], the deuteron photo-
disintegration γD → np [24–26], the exclusive deuteron electrodisintegration [27] and
the eD elastic scattering [28,29]. We apply manifestly covariant relativistic quantum
mechanics (RQM) [30] in the point-form (PF). The PF is one of three forms of the
RQM proposed by Dirac [31]. The other two forms in common use are the instant
and the front forms. Each form is associated with a subgroup of the Poincaré group.
This subgroup is considered to be free of interactions. All these forms are unitary
equivalent [32], however each form has particular advantages. For example, the PF
has some simplifying features [33]. Only in the PF all generators of the homoge-
neous Lorentz group are free of interactions. That means a manifest covariance that
clearly simplifies the boost transformations. Therefore the spectator approximation
(SA) of an electromagnetic process preserves its spectator character in any reference
frame (r. f.) [34–36]. There are two equivalent SAs of the EM current operator in
composite systems within the PF RQM [33, 34]. The PF RQM SA has been applied
to calculations of EM FFs of composite systems [20, 37–41] with satisfactory results.

2 Potential model in PF RQM

A general method of allowing for interactions in generators of the Poincaré group was
proposed by Bakamjian and Thomas [42]. We present here only the results of PF
RQM necessary for our eD calculations. We use formalism and notation of Ref. [34]
for calculation of matrix elements of the EM current operator.

Let pi be the 4-momentum of nucleon i, P ≡ (P 0,P) = p1 + p2 is the system
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4-momentum, M is the system mass and G = P/M is the system 4-velocity. The
wave function of two particles with 4-momentum P is expressed through a tensor
product of external and internal parts

|P, χ〉 = U12 |P 〉 ⊗ |χ〉, (1)

where the internal wave function |χ〉 satisfies Eqs. (7)–(8). The unitary operator

U12 = U12(G,q) =

2∏

i=1

D[si;α(pi/m)−1α(G)α(qi/m)] (2)

relates the “internal” Hilbert space with the Hilbert space of two-particle states [34].
D[s;u] is a SU(2) operator corresponding to the element u ∈SU(2), s are the SU(2)
generators. In our case of spin s = 1/2 particles, we deal with the fundamental
representation, i. e., si ≡ 1

2σi [σ = (σx, σy, σz) are the Pauli matrices] andD[s;u] ≡ u.
The momenta of the particles in their c. m. frame are

qi = L[α(G)]−1pi, (3)

where L[α(G)] is the Lorentz boost to the frame moving with the 4-velocity G. The
matrix

α(g) = (g0 + 1 + σ · g)/
√

2(g0 + 1) (4)

corresponds to a 4-velocity g ≡
(
g0,g

)
.

The external part of the wave function is defined as

〈G|P ′〉 ≡ 2

M ′
G

′0 δ3(G−G′). (5)

Its scalar product is

〈P ′′|P ′〉 =

∫
d3G

2G0
〈P ′′|G〉〈G|P ′〉 = 2

√
M ′2 + P′2 δ3(P′′ −P′), (6)

where G0(G) ≡
√

1 + G2. The internal part |χ〉 is characterized by the total angular
momentum J of the system and by momentum q = q1 = −q2 of one of the particles
in the c. m. frame.

The 4-momentum P̂ = ĜM̂ incorporates the interaction Vint, where M̂ is sum
of the free mass operator Mfree and the interaction, M̂ = Mfree + Vint. The wave

function is an eigenfunction of the system mass operator M̂ . We represent this wave
function as a product of the external and internal parts. The internal wave function |χ〉
is also an eigenfunction of the mass operator and for the system of two nucleons with
masses m1 ≈ m2 ≈ m = 2m1m2/(m1 +m2) satisfies the following equation:

M̂ |χ〉 ≡
[
2
√
q2 +m2 + Vint

]
|χ〉 = M |χ〉. (7)

This equation can be rewritten as
[
q2 +mV

]
|χ〉 = q2|χ〉, (8)

where V acts on internal variables only, and

q2 =
M2

4
−m2. (9)
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The operators Vint and V (and therefore M̂ and Mfree) commute with the spin

operator J and with the 4-velocity operator Ĝ. The generators of space-time rota-
tions are interaction-free. Most of formal results of non-relativistic scattering the-
ory are valid in the case of two relativistic particles [30]. For example, the rela-
tive orbital angular momentum and spins are coupled in the c. m. frame in the
same manner as in the non-relativistic case. Equation (8) is identical in form to
the Schrödinger equation. Relativistic corrections affect the deuteron binding energy
only and may be easily accounted for by replacing the experimental deuteron binding
of 2.2246 MeV by an effective value of 2.2233 MeV. The origin of this relativistic
correction is the following. Let ε be the deuteron binding energy. Then M = 2m− ε

and q2 = M2

4 −m2 = −mε
(
1 − ε

4m

)
. Comparing with the non-relativistic relation-

ship q2 = −mε, we identify the factor
(
1 − ε

4m

)
as a relativistic correction. There is

no similar correction in the scattering domain since q2 = mElab/2 is an exact rela-
tivistic relationship (Elab is the laboratory energy) used in the partial wave analysis.
The above correction is negligible for our problem.

The deuteron wave function |Pi, χi〉 is normalized,

〈Pf , χf |Pi, χi〉 = 2P 0
i δ

3(Pi −Pf )〈χf |χi〉. (10)

3 eD elastic scattering

There is a convenient r. f. for calculation of current operator matrix elements in PF
RQM introduced by F. Lev [34] (it coincides with the Breit r. f. in the case of elastic ed
scattering). The Lev’s r. f. is defined by the following condition for all EM reactions
with two nucleons:

Gf + Gi = 0, (11)

where Gf = Pf/MD, Gi = Pi/MD are the final and initial 4-velocities of the deuteron
and MD is its mass. The matrix element of the current operator is [34]:

〈Pf , χf |Ĵµ(x)|Pi, χi〉 = 2(MfMi)
1/2 exp(ı(Pf − Pi)x)〈χf |ĵµ(h)|χi〉, (12)

where the internal current operator ĵµ(h) defines an action of current operator in the
internal space of the NN system,

h =
2(MiMf )1/2

(Mi +Mf)2
k =

k

2MD
(13)

is a vector-parameter [34] (0 ≤ h ≤ 1), k is the momentum of photon in the Lev’s
r. f., Mi = Mf = MD are the masses of the initial and final NN systems (deuteron).

The internal deuteron wave function

|χi〉 =
1

r

∑

l=0,2

ul(r)|l, 1; J = 1MJ〉r (14)

is normalized: 〈χi|χi〉 = 1. This configuration space wave function has a physical
sense only in the non-relativistic limit. In our calculations we use the momentum
space wave function:

|χi〉 =
1

q

∑

l=0,2

ul(q)|l, 1; 1MJ〉q, (15)
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where

u(q) ≡ u0(q) =

√
2

π

∫
dr sin(qr)u(r), (16)

w(q) ≡ u2(q) =

√
2

π

∫
dr

[(
3

(qr)2
− 1

)
sin(qr) − 3

qr
cos(qr)

]
w(r). (17)

A transformation of the Breit r. f. (11) into the final (initial) c. m. frame of the
NN system is the boost along (in the backward direction than) vector h (axis z).
The projection of the total deuteron angular momentum onto the z is unaffected by
these boosts. The initial deuteron in the Breit r. f. moves in the direction opposite
to h. Its internal wave function with the spirality Λi is

|Λi〉 =
1

q

∑

l=0,2

ul(q)|l, 1; 1,MJ = −Λi〉. (18)

The wave function of the final deuteron with the spirality Λf is

|Λf 〉 =
1

q

∑

l=0,2

ul(q)|l, 1; 1,MJ = Λf〉. (19)

A conventional parametrization of the EM current operator matrix element for a
spin-1 particle (deuteron) is [1, 2, 43]

(4P 0
i P

0
f )1/2 〈Pf , χf |Jµ|Pi, χi〉

= −
{
G1(Q2)(ξ∗f · ξi) −G3(Q2)

(ξ∗f · ∆P )(ξi · ∆P )

2M2
D

}
(Pµ

i + Pµ
f )

−G2(Q2)[ξµi (ξ∗f · ∆ P) − ξ∗µf (ξi · ∆P)], (20)

where (a · b) = a0b0− (a ·b), EM FFs Gi(Q
2), i = 1, 2, 3 are functions of Q2 = −∆P 2,

∆P = Pf − Pi. In the Breit r. f. Pf = −Pi, P
0
i = P 0

f ≡ P 0 = MD/
√

1 − h2,

∆P = (0, 2Pf ), Pµ
i + Pµ

f = (2P 0,0), Pf/P
0 = h, Pf = hMD/

√
1 − h2, Q2 ≡ −∆P 2,

∆P 2 = −4h2M2
D/(1 − h2), h2 = (h · h). Matrix elements of the internal current

operator are

〈χf |j0(h)|χi〉 = −G1(Q2)(ξ′∗ · ξ) + 2G3(Q2)
(ξ∗f · h)(ξi · h)

1 − h2

+G2(Q2)[ξ0i (ξ∗f · h) − ξ0∗f (ξi · h)], (21)

〈χf |j(h)|χi〉 = G2(Q2)[ξi(ξ
∗
f · h) − ξ∗f (ξi · h)] = G2(Q2)[h× [ξi × ξ∗f ]]. (22)

It has been shown [34] that these expressions are equivalent to chosing jν as

j0(h) = GC(Q2) +
2GQ(Q2)

(1 − h2)

[
2

3
h2 − (h · J)2

]
, (23)

j(h) = − ı√
1 − h2

GM (Q2)(h× J), (24)
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where J is the total angular momentum (spin) of the deuteron; GC , GQ and GM are
its charge monopole, charge quadruple and magnetic dipole FFs.

Spiral polarizations of the deuteron in the initial and final states are

ξΛi =

{
(0,±1,−ı, 0)/

√
2 (Λ = ±)

(−h, 0, 0, 1)/
√

1 − h2 (Λ = 0),
(25)

ξΛf =

{
(0,∓1,−ı, 0)/

√
2 (Λ = ±)

(h, 0, 0, 1)/
√

1 − h2 (Λ = 0).
(26)

A virtual photon polarization is

ǫλ =

{
(0,∓1,−ı, 0)/

√
2 (λ = ±)

(1, 0, 0, 0) (λ = 0).
(27)

The deuteron FFs Gi are expressed as

GC = G1 +
2

3
ηGQ,

GQ = G1 −GM + (1 + η)G3,

G1 = GC − 2h2

3(1 − h2)
GQ,

G3 = GQ

(
1 − h2

3

)
−GC(1 − h2) +GM (1 − h2),

(28)

where η = Q2/4M2
D = h2/(1−h2). The form factors GC(0) = e, GM (0) = µDe/2MD

and GQ(0) = QDe/M
2
D provide the deuteron charge, magnetic and quadruple mo-

ments respectively.
Denoting the helicity amplitudes as jλΛfΛi

≡ 〈Λf |
(
ǫλµ · jµ(h)

)
|Λi〉, we have:

j000(Q2) = GC +
4

3

h2

1 − h2
GQ, (29)

j0+−(Q2) = j0−+(Q2) = GC − 2

3

h2

1 − h2
GQ, (30)

j++0(Q2) + j+0−(Q2)

2
= − h√

1 − h2
GM (31)

and
j++0(Q2) = j−−0(Q2) ≈ j+0−(Q2) = j−0+(Q2). (32)

The squares of deuteron FFs are extracted from the elastic eD scattering with
unpolarized particles and an additional polarization observable (usually t20(Q2, θ)).

In the present paper we use the SA of EM current operator of Ref. [34] without
expanding it in powers of h and calculate its matrix elements in the momentum space.
Therefore we use the following expansion of ĵµ(h) ≈ ĵµSA(h) [27] in calculations:

ĵµSA(h) = (1 + (A2 · s2)) (Bµ
1 + (Cµ

1 · s1)) I1(h)

+ (1 + (A1 · s1)) (Bµ
2 + (Cµ

2 · s2)) I2(h), (33)

where Ai, B
µ
i , Cµ

i are some cumbersome vector functions of h and q(q, θ, φ). In the
spherical coordinate system (q, θ, φ), the φ dependence of these functions is e±imφ

(m = 0, 1, 2). The analytical integration with respect to φ results in trivial equali-
ties (32).
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4 Results and Conclusions

We study the eD elastic scattering within the simplest model supposing that the NN
channel is described in the PF RQM and using the SA for the NN EM current op-
erator. Therefore we assume that the exchange current effects are negligible within
the NN deuteron models at least for this reaction. The momentum space deuteron
wave functions are transformed into the configuration space using Eqs. (16)–(17).
We assume that the configuration space wave functions of Eq. (14) have a phys-
ical sense only in the non-relativistic limit. The deuteron wave functions stem-
ming from Nijmegen-I (NijmI), Nijmegen-I (NijmII) [44], JISP16 [45], CD-Bonn [46],
Paris [47], Argonne18 [48] (for this momentum space deuteron wave function we use
a parametrization of Ref. [49]), Idaho [50] (thanks to Prof. David R. Entem for
the respective computer code) and Moscow (with forbidden states) [22] potentials
are shown in Figs. 1 and 2. The Moscow potential parameters and computer code
generating Moscow potentials are available upon a request from the author (e-mail:
nikolakhokhlov@yandex.ru).
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tion space deuteron wave
functions used in calcu-
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132 N. A. Khokhlov

0 2 4 6 810-8

10-6

10-4

10-2

100

 

 

u(
q)

2  (F
m

)

q (Fm-1)

0 2 4 6 810-10

10-8

10-6

10-4

10-2

 CDBonn
 Idaho
 NijmI
 NijmII
 JISP16
 Argonne 18
 Moscow
 Paris
 eD

 

 

w
(q

)2  (F
m

)

q (Fm-1)

Figure 2: Momentum space
deuteron wave functions used in
the calculations.

In our previous studies [28, 29] we concentrated on the deuteron FF dependence
on the nucleon FFs which was found to be considerable for Q > 5 Fm−1. Now we
examine a possibility of extracting the deuteron wave function and neutron EM FFs
from the elastic eD scattering. Therefore we perform a fit of the deuteron wave
function and nucleons EM FFs. We use the nucleon FF functional dependence on Q2

of Ref. [10] and fit the parameters. The deuteron wave function parametrization is
described bellow. Results of the fit denoted as eD are presented in Table 1 and figures.

We use the deuteron wave functions in the analytic form of Ref. [47] modified by
a short range addend. The ansatz for the configuration space wave functions is

u(r) =

m∑

i=0

a0i Ri,0(r) +

n∑

j=1

Cj exp(−mjr), (34)

w(r) =

k∑

i=0

a2i Ri,2(r) +

n∑

j=1

Dj exp(−mjr)

[
1 +

3

mjr
+

3

(mjr)
2

]
, (35)

where the oscillator functions

Rn,l(r) = (−1)n

√
2n!

r0Γ(n+ l + 3/2)

(
r

r0

)l+1

exp

(
− r2

2r20

)
L
l+ 1

2
n

(
r2

r20

)
, (36)

Lα
n is the associated Laguerre polynomial, the oscillator radius r0 = 0.4 fm.
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Table 1: Static deuteron form factors. The slash-separated values are the results of
relativistic/non-relativistic calculations.

GM (0) = Md

mp
µd GQ(0) = M2

dQd

Exp 1.7148 25.83
NijmI 1.697/1.695 24.8/24.6
NijmII 1.700/1.695 24.7/24.5
Paris 1.696/1.694 25.6/25.2

CD-Bonn 1.708/1.704 24.8/24.4
Argonne18 1.696/1.694 24.7/24.4

JISP16 1.720/1.714 26.3/26.1
Moscow06 1.711/1.699 24.5/24.2
Moscow14 1.716/1.700 26.0/25.8

Idaho 1.714/1.700 26.22/25.98
eD 1.715/1.700 25.83/25.54

The momentum space wave functions can be easily obtained analytically by the
Fourier transform. The boundary condition at r = 0 leads to the constraints

Cn = −
n−1∑

j=1

Cj , (37)

Dn−2 =
m2

n−2

(m2
n −m2

n−2)(m2
n−1 −m2

n−2)

×


−m2

n−1m
2
n

n−3∑

j=1

Dj

m2
j

+ (m2
n−1 +m2

n)

j=n−3∑

j=1

Dj −
n−3∑

j=1

Djm
2
j


, (38)

and two additional relations obtained by circular permutations of n− 2, n− 1, n. All
parameters are available from the author upon a request.

Results of our calculations are presented in Figs. 1–5. We see a very good general
agreement between the theory and experiment for Q < 3 Fm−1. Discrepancies at
larger Q values are comparable with discrepancies between results obtained with
different interaction models (potentials). Some model calculations [69] demonstrate
that the meson exchange currents may contribute significantly to EM processes in the
np-system. The meson exchange currents are not accounted for in our calculations.
It is not clear how to correlate these currents with the short-range behavior of NN
interaction of the QCD origin. We have a number of deuteron models (Figs. 1 and 2)
that obviously require different meson exchange currents. The nucleon EM FFs are
not described by meson degrees of freedom at intermediate and high energies [70];
moreover, the neutron EM FFs cannot be measured directly. As discussed in the
Introduction, all available data on the neutron EM FFs are model dependent. Any
conclusion about the meson exchange current contribution looks unjustified without
having solid data on the neutron EM FFs.



134 N. A. Khokhlov

0 1 2 3 4 5 6 710-4

10-3

10-2

10-1

100 0 1 2 3 4 5 6 7

 CDBonn
 Idaho
 NijmI
 NijmII
 JISP16
 Argonne 18
 Moscow
 Paris
 eD

Q, (Fm-1)

B

|GC|

0 1 2 3 4 5 6 710-2

10-1

100

101

|GQ|

Q, (Fm-1)

0 1 2 3 4 5 6 7 810-4

10-3

10-2

10-1

100

|GM|

Q, (Fm-1)

Figure 3: Deuteron form factors
as a function of Q. Experimen-
tal data are the compilation of
Ref. [2] where the results of ex-
periments of Refs. [51–67] were
analyzed.

Our calculations show that modest modifications of the deuteron wave function
and nucleon FF parameterizations may simulate the effects of meson exchange cur-
rents in the eD elastic scattering. An analysis of Plachkov et al. [71] demonstrated
that extracting the neutron electric FF is extremely model dependent (see Fig. 6).
This analysis has been performed when the data on polarization experiments were
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Figure 4: Proton EM FFs as
a function of Q. Experimen-
tal data are the compilation of
Ref. [68] of analyses of polariza-
tion experiments. Solid curves
are proton FFs extracted from
deuteron FFs by our fitting pro-
cedure.

scarce. Unfortunately, there is no a similar recent analysis of the neutron FFs based
on the up-to-date experimental information. Such an analysis is complicated due to a
large number of nuclear models and exchange currents used in modern literature. In
addition, while extracting the neutron FFs, one faces the same difficulties as are in-
herent in the the proton FF extraction — their effect was never accurately estimated
too. Therefore it is very possible that the error bars in the experimental data on the
neutron FF presented in Fig. 5 are underestimated considerably, systematic errors
of the NN interaction uncertainties are not properly accounted for. Our results for
the nucleon FFs show that the extracted proton FFs are inside the experimental bars
(Fig. 4), but the electric neutron FF (Fig. 5) may be 2–3 times larger than the results
extracted using the so-called “Arenhövel’s model” [12]. In this case the magnetic
neutron FF also changes (Fig. 5) but not drastically.

We plan to calculate the deuteron electrodisintegration to show that this reaction
can be described in the “only NN channel” relativistic model, and our preliminary
estimates are encouraging.
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Figure 5: Neutron FFs as
a function of Q. Experimen-
tal data are the compilation
of Ref. [68] of model-dependent
analyses of polarization experi-
ments. Solid curves are neutron
FFs extracted from deuteron
FFs by our fitting procedure.
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Nijmegen [72] (solid)
potentials. The fig-
ure is grabbed from
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Abstract

Quantum Monte Carlo methods are among the most accurate nuclear many-
body methods available. Chiral effective field theory presents a systematic way
to derive nuclear Hamiltonians from effective field theory with the same sym-
metries as low-energy quantum chromodynamics. Here we describe the devel-
opments that have led to the combination of these two powerful approaches, a
recent application, and prospects for the future.

Keywords: Nuclear interactions; ab initio methods

1 Introduction

Low-energy nuclear physics sits in a privileged position, connecting many different
research areas including (among others) nuclear structure, fundamental symmetries,
and nuclear astrophysics. In each of these areas of inquiry, there are large open
questions. For example, in nuclear structure, we might ask: What are the limits of
existence of the nuclear chart? How far can ab initio calculations be pushed? How
can we build a coherent framework for describing nuclei, nuclear matter, and nuclear
reactions?

While quantum chromodynamics (QCD) is ultimately responsible for strong in-
teractions, at low energies most applicable to many phenomenon in nuclear physics,
the most relevant degrees of freedom are baryons and mesons, specifically nucleons
and pions. But even choosing to work with these simplified degrees of freedom over
the fundamental degrees of freedom (quarks and gluons), nuclear systems still present
a significant challenge because they are strongly interacting many-body systems.

Two questions must be addressed: 1) How do we solve the many-body Schrödinger
equation,

H |Ψ0〉 = E0|Ψ0〉? (1)

and 2) Where should we take the Hamiltonian H? There are, of course, many answers
possible to both questions. In this brief overview, we will discuss one possible answer
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Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 140.
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set: 1) Quantum Monte Carlo (QMC) methods, and 2) Chiral effective field theory
(EFT). Low-energy nuclear theory can make significant contributions to many areas
of research and the combination of QMC methods and chiral EFT interactions is an
important piece of the puzzle.

2 Quantum Monte Carlo methods

Quantum Monte Carlo methods are among the most accurate many-body methods in
use in nuclear physics. They include the Variational Monte Carlo (VMC) method, the
Green’s Function Monte Carlo (GFMC) method, and the Auxiliary-Field Diffusion
Monte Carlo (AFDMC) method.

The first method relies on the Rayleigh–Ritz variational principle to establish an
upper bound for the ground-state energy. In a few sentences, the idea is as follows.
One makes an educated guess for the many-body wave function |ΨT ({ci})〉, which is
known as the trial wave function and which depends on some set of adjustable parame-
ters {ci}. A set of random configurations is generated {Ri}, with Ri={r1, r2, ... , rA}i,
a set of 3A coordinates for the A nucleons. Then, the Metropolis algorithm is used to

generate new configurations {R′
i} based on the probability P = |ΨT (R′)|2

|ΨT (R)|2 , suppress-

ing the dependence on the variational parameters. Ultimately, what this yields is a
set of configurations (often called “walkers”), which are distributed according to the
square of the trial wave function. At this point, the variational principle is invoked
and the expectation value of the Hamiltonian in this state is an upper bound to the
ground-state energy:

〈ΨT |H |ΨT 〉
〈ΨT |ΨT 〉

> E0. (2)

Searches are performed over parameter sets {ci} minimizing the energy.
In addition to the intrinsic value of VMC calculations, they also serve as the

starting point for the latter two QMC methods, which belong to a class of so-called
“diffusion” Monte Carlo methods. These solve the many-body Schrödinger equation,

H |Ψ0〉 = E0|Ψ0〉, (3)

for a system described by a Hamiltonian H , with ground state |Ψ0〉 and energy E0,
by using the deceptively simple-looking evolution operator

lim
τ→∞

e−Hτ |ΨT 〉 → |Ψ0〉, (4)

for an initial “trial” state |ΨT 〉. (The operator e−Hτ is known by many names includ-
ing the imaginary-time diffusion operator, the Euclidean-time projection operator,
and the imaginary-time propagator.) To see how this works, expand the trial state in
a complete set of eigenstates of the Hamiltonian:

|ΨT 〉 =

∞∑

n=0

|Ψn〉〈Ψn|ΨT 〉 =

∞∑

n=0

αn|Ψn〉. (5)

One tries to ensure that the overlap with the ground state is maximal: α0 ≫ αn6=0,
but inevitably, there is some contamination in the trial state from higher excited
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states. Now propagate in imaginary time:

lim
τ→∞

e−(H−ET )τ
∞∑

n=0

αn|Ψn〉 = lim
τ→∞

e−(H−ET )τ
∞∑

n=0

αne−(En−ET )τ |Ψn〉

= lim
τ→∞

e−(E0−ET )τ

(
α0|Ψ0〉 +

∞∑

n>0

αne−(En−E0)τ |Ψn〉
)
. (6)

Eq. (6) introduces the trial energy ET , which controls the normalization, and makes
the remainder of the argument clearer. It is typically chosen equal to the ground-state
energy (though it need not be). In the second line, an overall exponential has been
factored out. Now, given that ET ∼ E0 and En > E0, under the limit, the only term
that remains is the ground state:

lim
τ→∞

e−(H−ET )τ |ΨT 〉 = α0|Ψ0〉. (7)

3 Chiral effective field theory

Ultimately QCD is responsible for the properties of strongly interacting nuclear mat-
ter. The Lagrangian of QCD for the two lightest quarks, u and d, can be written as

LQCD = − 1

2g2
tr{GµνG

µν} + iq̄γµDµq − q̄Mq, (8)

where q (q̄) collects the quark (antiquark) fields, Gµν is the nonabelian gluon field
strength tensor, g the coupling constant, Dµ a gauge covariant derivative, and M the
mass matrix. In the massless limit M → 0, the Lagrangian exhibits a chiral sym-
metry where the fields transform independently under left- and right-handed SU(2)
rotations. This is the chiral symmetry of low-energy QCD. Now one can follow the
Weinberg’s prescription to write down the most general Lagrangian in the low-energy
degrees of freedom (pions and nucleons) consistent with the important symmetries of
the underlying theory (chiral symmetry),

Leff = Lππ + LπN + LNN . (9)

Once a power-counting method is specified, then one can order the Lagrangians in
powers of a small parameter Q/Λ, where Q is some typical momentum scale in low-
energy nuclear physics, e. g., the pion mass, and Λ is some hard scale naively of the
order of the chiral symmetry breaking scale Λ ∼ 1 GeV. For example, the nucleon-

nucleon Lagrangian can be written as a sum of terms L(n)
NN with n signifying the

order (Q/Λ)n:

LNN = L(0)
NN + L(2)

NN + L(3)
NN + ... (10)

From such an effective Lagrangian, a nuclear potential can be extracted, which also
obeys the same ordering:

VNN = V
(0)
NN + V

(2)
NN + V

(3)
NN + ... (11)

The advantages of this approach are several. All of the long-range physics is governed
explicitly by one- and multi-pion exchanges. The short-range physics is captured in
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contact operators multiplied by unknown low-energy constants (LECs) that must be
fitted to data. And importantly, many-body forces and electroweak currents enter
in a systematic way. For example, the three-nucleon interaction enters first at the
order (Q/Λ)3 (also known as next-to-next-to-leading order or N2LO). For more details
see Refs. [1, 2].

An important detail from the point of view of QMC methods, is that most chi-
ral EFT interactions are nonlocal: 〈r|V |r′〉 = V (r, r′). While some work has been
done to include nonlocal potentials in QMC methods [3, 4], in practice, QMC meth-
ods require local potentials with 〈r|V |r′〉 = V (r) δ(3)(r − r′). However, recently an
equivalent formulation has been derived that allows for the construction of local inter-
actions from chiral EFT up to N2LO [5,6], which has been implemented and tested in
GFMC calculations of light nuclei and AFDMC calculations of neutron matter [7,8].
References [5–8] contain the detailed derivation of the local two- and three-nucleon
interactions from chiral EFT, here we briefly summarize the underlying ideas.

If q ≡ p − p′ is the momentum transfer in terms of the incoming and outgoing
relative momenta p and p′, and k ≡ 1

2 (p + p′) is the momentum transfer in the
exchange channel, then any functional dependence on k will lead to a nonlocal in-
teraction, whereas the q dependence Fourier transforms to a local interaction. Then,
the two sources of nonlocality come from 1) the regulator function (used to regulate
high-momentum components of the interaction) and 2) the choice of operators in the
contact sector of the interaction. 1) The typical regulator function used in momentum
space is f(p) = e−(p/Λ)n , with Λ being a cutoff scale, and n > 2 is some appropriate
power. Then,

V (p,p′) → V (p,p′) f(p) f(p′). (12)

In short, even if V (p,p′) were such that it would Fourier transform to a local in-
teraction, the regulation scheme of Eq. (12) spoils this. The solution is to regulate

in the coordinate space in a local way: f(r) ∝ e−(r/R0)
4

, where R0 = 1.0–1.2 fm
serves as the coordinate-space cutoff (approximately equivalent to 500–400 MeV,
respectively). 2) At leading order (LO) in Weinberg power counting, the nuclear
interaction consists of the one-pion-exchange potential, and (in principle) four pos-
sible momentum-independent contact operators: {1, τ 1 · τ 2, σ1 · σ2, σ1 ·σ2 τ 1 ·τ 2}.
However, nucleons are fermions and obey the Pauli exclusion principle. This means
that we will ultimately be taking matrix elements between antisymmetric states, and
an antisymmetrized potential V → AV will give equivalent results. Under this an-
tisymmetrization operation, it can be shown that at LO, only two of four contact
operators are linearly independent. This same freedom exists at the next-to-leading
order (NLO) where out of fourteen possible momentum-dependent operators only
seven are linearly independent under the antisymmetrization operation. This “Fierz”
freedom can be exploited to choose a set of (mostly) local operators. (The exception
comes from one operator proportional to q× k, but this is none other than the spin-
orbit operator, which has long been included explicitly in QMC methods and causes
no significant difficulty.) At the next-to-next-to-next-to-leading order (N3LO), this
Fierz freedom is insufficient to remove all k-dependent operators, and so a maximally
local set will have to be selected. See Ref. [9] for a similar approach. It is possible
that the remaining nonlocal operators are “small” and can be included perturbatively
in QMC methods.
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3.1 Three-nucleon interactions

An important consideration, both from the point of view of agreement with exper-
imental nuclear structure and from the point of view of consistency in the power
counting, is the inclusion of three-nucleon interactions that appear at N2LO. Again,
we refer the interested reader to details provided in Refs. [6,8], but briefly summarize
the important points here. There are three Feynman diagrams contributing to the
three-nucleon interaction at N2LO in Weinberg power counting, pictured in Fig. 1.

π π

c1, c3, c4

π

cD cE

Figure 1: Feynman diagrams contributing to the three-nucleon interaction at N2LO.
Solid lines are nucleons, dashed lines are pions.

The Fourier transform of the first diagram has two parts. The first, which de-
pends on the LEC c1, is an s-wave two-pion exchange, which bears resemblance to
the a′ term of the Tucson–Melbourne interaction [10]. The second, which depends on
the LECs c3 and c4, is a p-wave two-pion exchange, which bears resemblance to the
Fujita–Miyazawa interaction [11]. (There are short-range structures that arise in the
Fourier transforms of the c3 and c4 interactions, which we retain explicitly.)

The second diagram proportional to the LEC cD leads, under Fourier transform
with a finite regulator, to two possible interactions, which in the infinite momentum-
space cutoff limit would be identical. These two interactions differ in their short-
distance structure:

VD1 ∝
∑

i<j<k

∑

cyc

(τ i ·τ k)

×
[
Xik(rkj) δR3N

(rij) +Xik(rij) δR3N
(rkj) −

8π

m2
π

σi ·σk δR3N
(rij) δR3N

(rkj)

]
; (13)

VD2 ∝
∑

i<j<k

∑

cyc

(τ i ·τ k)

×
[
Xik(rik) − 4π

m2
π

σi ·σk δR3N
(rik)

](
δR3N

(rij) + δR3N
(rkj)

)
. (14)

Here, σ (τ ) is a Pauli spin (isospin) matrix, mπ is the pion mass, Xij(r) = [Sij(r)T (r)
+σi ·σj ]Y (r) is the coordinate-space pion propagator with Sij(r)=3σi·̂rσj·̂r−σi ·σj

being the tensor operator, the tensor and Yukawa functions are T (r) = 1 + 3/(mπr)

+ 3/(mπr)
2 and Y (r) = e−mπr/r, and δR3N

(r) ∝ e−(r/R3N )4 is the short-range
regulated delta function with cutoff R3N . In the above expressions, the pion-
exchange-range interactions (∝ Y ) are multiplied by a long-range regulator of the

form 1 − e−(r/R3N )4 . We take R3N = R0, where R0 is the cutoff used in the two-
nucleon interaction. The sums

∑
i<j<k and

∑
cyc are taken over all triples in a nucleus

and over all cyclic permutations of the labels i, j, k, respectively. It is straightforward
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to see that in the limit of R3N → 0, that is, the limit where δR3N
(r) → δ(r), equa-

tions (13) and (14) agree.
The third diagram proportional to the LEC cE leads to an interaction of the

following form:

VE ∝
∑

i<j<k

∑

cyc

Oijk δR3N
(rij) δR3N

(rkj), (15)

where, in principle, the Fierz freedom as in the two-nucleon sector allows the choice
of the operator Oijk as one from the set

{1,σi ·σj , τ i ·τ j ,σi ·σj τ i ·τ j ,σi ·σj τ i ·τ k, [(σi × σk) · σk][(τ i × τ k) · τ k]}. (16)

However, with the particular choice of regulator we make, δ(r) → δR3N
(r) ∝ e−(r/R3N)4,

this freedom is broken, and some sensitivity to the choice of operator in Eq. (16) re-
mains. We have explored three options:

VEτ ∝
∑

i<j<k

∑

cyc

τ i ·τ k δR3N
(rij) δR3N

(rkj), (17)

VE1 ∝
∑

i<j<k

∑

cyc

δR3N
(rij) δR3N

(rkj), (18)

VEP ∝
∑

i<j<k

∑

cyc

P δR3N
(rij) δR3N

(rkj), (19)

with the projector

P =
1

36

(
3 −

∑

i<j

σi ·σj

)(
3 −

∑

k<l

τ k ·τ l

)
(20)

onto triples with total spin S = 1
2 and total isospin T = 1

2 . These are the triples that
would survive in the infinite momentum-space cutoff limit.

3.2 Fits and results

The LECs appearing in Fig. 1, c1, c3, and c4, are already set in the pion-nucleon
sector. However, the LECs cD and cE first appear in the three-nucleon sector at
N2LO and must be fitted to some three- (or more-) body observables. An important
consideration is to fit to uncorrelated observables. In the past, properties of A = 3
and A = 4 nuclei have been used to fix cD and cE . The shortcoming of this approach,
however, is that largely, if one obtains reasonable properties of A = 3 nuclei, then the
properties of the A = 4 nucleus are typically reproduced well: the two systems are
highly correlated. In addition, we have two other motivations for our choices. The
first motivation is to probe properties of light nuclei. For this reason, we choose the
4He binding energy as one observable. The second motivation is to probe the T = 3/2
physics. For this reason, we choose to reproduce n–α elastic scattering P -wave phase
shifts. See Ref. [12] for details on the scattering calculations. The n–α system is the
lightest known nuclear system where three neutrons may interact and therefore probes
the T = 3/2 physics. Figure 2 shows the fits we performed. The top panel shows
contours of cE vs cD. Each point in this panel corresponds to values of cD and cE for
a given operator combination (e. g., VD2 and VEτ ), for a given cutoff R0 which gives
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Figure 2: Top panel: Couplings cE vs cD obtained by fitting the 4He binding energy
for different 3N -operator forms. Triangles are obtained by using VD1 and VEτ , other
symbols are obtained for VD2 and three different VE -operator structures. The blue
and green curves correspond to R0 = 1.0 fm, the red curves correspond to R0 = 1.2 fm.
The GFMC statistical errors are smaller than the symbols. The stars correspond to
the cD and cE values which simultaneously fit the n–α P -wave phase shifts. No fit
to both observables can be obtained for the case with R0 = 1.2 fm and VD1. Bottm
panel: P -wave n–α elastic scattering phase shifts compared with R-matrix analysis of
experimental data. The same colors and symbols are used to distinguish the operator
combinations. We include also the phase shifts calculated at NLO clearly indicating
the necessity of 3N interactions to fit the P -wave splitting.
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the experimental binding energy of 4He in GFMC calculations. The stars in the left
panel indicate values of cD and cE which simultaneously fit the 4He binding energy
and the P -wave elastic n–α scattering phase shifts shown in the bottom panel. A good
description of both systems is obtained for both cutoffs (R0 = 1.0 fm and R0 = 1.2 fm)
for the operator combinations VD2 and any of VE1, VEτ , or VEP (though only the
cases with VEτ and VEP are shown in Fig. 2). Whereas for the operator combinations
with VD1 and the softer cutoff R0 = 1.2 fm, no fit to the P -wave n–α elastic scattering
phase shifts could be obtained.

The interactions fit as just described, were used in GFMC calculations of light
nuclei (top panel of Fig. 3) and in AFDMC calculations of the equation of state
of neutron matter (bottom panel of Fig. 3). The uncertainties shown in Fig. 3 are
obtained as a sum in quadrature of the QMC statistical uncertainties and a systematic
estimate of the uncertainty induced by truncating the chiral expansion as in Ref. [13].
In short, taken together, Fig. 2 and Fig. 3 imply that our local N2LO interactions
have the freedom to simultaneously describe three benchmark nuclear systems: light
nuclei, n–α elastic scattering phase shifts, and the neutron matter equation of state.

4 Application: neutrons in finite volume

Though QCD is the correct theory underlying the strong interactions, the only ab
initio method to solve it directly at low energies is lattice QCD. Significant progress
has been made in these simulations in the last two decades; however, even optimisti-
cally the simulation of 12C in terms of quark and gluon degrees of freedom at physical
pion masses is likely in a distant future. Therefore, some connection between the
lattice QCD and ab initio calculations of nuclear systems in terms of nucleon and
pion degrees of freedom is desirable. For example, it is conceivable that in the near
future, matching of lattice QCD calculations to chiral Hamiltonians will allow for the
extraction of LECs needed for chiral Hamiltonians from lattice QCD simulations. To
help facilitate the construction of such a bridge, we have used the AFDMC method
to calculate properties of two neutrons in a box with periodic boundary conditions
and used the Lüscher formula to extract scattering properties (the scattering length a
and effective range re) from our finite-volume calculations. For details, see Ref. [14];
here we summarize the main findings.

This work takes advantage of the formalism first introduced by Lüscher [15, 16]
relating scattering phase shifts in infinite volume directly to the energy levels in
finite volume. The relationship has some remarkable implications. For example,
take a simple scattering problem, such as np → dγ radiative capture in the 1S0

channel. One might naively expect that in order to simulate this problem in finite
volume it would require cubic volumes with side lengths L ≫ |a1S0 |, |a3S1 |, with,

e. g., a
1S0 = −23.71 fm. However, this is not so. The Lüscher relationship

p cot δ0(p) =
1

πL
S

[(
Lp

2π

)2]
, (21)

with the regulated sum

S(η) ≡ lim
Λj→∞




Λj∑

j

1

|j|2 − η
− 4πΛj


, (22)
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Figure 3: Top panel: Ground-state energies and point proton radii of A = 3, 4 nuclei
calculated at NLO and N2LO (with VD2 and VEτ ) compared with experiment. Blue
(red) symbols correspond to R0 = 1.0 fm (R0 = 1.2 fm). The errors are obtained as
described in the text and include also the GFMC statistical uncertainties. Bottom
panel: The energy per particle in neutron matter as a function of density for the NN
and full 3N interactions at N2LO with R0 = 1.0 fm. We use VD2 and different 3N
contact structures: the blue band corresponds to VEτ , the red band corresponds to
VE1, and the green band corresponds to VEP . The green band coincides with the
NN + 2π-exchange-only result because both VD and VE vanish in this case. The
bands are calculated as described in the text.
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(with some caveats) relates the phase shifts δ0(p) to the finite-volume spectrum (given

by the discrete values of p) even for L < |a1S0 | or other relevant scales. In the above, j
is a vector of integers, and Λj is a cutoff such that |j| < Λj . In particular, for low-
energy S-wave scattering, one can expand the left-hand side of Eq. (21) to obtain
a relationship between the scattering parameters of the two-neutron system and the
finite-volume spectrum:

− 1

a1S0
+

1

2
r
1S0

e p2 =
1

πL
S

[(
Lp

2π

)2]
. (23)

We first consider only a contact interaction (smeared out),

V (r) = C0 e−(r/R0)
4

, (24)

which purposely has the same form as the regulated contact interactions we use in
our chiral EFT interactions. We introduce a dimensionless variable q ≡ pL/2π, and
calculate the finite-volume ground state for two values of C0. The first value repro-
duces the physical scattering length in the infinite volume, and the second produces
a large scattering length a = −101.7 fm. In addition, we calculate the first excited
state for the case which gives the physical scattering length, see Fig. 4. From these
calculations, we can verify via Eq. (23) that our finite-volume spectra lie along the line
predicted by the Lüscher formula with the appropriate scattering length and effective
range (calculated in the infinite volume), and in kind, we can take the finite-volume
spectra and fit them via Eq. (23) to make a postdiction of the scattering length
and effective range. In the case of the large scattering length, this fitting procedure
gives a = −98(4) fm compared with the value of a = −101.7 fm from the infinite vol-
ume. In the case of the physical scattering length, we find a = −19.0(1) fm compared
with a = −18.9 fm from the infinite volume calculations.

The bottom panel of Fig. 4 shows the first AFDMC calculations of an excited
state of a nuclear system. The details are described in Ref. [14]; briefly, we first
considered the possibility of introducing a purely spherical node in the Jastrow wave
function (points given as red circles in the bottom panel of Fig. 4). However, we also
diagonalized the system exactly and from this diagonalization extracted the nodal
surface of the first excited state. This nodal surface showed itself to be a linear
combination of cubical harmonics with a large spherical component, but with a non-
negligible Y c

l=4 component as well (Y c
l is a cubical harmonic). To account for this

discrepancy, we estimated the contribution from the non-spherical part of the wave
function to contribute an additional 1% uncertainty in the energies we calculated.
These are the larger error bars on the red circles in the bottom panel of Fig. 4. When
we take this deformed nature of the nodal surface into account in our wave function
(yellow squares in the right panel of Fig. 4), a significantly better agreement with the
diagonalization and Lüscher formula is obtained.

We then included our local chiral EFT interactions up to N2LO. One caveat to this
procedure is that Lüscher’s derivation was in terms of a pionless EFT with contact-
only interactions. Once the interaction involves the exchange of pions and a larger
range, one needs to restrict the momenta used in the comparison to the radius of
convergence of pionless EFT |p| < mπ/2. This excluded region is indicated in Fig. 5
and Fig. 6 by the gray shading, and furthermore, points in this region are not used
in the subsequent fitting procedure to determine the scattering lengths and effective
ranges.
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Figure 4: Top panel: AFDMC results for the energy of two neutrons in the ground
state in finite volume with the contact potential Eq. (24) for different box sizes L
compared with the Lüscher formula. C0 is adjusted to give the physical nn scattering
length a = −18.9 fm (closed circles/solid line) and to give a very large scattering
length a = −101.7 fm (open circles/dashed line). The gray band shows a fit (as de-
scribed in the text) to the AFDMC results for a = −101.7 fm. The energies are given
in terms of the dimensionless quantity q2 = EML2/(4π2). Bottom panel: AFDMC
results for the energy of two neutrons in the first excited state in finite volume with the
contact potential for different box sizes L (red circles) compared with the Lüscher for-
mula (solid line). The error bars of the AFDMC results with a spherical nodal surface
include both statistical uncertainties and a systematic uncertainty of 1% discussed in
the text. C0 is adjusted to give the physical nn scattering length a = −18.9 fm. Also
shown are the energies calculated by exact diagonalization (blue diamonds).



QMC with chiral EFT: developments and a recent application 151

0 10 20 30 40 50 60

L [fm]

-0.12

-0.11

-0.10

-0.09

-0.08

-0.07

-0.06

-0.05

q
2

AFDMC, LO R0=1.0 fm

Lüscher, a=−18.9 fm, re=2.01 fm

AFDMC, LO R0=1.2 fm

Lüscher, a=−18.9 fm, re=2.15 fm

ground state

0 10 20 30 40 50 60

L [fm]

0.62

0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

q
2

AFDMC, sph. node

AFDMC, non-sph. node

Lüscher, a=−18.9 fm, re=2.01 fm

Lüscher fit, a=-19.1(3) fm

1st excited state

LO R0=1.0 fm

Figure 5: Top panel: AFDMC results for the energy of two neutrons in the ground
state in finite volume with the LO chiral EFT interaction compared with the Lüscher
formula for different box sizes L. The cutoffs R0 = 1.0 fm (red circles/solid line)
and R0 = 1.2 fm (blue diamonds/dashed line) are used. The energies are given in
terms of the dimensionless quantity q2 = EML2/(4π2). The region where |p| > mπ/2
is indicated by the gray band. Bottm panel: AFDMC results for the energy of two
neutrons in the first excited state in finite volume with the LO chiral EFT interaction
with cutoff R0 = 1.0 fm (red circles) compared with the Lüscher formula (solid line)
for different box sizes L. The error bars on the AFDMC results with a spherical
nodal surface include both statistical uncertainties and a systematic uncertainty of 1%
discussed in the text. The dark gray band shows a combined fit (as described in the
text) to the ground and first excited state AFDMC results for the LO chiral potential.
Points in the region |p| > mπ/2 indicated by the gray band are not included in the fit.
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Figure 6: AFDMC results for the energy of two neutrons in the ground state in finite
volume with the NLO and N2LO chiral EFT interactions with cutoff R0 = 1.0 fm
compared with the Lüscher formula for different box sizes L. The results at NLO
(N2LO) are given as the red circles/solid line (blue diamonds/dashed line). The
dark gray band shows a fit (as described in the text) to the AFDMC results for
the N2LO chiral potential. The energies are given in terms of the dimensionless
quantity q2 = EML2/(4π2). Points in the region |p| > mπ/2 indicated by the gray
band are not included in the fit.

In summary, this application establishes the AFDMC method as a powerful way
to match lattice QCD results to finite-volume calculations using chiral Hamiltonians.
This procedure has several advantages, including the fact that it circumvents the
small-volume and multi-body difficulties of direct Lüscher extensions. In the future,
we hope to collaborate directly with the lattice QCD community and extract LECs
directly from lattice simulations of few-nucleon systems.

5 Conclusion

The advent of QMC calculations combined with chiral EFT interactions is a significant
advancement, which can yield new insights into both nuclear interactions and nuclear
systems. Our results suggest that more investigation of regulator choices and effects
are necessary. Our results also affirm that chiral two- and three-nucleon interactions
at N2LO have sufficient freedom to give a good description of light nuclei, n–α scat-
tering, and neutron matter. The application shown above demonstrates the exciting
connections to diverse other fields that are now possible. The future includes many
interesting directions including calculations of larger nuclear systems up to A = 12
with the GFMC method, and perhaps beyond with the AFDMC method. One im-
portant extension will be to apply our n–α scattering framework to other reactions in
light nuclei. Low-energy nuclear theory can make significant contributions to many
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areas of physics and the combination of chiral EFT in QMC calculations can play an
important role.
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QCD Fossils in Nuclei?
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Abstract

It will be a dream of many nuclear physicists, or theoretical physicists in gen-
eral, to understand nuclear physics in terms of quarks and gluons using quantum
chromodynamics or its low-energy effective theories. Thanks to advancement in
theory, in experiments and in supercomputers, we could now dream such a happy
dream. We study asymmetric dense matter and finite nuclei in the framework
of an effective theory of QCD. We show that the model can reproduce nuclear
matter properties reasonably well. We find that the spin-orbit interaction is
sensitive to the chiral invariant nucleon mass and can be used as litmus paper
to study the origin of nucleon mass in nuclei.

Keywords: Rare isotopes; QCD; nuclear matter

1 Introduction

It is widely believed that quantum chromodynamics (QCD) is the fundamental theory
of strong interactions. As it is well-recognized, however, we are still far away from
describing nuclei in terms of quarks and gluons using QCD since nucleons and mesons
are the degrees of freedom at low energies relevant to nuclear physics. However, thanks
to developments in theory, i. e., effective field theories and many-body methods, in
experiments and in supercomputers, we have now a good chance to understand nuclear
physics in terms of QCD or its low-energy effective theories. This sort of efforts is
important and timely not only for scientific amusement but also for challenges and
opportunities to be posed and to be offered by forthcoming rare isotope facilities.

The nucleus is an interesting and intriguing quantum finite many-body system
and provides convenient laboratory to test our understanding of strong interactions
and many-body techniques. Since the nucleus consists of protons and neutrons, it
is natural to model the nucleus as a collection of interacting protons and neutrons.
Therefore, it will be highly nontrivial to understand nuclei in the context of QCD.

Nevertheless, one may ask a question whose answer might come with the next
generation rare isotope (RI) facilities and supercomputers: are there any remnants
of non-perturbative QCD in nuclei? Since the question “what are the QCD fossils in
nuclei?” is too broad, we narrow it down to “what is the origin of nucleon mass and
how to study it with rare isotopes?”

As it is well-said, the Higgs particle could explain the origin of a fraction of the
mass of visible matter, roughly only 2% of them. If you address a question about

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 154.

http://www.ntse-2016.khb.ru/Proc/Kim.pdf.

154



QCD fossils in nuclei? 155

the rest 98% to particle physicists, they would say that quarks and gluons moving
around inside the hadrons with high velocity will explain the rest. If you ask the
same question to nuclear physicists, they will propose something interesting which is
related to QCD vacuum, i. e., quark-antiquark condensates.

It is out of questions that ab initio approaches in nuclear physics will reveal some
aspect of the origin of nucleon mass in connection with rare isotopes, but in this
article, we will discuss how such a question can be addressed in nuclei based on a
chiral effective approach of QCD. In Section 2, we summarize two distinctive pictures
on the origin of the nucleon mass in QCD effective approaches. Also, an extended
parity doublet model will be introduced and a possibility to tell different pictures
in nuclei will be discussed. We then present a brief summary of our discussion in
Section 3.

2 Nucleon mass in a parity doublet model

In this section we present two distinctive pictures on the origin of nucleon mass, except
the one from current quark masses.

As it is well-known, the nucleon mass (in the chiral limit) in the linear sigma
model is given by

mN = gπσ0, (1)

where gπ is a coupling constant and σ0 is the vacuum expectation value of the sigma
field. As it is manifested, the nucleon mass in the chiral limit will be zero when σ0 = 0,
i. e., in the case of chiral symmetry restoration.

In the parity doublet model [1], two nucleon fields transform in a mirror way under
the chiral SU(2)L×SU(2)R transformations,

ψ1R → Rψ1R, ψ1L → Lψ1L,

ψ2R → Lψ2R, ψ2L → Rψ2L.
(2)

Now, one can easily show that m0(ψ̄2γ5ψ1 − ψ̄1γ5ψ2) is invariant under the chiral
transformations; m0 is called chiral invariant nucleon mass. Then, the nucleon part
of the parity doublet model Lagrangian reads

L = ψ̄1 i 6∂ ψ1 + ψ̄2 i 6∂ ψ2 +m0(ψ̄2 γ5 ψ1 − ψ̄1 γ5 ψ2)

+ a ψ̄1(σ + iγ5 ~τ · ~π)ψ1 + b ψ̄2(σ − iγ5 ~τ · ~π)ψ2. (3)

To obtain the mass of the nucleon N(938) and its parity partner N(1500), we
diagonalize the kinetic and mass terms

mN± =
1

2

(√
(a+ b)2σ2

0 + 4m2
0 ∓ (a− b)σ0

)
. (4)

Here, one can see that even if we assume the chiral symmetry restoration σ0 = 0, the
mass of the nucleon and its parity partner remains finite and degenerate as mN± = m0

to realize the chiral symmetry restoration. In Ref. [1] the value of the chiral invariant
mass was determined as m0 = 270 MeV from the decay width of N⋆(1535) → N + π.
The model is then extended by including vector mesons to study the nuclear matter [2],
where m0 ∼ 800 MeV to account for (symmetric) nuclear matter incompressibility.
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If m0 ∼ 800 MeV is true, then the role of spontaneous symmetry breaking charac-
terized by the non-zero value of σ0 is quite minor when it comes to the origin of the
nucleon mass and the value is too different from the one determined in free space.
To understand this discrepancy and to study asymmetric dense nuclear matter, we
further extended the model by including an additional potential term of σ and by
considering the hidden local symmetry [3].1

It was shown in Ref. [3] that the extended parity doublet model reasonably repro-
duces the properties of normal nuclear matter with the chiral invariant nucleon mass
m0 in the range from 500 to 900 MeV. It was also found that the first-order phase
transition for the liquid-gas phase transition disappears in asymmetric matter and
that the critical density for the chiral phase transition at nonzero density becomes
smaller for larger asymmetry. The m0 dependence of the slope parameter L was also
investigated, where L is defined by

L = 3ρ0

(
∂S

∂ρ

)

ρ0

. (5)

Here ρ0 denotes the saturation density and S is the nuclear symmetry energy. It was
shown that the slope parameter is independent of m0 [3].

2.1 Chiral invariant mass and nuclei

Since the nucleus is a quantum finite many-body system, physics in free space or in
infinite nuclear matter can change in nuclei. For instance, the internal quark structure
of a nucleon bound in nuclei differs from that of a free nucleon, see Ref. [4] for a recent
review. It was observed in Ref. [5] that the confinement scale (or the intrinsic energy
scale of QCD) might change from ∼300 MeV in the free nucleon to ∼100 MeV in a
nucleus.

Now, we study the properties of nuclei in the extended parity doublet model with
the relativistic Thomas–Fermi approximation to find any nuclear structure observables
that are sensitive to the value of the chiral invariant mass [6]. As an example, we
choose 40Ca and focus on the spin-orbit interaction. The spin-orbit interaction α(r)
is defined by

VSO(r) =
1

2mN+r

(
gω
dω0

dr
− dmN+

dr

)
~s · ~L ≡ α(r) ~s · ~L, (6)

where ω0 is the time component of the omega meson field. Referring to Ref. [6] for
details, we here show a result which demonstrates m0 dependence of the spin-orbit
interaction. In Fig. 1 we plot the maximum value of the spin-orbit interaction αmax

so as
a function of the chiral invariant mass with various values of the incompressibility K.
Note that the empirical value of αmax

so is around 2 [7]. From Fig. 1 we can see that
the spin-orbit interaction is sensitive to the value of the chiral invariant mass and
prefers smaller m0.

1Here, we briefly introduce the hidden local symmetry. In the non-linear sigma model, the basic
building block to construct the Lagrangian is given in terms of U = e2iπ/fπ and U transforms
as U → LUR† under the chiral symmetry transformation. In the hidden local symmetry approach it

is given by U = ξ
†
LξR, where ξL,R = eiσ/fσe∓iπ/fπ and ξL,R(x) → h(x) ξL,R(x) (L†,R†). Here, h(x)

constitutes the hidden local symmetry. We can introduce vector mesons as gauge bosons associated
with h(x).
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Figure 1: The maximum value of the spin-orbit interaction as a function of m0 with
various values of the incompressibility K.

3 Summary

Though it is out of questions that ab initio approaches in nuclear physics will reveal
some aspects of the origin of nucleon mass in connection with rare isotopes, in this
article we discussed how such a question can be addressed in nuclei based on the
chiral effective approach of QCD. We first summarized two distinctive pictures on
the origin of the nucleon mass in QCD effective approaches, the linear sigma model
and the parity doublet model. We then introduced an extended parity doublet model
and investigated possibility to tell the different pictures in nuclei. We found that the
spin-orbit interaction is sensitive to the chiral invariant nucleon mass and can be used
as litmus paper to study the origin of the nucleon mass in nuclei.
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dCenter of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator,

Lanzhou 730000, China
eSchool of Physics, University of Chinese Academy of Sciences, Beijing 100049, China
fSynergetic Innovation Center for Quantum Effects and Application, Hunan Normal

University, Changsha, 410081, China
∗Email: sgzhou@itp.ac.cn

Abstract

Many different shape degrees of freedom play crucial roles in determining
the nuclear ground state and saddle point properties and the fission path. By
breaking both the axial and the spatial reflection symmetries simultaneously,
we have developed multidimensionally-constrained covariant density functional
theories (MDC-CDFTs) in which all shape degrees of freedom βλµ with even µ,
such as β20, β22, β30, β32, β40, etc., are included self-consistently. The MDC-
CDFT’s have been applied to the study of fission barriers and potential energy
surfaces of actinide nuclei, third minima in potential energy surfaces of light
actinides, shapes and potential energy surfaces of superheavy nuclei, the Y32

correlations in N = 150 isotones and Zr isotopes, and shapes of hypernuclei.
In this contribution we introduce MDC-CDFT’s and focus on applications to
tetrahedral nuclear shapes. With functionals DD-PC1 and PC-PK1, the ground
state shape of 110Zr is predicted to be tetrahedral so is that of 112Zr with DD-
PC1. The tetrahedral shape originates from large energy gaps around Z = 40
and N = 70 when the β32 distortion is allowed. With the functional DD-PC1,
β32 > 0.03 and the energy gain due to the β32 distortion is larger than 300 keV
for the ground states of 248Cf and 250Fm with N = 150.
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1 Introduction

Most of known atomic nuclei have intrinsic shapes deviating from a sphere; in other
words, they are deformed [1–3]. Nuclear deformations not only manifest themselves in
collective states but also play important roles in determining nuclear potential energy
surfaces (PES’s) and fission barriers [4–6]. One way to describe nuclear deformations
is by parameterizing the nuclear surface with a multipole expansion

R(θ, ϕ) = R0


1 +

∞∑

λ=1

λ∑

µ=−λ

β∗
λµ Yλµ(θ, ϕ)


, (1)

where βλµ’s are deformation parameters. β20, describing axial and quadrupole shapes,
is the most important nuclear deformation. Beyond β20, one can either go to higher
order multipole with λ > 2, in particular βλ0 with odd λ corresponding to reflection-
asymmetric nuclear shapes [7–9], or consider triaxial deformations βλµ with µ 6= 0.
Several interesting nuclear phenomena are related to triaxial or reflection asymmetric
shapes such as the wobbling motion [2,10], chiral doublet bands [11–15], the termina-
tion of rotational bands [16], parity doublet bands [17–19], and the low-spin signature
inversion [20–24]. Putting together β30 and β22, it was revealed that the triaxial and
octupole distortions both lower the second fission barrier of actinide nuclei consid-
erably [25]. Furthermore, chirality-parity quartet bands are predicted in a nucleus
with both a static triaxial deformation (β22) and an octupole deformation (β30) [26].
The triaxiality and reflection asymmetry are combined in deformations characterized
by βλµ with odd λ and nonzero µ. Among such deformations, the β32 deformation is
of particular interest and has been investigated extensively [27–36]. A nucleus with
a pure β32 deformation, i. e., βλµ = 0 if λ 6= 3 and µ 6= 2, has a tetrahedral shape
with the symmetry group TD

d . The study of single-particle structure of nuclei with
tetrahedral symmetry predicted large energy gaps at Z(N) = 16, 20, 32, 40, 56–58,
70, and 90–94 and N = 112 and 136/142 [29, 32, 37–46]. These shell gaps may be
comparable to or even stronger than those at spherical shapes. Thus, a nucleus with
proton and/or neutron numbers equal to these numbers may have a static tetrahedral
shape or strong tetrahedral correlations.

For the study of nuclear ground states, shape isomers and PES’s, it is desir-
able to have microscopic and self-consistent models which incorporate all known im-
portant shape degrees of freedom. We have developed such a model, the so-called
multidimensionally-constrained covariant density functional theories (MDC-CDFT’s),
by breaking the reflection and axial symmetries simultaneously. Within the MDC-
CDFT’s, the nuclear shape is assumed to be invariant under the reversion of x and y
axes, i. e., the intrinsic symmetry group is V4 and all shape degrees of freedom βλµ with
even µ (β20, β22, β30, β32, β40, ...) are included self-consistently. The MDC-CDFT’s
consist of two types of models: the multidimensionally-constrained relativistic mean
field (MDC-RMF) model and the multidimensionally-constrained relativistic Hartree–
Bogoliubov (MDC-RHB) model. In the MDC-RMF model, the BCS approach has
been implemented for the particle-particle (pp) channel. This model has been used
to study potential energy surfaces and fission barriers of actinides [25, 47–51], the
spontaneous fission of several fermium isotopes [52], the Y32 correlations in N = 150
isotones [53], and shapes of hypernuclei [54,55], see Refs. [6,56,57] for recent reviews.
The Bogoliubov transformation generalizes the BCS quasi-particle concept and pro-
vides a unified description of particle-hole (ph) and pp correlations on the mean-field
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level. In the MDC-RHB model, pairing correlations are treated by making the Bogoli-
ubov transformation and a separable pairing force of a finite range [58–62] is adopted.
The MDC-RHB model has been used to study the spontaneous fission of fermium
isotopes [63] and neutron-rich Zr nuclei [64].

In this contribution, we present briefly the formalism of the MDC-RHB model
and some results of neutron-rich Zr nuclei and N = 150 isotones. The formulae of the
MDC-RHB model are given in Section 2. The results and discussions are presented
in Section 3. A summary is given in Section 4.

2 Formalism

In the CDFT [65–74], there are four types of covariant density functionals: the meson
exchange or point-coupling nucleon interactions combined with nonlinear or density
dependent couplings [75–81] (see Ref. [82] for recent reviews). All these four types
of functionals have been implemented in the MDC-RHB model. In this Section,
we mainly present the formalism of the RHB model with density dependent point-
couplings. The starting point of the RHB model with the density dependent point-
couplings is the following Lagrangian,

L = ψ̄(iγµ∂
µ −M)ψ − 1

2
αS(ρ̂) ρ2S − 1

2
αV (ρ̂) j2V − 1

2
αTV (ρ̂)~j2TV

− 1

2
δS(∂νρS)(∂νρS) − e

1 − τ3
2

Aµ j
µ
V − 1

4
FµνFµν , (2)

where M is the nucleon mass, αS(ρ̂), αV (ρ̂), and αTV (ρ̂) are density-dependent cou-
plings for different channels, δS is the coupling constant of the derivative term, and e
is the electric charge. ρS , jV , and ~jTV are the iso-scalar density, the iso-scalar current,
and the iso-vector current, respectively.

With the Green’s function technique, one can derive the Dirac–Hartree–Bogoliubov
equation [67, 83],

∫
d3r′

(
h− λ ∆
−∆∗ −h+ λ

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (3)

where Ek is the quasiparticle energy, λ is the chemical potential, and ĥ is the single-
particle Hamiltonian,

ĥ = α · [p− V (r)] + β[M + S(r)] + V0(r) + ΣR(r), (4)

S, V µ, and ΣR are the scalar potential, the vector potential, and the rearrangement
terms. The pairing potential reads

∆ff (r1σ1, r2σ2) =

∫
d3r′

1d
3r′2

∑

σ′
1
σ′
2

V pp
ff,ff (r1σ1, r2σ2, r

′
1σ

′
1, r

′
2σ

′
2)κff (r′

1σ
′
1, r

′
2σ

′
2),

(5)
where f and g are used to represent the large and small components of the Dirac
spinor, V pp is the effective pairing interaction and κ(r1σ1, r2σ2) is the pairing tensor.

The RHB equation (3) is solved by expanding the large and small components of
the spinors Uk(rσ) and Vk(rσ) in an axially-deformed harmonic oscillator (ADHO)



162 J. Zhao, B.-N. Lu, E.-G. Zhao and S.-G. Zhou

basis [84],

Uk(rσ) =

(∑
α f

kα
U Φα(rσ)∑

α g
kα
U Φα(rσ)

)
, Vk(rσ) =

(∑
α f

kα
V Φα(rσ)∑

α g
kα
V Φα(rσ)

)
, (6)

where Φα(rσ) are eigensolutions of the Schrödinger equation with the ADHO poten-
tial, [

− ~
2

2M
∇2 + VB(ρ, z)

]
Φα(rσ) = EαΦα(rσ), (7)

and

VB(ρ, z) =
1

2
M(ω2

ρρ
2 + ω2

zz
2). (8)

In Eq. (6), α = {nz, nr,ml,ms} is the collection of quantum numbers, and ωz and ωρ

are the oscillator frequencies along and perpendicular to the symmetry (z) axis, re-
spectively. The V4 symmetry is imposed in the MDC-CDFT [6]. Thus we expand the
potentials and the densities in terms of the Fourier series,

f(ρ, ϕ, z) = f0(ρ, z)
1√
2π

+

∞∑

n=1

fn(ρ, z)
1√
π

cos(2nϕ), (9)

In the pp channel, we use a separable pairing force of a finite range [58–62]. The
matrix element V̄ pp

12,1′2′ = V pp
12,1′2′ − V pp

12,2′1′ in the center of mass frame reads

V12,1′2′ = −2
√

2G
∑

NzNpMp

(
W

NzNpMp

12

)∗
W

NzNpMp

1′2′ , (10)

where

W
NzNpMp

12 = δK1+K2,Mp
δπ1π2,(−1)Nz+|Mp| τ1

1√
2
C1C2

×
(
∑

nz

M
nz1

nz2

Nznz
Vnz

)

∑

np

M
nr1

m1nr2
m2

NpMpnp0
Unp


, (11)

and

Vnz
=

1

(4πa2)1/2

∫ ∞

−∞

dz e−
z2

2a2 φnz
(z),

Unp
=

√
2π

4πa2

∫ ∞

0

dρρ e−
ρ2

2a2 R0
np

(ρ).

(12)

M
nz1

nz2

Nznz
and M

nr1
m1nr2

m2

NpMpnpmp
are the Talmi–Moshinski brackets. The pairing field and

pairing energy can be also written in a separable form as

∆12 =
∑

1′2′

V12,1′2′ κ1′2′ = −2
√

2G
∑

Nz

∑

NpMp

(
W

NzNpMp

12

)∗
PNzNpMp , (13)

Epair =
1

2

∑

12,1′2′

V12,1′2′ κ
∗
12κ1′2′ = −

√
2G
∑

Nz

∑

NpMp

|PNzNpMp |2, (14)
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where
PNzNpMp =

∑

12

W
NzNpMp

12 κ12. (15)

The details of the derivation are given in Appendices of Refs. [48, 64].
The total energy of the nucleus reads

Etotal =

∫
d3r

{
∑

k

v2k ψ
†
k (α · p + βMB)ψk

+
1

2
αS ρ

2
S +

1

2
αV ρ

2
V +

1

2
αTS ρ

2
TS +

1

2
αTV ρ

2
TV

+
1

3
βS ρ

3
S +

1

4
γS ρ

4
S +

1

4
γV ρ

4
V

+
1

2
δS ρS ∆ρS +

1

2
δV ρV ∆ρV

+
1

2
δTS ρTS ∆ρTS +

1

2
δTV ρTV ∆ρTV +

1

2
eρCA

}

+ Epair + Ec.m., (16)

where the center of mass correction Ec.m. can be calculated either phenomenologically
or microscopically. The intrinsic multipole moments are calculated as

Qτ
λµ =

∫
d3r ρτV (r) rλ Yλµ(Ω), (17)

where Yλµ(Ω) are the spherical harmonics and τ refers to the proton, neutron, or the
whole nucleus. The deformation parameter βλµ is obtained from the corresponding
multipole moment by

βτ
λµ =

4π

3NτRλ
Qλµ, (18)

where R = 1.2 ×A1/3 fm and Nτ is the number of proton, neutron, or nucleons.

3 Results and discussions

3.1 Tetrahedral shapes of neutron-rich Zr isotopes

In Ref. [64], one-dimensional potential energy curves (E ∼ β20) for even-even Zr nuclei
with 100 ≤ A ≤ 114 were calculated with functionals DD-PC1 [61] and PC-PK1 [85].
To investigate different roles played by the nonaxiality and reflection asymmetry, cal-
culations are preformed with different symmetries imposed: i) axial and reflection
symmetry, ii) axial symmetry and reflection asymmetry, and iii) nonaxial and reflec-
tion asymmetry; the results are shown in Figs. 1 and 2 by dotted, dash-dotted, and
solid lines respectively.

In Fig. 1, we present the results obtained with the functional DD-PC1. We can
see that if nuclei are allowed to be reflection asymmetric but axial symmetric, the
energy of the minimum with β20 ≈ 0 for 106−114Zr is lowered substantially by the β30
distortion. Due to this lowering effect, the energy of the minimum with the pear-like
shape (β20 ≈ 0, β30 6= 0) is lower than the minimum with oblate or prolate shape
for 110Zr, 112Zr, and 114Zr. When the β32 deformation is allowed in the calculations,



164 J. Zhao, B.-N. Lu, E.-G. Zhao and S.-G. Zhou

-2

0

2

4 100Zr 102Zr

104Zr

-2

0

2

4

106Zr 108Zr

-0.4 -0.2 0.0 0.2 0.4 0.6

110Zr

-0.4 -0.2 0.0 0.2 0.4 0.6
-2

0

2

4

 AS & RS
 AS & RA
 TA & RA

DD-PC1

E 
(M

eV
)

112Zr

-0.4 -0.2 0.0 0.2 0.4 0.6

114Zr

Figure 1: Potential energy curves for Zr isotopes with the functional DD-PC1. The
energy is normalized with respect to the oblate minimum for each nucleus. Various
symmetries are imposed in the calculations: axial symmetry (AS), triaxial (TA),
reflection symmetry (RS) and reflection asymmetry (RA). Taken from Ref. [64].

both axial and reflection symmetries are broken. The β32 distortion effect is more
pronounced than that of the β30 deformation for most of these nuclei. The energy of
the minimum with β20 ≈ 0 for 106−112Zr is lowered much. A tetrahedral ground state
is predicted for 110,112Zr. For 114Zr, the predicted pear-like shape is lower in energy
than the tetrahedral shape. From Fig. 1, we conclude that the β32 distortion effect is
the most pronounced for 110Zr where the inclusion of the β32 deformation lowers the
energy of the minimum around β20 = 0 by about 2 MeV.

In Fig. 2, the results obtained with the functional PC-PK1 are presented. The β30
and β32 distortion effects are observed around β20 = 0 for 108,110Zr. The most pro-
nounced distortion effects are predicted for 110Zr which is consistent with the results
obtained from DD-PC1. As a result, the ground states of 108,110Zr are predicted to
have tetrahedral shapes and there also exist pear-like isomeric states. Neither β30
nor β32 distortions have influences on the PEC’s of 112,114Zr.

In Ref. [64], we also examined the origin of the strong β32 effect around 110Zr.
We found that the formation of the tetrahedral ground state around 110Zr can be
traced back to the large energy gaps at Z = 40 and N = 70 in the single-particle
levels when the β32 deformation is included. In Fig. 3, we show the single-particle
levels of 110Zr near the Fermi surface as functions of β32 with β20 fixed at zero. Due
to the tetrahedral symmetry, the single-particle levels are split into multiplets with
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Figure 2: Potential energy curves for Zr isotopes with the functional PC-PK1. The
energy is normalized with respect to the oblate minimum for each nucleus. Various
symmetries are imposed in the calculations: axial symmetry (AS), triaxial (TA),
reflection symmetry (RS) and reflection asymmetry (RA).
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(b) of 110Zr as functions of β32 with β20 fixed at zero. Taken from Ref. [64].
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Figure 4: Ground state density profile of 110Zr in the (x, z) and (y, z) planes obtained
for the functional PC-PK1.

degeneracies equal to the irreducible representations of the TD
d group. For protons,

as shown in Fig. 3(a), the magic gap Z = 20 is enhanced while the gap at Z = 28 is
suppressed as β32 increases. At Z = 40 a large energy gap shows up as β32 increases.
From Fig. 3(b) we can see that large energy gaps appear at N = 40 and 70 while a
spherical magic gap at N = 50 is suppressed as β32 increases. Due to the large energy
gaps at Z = 40 and N = 70, a strong β32 effect is expected for 110Zr and nearby
nuclei. The ground state density profile of 110Zr obtained from PC-PK1 is shown in
Fig. 4.
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Figure 5: Potential energy surfaces of 106−114Zr in the (β30, β32) plane with β20 fixed
at zero. The contour interval is 0.1 MeV. Taken from Ref. [64].
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The potential energy surfaces (PES) of 106−114Zr in the (β30, β32) plane with β20
fixed at zero are shown in Fig. 5. It is clearly seen that the minima with tetrahedral
shapes are deeper than that of pear-like shapes for 106−112Zr with both functionals.
The barriers separating the pear-like and tetrahedral minima are very low. For 106Zr,
the barrier is almost invisible with both functionals. For 108Zr and 112Zr, the barriers
predicted by DD-PC1 are less than 0.2 MeV while the barriers predicted by PC-PK1
are around 0.1 MeV. For 110Zr, the barrier predicted by DD-PC1 is higher but still
less than 0.3 MeV, while the barrier height from the calculations with PC-PK1 is less
than 0.2 MeV. In this sense, the pear-like isomeric states are rather unstable.

3.2 Non-axial octupole shapes in N = 150 isotones

In Ref. [53], the non-axial reflection-asymmetric β32 shape in some transfermium
nuclei with N = 150, namely, in 246Cm, 248Cf, 250Fm and 252No, were investigated
within the MDC-RMF model. The parameter set DD-PC1 was used [61]. One-
dimensional potential energy curves (E vs β32) are shown in Fig. 6. For the ground
states of 248Cf and 250Fm, the non-axial octupole deformation parameter β32 > 0.03
and the energy gain due to the β32 distortion is larger than 300 keV. In 246Cm and
252No, shallow β32 minima are found.

The triaxial octupole Y32 effects stem from the coupling between pairs of single-
particle orbits with ∆j = ∆l = 3 and ∆K = 2 where j and l are respectively the
single-particle total and orbital angular momenta and K is the projection of j on
the symmetry axis. In Fig. 7, we show the proton and neutron single-particle levels
near the Fermi surface for 248Cf as a function of β32 with β20 fixed at 0.3. It has
been shown that the spherical proton orbitals π2f7/2 and π1i13/2 are very close to
each other. This near degeneracy results in octupole correlations. As seen in the
left panel of Fig. 7, two proton levels, [521]3/2 originating from 2f7/2 and [633]7/2
originating from 1i13/2, satisfying the ∆j = ∆l = 3 and ∆K = 2 condition, are very
close to each other at β20 = 0.3. Therefore the non-axial octupole Y32 develops, and
an energy gap appears at Z = 98 as β32 increases from zero. Similarly, the spherical
neutron orbitals ν2g9/2 and ν1j15/2 are very close to each other. The neutron levels
[734]9/2 originating from 1j15/2 and [622]5/2 originating from 2g9/2 are also close
lying just above and below the Fermi surface. This leads to the development of a gap
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Figure 7: Single-particle levels near the Fermi surface for protons and neutrons of
248Cf as functions of β32 with β20 fixed at 0.3.

at N = 150 with β32 increasing. The Y32 correlation in N = 150 isotones is caused
by both protons and neutrons, and the correlation in 248Cf is the most pronounced.

4 Summary

In this contribution we present briefly the formalism and some applications of the
multidimensionally-constrained covariant density functional theories (MDC-CDFT)
in which all shape degrees of freedom like βλµ deformations with even µ are allowed.
We have calculated the potential energy curves (E vs β32) of neutron-rich even-even
Zr isotopes within the MDC-RHB model. It is found that the β32 deformation plays
a very important role in the isomeric or ground states of these nuclei, especially for
nuclei around N = 70. The ground state shape of 110Zr is predicted to be tetrahedral
with both functionals, DD-PC1 and PC-PK1. 108Zr is also predicted to have the
tetrahedral ground state with the functional PC-PK1 and 112Zr is predicted to have
the tetrahedral ground state with the functional DD-PC1. The strong β32 distortion
effect is caused by the large energy gaps at Z = 40 and N = 70. The non-axial
reflection-asymmetric β32 shape in some transfermium nuclei with N = 150, namely,
in 246Cm, 248Cf, 250Fm and 252No, are studied. Due to the interaction between a
pair of neutron orbitals, [734]9/2 originating from νj15/2 and [622]5/2 originating
from νg9/2, and that of a pair of proton orbitals, [521]3/2 originating from πf7/2 and
[633]7/2 originating from πi13/2, rather strong non-axial octupole Y32 effects have been
found in 248Cf and 250Fm which are both well-deformed with large axial-quadrupole
deformations, β20 ≈ 0.3.
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Pygmy Dipole Modes in Shape-Coexisting 40Mg
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Abstract

Weakly bound nuclei have exotic collective excitations associated with halo
structures and continuum effects. Our study of isovector dipole modes in the
shape-coexisting 40Mg is based on the fully self-consistent continuumFAM-QRPA
in deformed large coordinate spaces. The K-splitting in low-lying pygmy reso-
nances clearly deviates from the proportionality in terms of static deformations
which is inherent for giant resonances.

Keywords: Collective excitation; FAM-QPRA; shape-coexistence

1 Introduction

Quantum many-body systems have emergent amazing macroscopic phenomena that
can not be easily derived from their constituent parts [1]. Nuclei are in an evolu-
tion from few-body to many-body systems, and can possess deformed shapes and
superfluidity which can enhance essentially the nuclear collective behavior [2]. Thus,
an accurate treatment of continuum in large coordinate spaces is essential for the
description of collective excitation modes in weakly bound nuclei.

A traditional way to implement the QRPA is the matrix diagonalization scheme
(MQRPA). However, huge dimensions of the QRPA matrix, especially when the spher-
ical symmetry is broken and continuum configurations are included, result in expen-
sive computational costs, which become a major numerical challenge.

To this end, the finite amplitude method (FAM), which allows us to compute all in-
duced fields using a finite difference method employing a subroutine of the static mean-
field Hamiltonian, is introduced to calculate strength functions [3]. The FAM-QRPA
for monopole modes has been implemented based on several well-known DFT-solvers,
such as the spherical coordinate-space program HFBRAD, the deformed harmonic
oscillator basis space program HFBTHO, and the deformed relativistic Hartree–
Bogoliubov method [3, 4]. Previously, we also developed the FAM-QRPA based on
our DFT-solver HFB-AX which provides very precise ground-state HFB solutions in
the deformed coordinate space [5]. Recently M. Kortelainen et al. extended the FAM
to a deformed multipole case, allowing the evaluation of QRPA modes for opera-
tors of arbitrary multipolarity LK with simplex-y basis [6]. Now we also extend
our FAM-QRPA to multipole excitation modes based on the HFB-AX, which pro-
vides a good resolution of quasiparticle resonances and continuum spectra due to

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 174.
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174



Isovector dipole modes in 40Mg 175

large box sizes and dense lattices [7]. This is an ideal tool for describing the collective
excitations of weakly bound deformed nuclei.

40Mg is the last experimentally observed magnesium isotope [8] with an N = 28
magic neutron number, but with a well-established prolate-oblate shape-coexistence
[9, 10]. Such a shape-coexistence is ideal for a comparative analysis of deformation-
related isovector dipole (IVD) modes, which are a natural probe of surface oscillations
and are directly related to the photoabsorption cross section.

2 Theoretical models

As mentioned above, the HFB equation is solved by HFB-AX [11] within a large two-
dimensional coordinate space based on B-spline techniques with an assumed axial
symmetry. The mesh distance is 0.6 fm and the order of B-spline is 12. A hybrid
MPI + OpenMP parallel scheme was utilized to get converged results within a rea-
sonable time.

For the particle-hole interaction channel, a recently adjusted extended SLy4 force
for light nuclei is adopted [12] including an additional density-dependent term. For
the particle-particle channel, a density dependent delta interaction (DDDI) [13],
V0[1 − η(ρ(r)/ρ0)γ ], is used. With a pairing window of 60 MeV, the pairing force
parameters are taken as V0 = −448.3 MeV fm3, η=0.8 and γ=0.7, so that pairing
gaps in both stable and very neutron-rich nuclei can be properly described. The re-
sulted pairing gaps are between those from mixed and surface types of pairing in very
neutron-rich nuclei, while the surface pairing interaction may overestimate pairing
correlations in nuclei far from stability [14].

The next step is to calculate a strength function within the framework of
FAM-QRPA utilizing the wave functions obtained by HFB-AX. The same parameters
in the particle-hole and particle-particle channels are used in the DFT-solver and FAM
for self-consistency. To study the fine structures of pygmy resonances, the smoothing
parameter is taken to be 0.25 MeV (cf. with the usually adopted value of 0.5 MeV).
For each frequency point ω, the calculation employs the OpenMP shared memory
parallel scheme. For different frequencies, the MPI distributed parallel scheme is
adopted. All computations are performed on the Tianhe-1A supercomputer located
in Tianjin and Tianhe-2 supercomputer located in Guangzhou.

3 Results

As is seen from Table 1, the oblate shape is 1.9 MeV above the prolate shape reflecting
the fact that 40Mg has a soft potential energy surface. The shape competition is also
reflected in the superfluidity difference: the prolate shape only has a neutron pairing
gap while the oblate shape only has a proton pairing gap.

The neutron density and neutron pairing density distributions in 40Mg in different
shape are shown in Fig. 1. The densities are displayed along the cylindrical coordi-
nates z (symmetrical axis) and r =

√
x2 + y2 (perpendicular to the symmetrical axis),

respectively. The difference between two profiles reflects the surface deformation. The
absolute value of pairing densities in oblate 40Mg is small which is responsible for the
almost vanishing neutron pairing gap. We see a significant neutron pairing density
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Table 1: Some bulk properties of prolate and oblate 40Mg obtained by HFB-AX
within the box-size of 27.6 fm. β2 is the quadruple deformation parameter, Etot is
the total energy, λ is the Fermi energy, and ∆ is the pairing gap. Subscripts n and p
denote neutron and proton, respectively. All energies are in MeV.

shape β2 Etot λn ∆n ∆p

prolate 0.39 −264.14 −0.33 1.23 0
oblate −0.32 −262.27 −0.79 0 0.98

halo as compared to the neutron normal density. In addition, we do not see an evident
core-halo shape decoupling.

In Fig. 2, the transition strengths of K = 0 and |K| = 1 (the sum of K = 1
and K = −1) are shown. To see the role of accurate treatment of continuum and sur-
face extensions, the transition strengths of prolate 40Mg are calculated with box size
of 12, 21 and 27.6 fm. We see that, within a small box, the continuum discretization is
not sufficient, which result in some false peaks. For instance, a false peak at 13 MeV
is still present even with the box size of 21 fm. Moreover, the low-lying resonances
are fragmented and less coherent without accurate continuum.
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Figure 2: Calculated
transition strengths
of isovector dipole
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shape with box size
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shape with box size
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shape with box size
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In calculations with a large coordinate space of 27.6 fm, the obtained transition
strengths clearly demonstrate pygmy resonances and deformation splitting, as shown
in Fig. 2 (c,d). It is known from the hydrodynamic liquid-drop model [15] that the
anisotropic splitting of the dipole transition strength is approximately proportional
to centroid excitation energy and deformation. It is reasonable that both cases have
similar giant resonance splitting (δE ∼ 5 MeV) considering different centroid energies
and deformations. Then the estimated pygmy splitting should be around 0.95 MeV
for the prolate shape and 1.05 MeV for the oblate case since 40Mg actually has no
evident core-halo shape decoupling [16]. However, we see the pygmy splitting of
the prolate shape (δE ∼ 1.4 MeV) is significantly larger than expected while the
oblate case (δE ∼ 0.45 MeV) is smaller. Obviously the hydrodynamic anisotropic
splitting is not valid anymore for pygmy resonances. According to our tests, the
pygmy splittings are not sensitive to pairing strengths. We speculate that the pygmy
splitting is related not only with static shapes and but also with significant dynamical
deformation surface effects. It will be very helpful to study the pigmy dipole resonance
deformation splitting in deformed neutron-rich nuclei in high-resolution experiments.
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Besides, the |K| = 1 dominates in the oblate case where the deformation splitting in
the total cross section is not distinguishable in contrast to the prolate case.
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Abstract

An applicability of large-scale shell-model calculations grows rapidly owing
to the developments of both the methodology and high-performance computing.
We briefly describe two methods to go beyond the standard Lanczos method in
the large-scale shell model calculations: the Monte Carlo shell model and the
stochastic estimation of nuclear level density. For the latter one, we adopt
an eigenvalue-density estimation based on a shifted Krylov-subspace method.
It enables us to describe both a low-lying spectroscopy and the nuclear level
density microscopically in a unified manner.

Keywords: Nuclear shell model, Monte Carlo shell model, nuclear level density

1 Introduction

Large-scale shell-model calculations is one of the powerful methods to study exotic
structure of neutron-rich nuclei, which has been intensively investigated due to a
recent growth of the high-performance computing enhancing a feasibility of the large-
scale shell-model calculations in medium-heavy nuclei. The recent limit of the large-
scale shell-model calculation with the conventional Lanczos diagonalization reaches
O(1011) M -scheme dimension [1, 2].

Tokyo nuclear theory group in the University of Tokyo has been continuing to pro-
mote the utilization of the high performance computing for the large-scale shell model
calculations under the HPCI Strategic Program field 5 and priority issue 9 to be tack-
led by using post-K computer [3]. Conventionally the large-scale shell-model calcula-
tions are performed by solving an eigenvalue problem for a huge Hamiltonian matrix
utilizing the Lanczos algorithm [1]. We developed a shell-model code “KSHELL” for
the Lanczos calculations on a massively parallel computer and showed its capability
up to O(1011) M -scheme dimensions [4].

2 Monte Carlo shell model

In order to overcome the limitation of the standard Lanczos method, M. Honma, T.
Mizusaki and T. Otsuka have suggested the Monte Carlo shell model (MCSM) [5],
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and the Tokyo group extended it by introducing a sophisticated variational method [6]
and an extrapolation utilizing an expectation value of the energy variance [7]. The
MCSM framework with these new features is called an “advanced MCSM”. It enables
us to obtain the low-lying spectra with large model spaces. It is applied to no-core
shell-model calculations in p-shell nuclei and large-scale shell-model calculations in
medium-heavy nuclei.

In the application of the MCSM to the no-core shell-model calculations called no-
core MCSM, we adopted the JISP16 interaction [8] and demonstrated that a cluster
structure emerges in the intrinsic states of Be isotopes [9]. It also enables us to
extrapolate the binding energies of the p-shell nuclei to those corresponding to the
infinite size of the model space [10].

In the applications of the MCSM to medium-heavy nuclei, we investigated an
exotic structure of neutron-rich nuclei such as neutron-rich Ni isotopes [11]. Recently
we successfully reproduced a sudden drop of the 2+ excitation energies in Zr isotopes
around N = 60, and revealed that it is caused by the first-order quantum phase
transition from spherical shape to prolate deformation [12, 13].

3 Stochastic estimation of level density

For understanding a neutron-capture process, a nuclear level density is an important
input in the Hauser–Feshbach theory. Nuclear shell-model calculations are consid-
ered to be one of ideal methods to evaluate the level density. In the shell-model
calculations, the level density is obtained as an eigenvalue density of the Hamiltonian
matrix. However, there is a difficulty in numerical computation: the conventional
Lanczos method shows a slow convergence and a lot of memory usages.

Although the MCSM provides a good description of the ground states and a few
low-lying excited states, it cannot provide the nuclear level density. It is difficult to
compute the nuclear level density by a direct counting of the eigenvalues obtained
by the Lanczos method, since the number of eigenvalues to be obtained reaches a
few thousands and the convergence of highly-excited states is slow in the Lanczos
method. Several methods to obtain the nuclear level density were proposed based on
shell-model calculations [14–16]. In Ref. [17], we adopted a stochastic estimation of
eigenvalue count based on a shifted Krylov-subspace method [18] and applied it to
the nuclear shell-model calculations. This estimation works efficiently especially for
sparse matrices.

Here we describe the framework of this estimation method. The shell-model wave
function is written as a linear combination of many-body configurations which are
called the M -scheme basis states [1]. Since the eigenenergy of the shell-model Hamil-
tonian is obtained as an eigenvalue of the M -scheme shell-model Hamiltonian ma-
trix, H , the nuclear level density corresponds to the number of the eigenvalues in
a certain eigenvalue region. We count the number of eigenvalues µk in the range
E(k−1) < E < E(k) by evaluating the residue of the contour integral Γk in Fig. 1.

We compute the contour integral along Γk by discretizing the contour line with

mesh points z
(k)
j (blue crosses in Fig. 1) and their weights wj as

µk =
1

2πi

∮

Γk

dz Tr

(
1

z −H

)
=
∑

j

wj Tr

(
1

z
(k)
j −H

)
. (1)
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Figure 1: Schematic drawing of the contour line to count the eigenvalues between
E(k−1) and E(k) in the complex plane of z. The red and blue crosses denote the

eigenvalues and the discretized mesh points z
(1)
j along the Γ1. The figure is taken

from Ref. [17].

Since the trace of the inverse of matrix in Eq. (1) cannot be directly calculated, it is
stochastically estimated by Hutchinson’s estimator [19] as

Tr

(
1

z −H

)
≃ 1

Ns

Ns∑

s

vT
s

1

z −H
vs, (2)

where vs are vectors whose components take values of 1 or −1 randomly with equal
probability. Ns denotes the number of these random vectors. Typically, Ns is taken
as 32 and its stochastic error is small enough.

In order to estimate the trace in Eq. (2), we have to compute vT
s (z

(k)
j −H)−1vs.

In the case of shell-model Hamiltonian matrix which is quite sparse, it is inefficient
to compute the inverse matrix directly. Since the matrix H is quite sparse, we solve
the linear equations vs = (z − H)x utilizing a Krylov-subspace method and obtain
the (z −H)−1vs. Among the Krylov-subspace methods, we adopt the block bilinear
form of the blocked complex orthogonal conjugate gradient (BCOCG) method [20] for
efficient computation. On top of that, we need to solve the equations vs = (z −H)x

for any z = z
(k)
j . These equations are solved simultaneously based on the shifted

algorithm [21].

As a benchmark for the validity of the estimation, Fig. 2 shows the level density
obtained by the present estimation in comparison with the exact shell-model level
density obtained by the Lanczos method. The model space is taken to be the sd shell
and the USD interaction [22] is used. The result of the stochastic estimation shows
a good agreement with the exact one with a certain stochastic error. The present
method allows us to estimate the level density of a large system with the M -scheme
dimension of up to 2 × 1010 [17]. This dimension is almost the current limit of the
Lanczos method to obtain a few low-lying states.

This method enables us to estimate the level density in medium-heavy nuclei utiliz-
ing a realistic effective interaction successfully describing low-lying excited states and
their spectroscopic information. In Ref. [17], using such a realistic effective interac-
tion, we successfully reproduced an experimentally observed equilibration of Jπ = 2+

and 2− states in 58Ni.
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test of the level den-
sity in 28Si vs the exci-
tation energy Ex. Red
solid histogram — ex-
act shell-model calcula-
tion by Lanczos method,
black line — stochastic
estimation. The figure is
taken from Ref. [17].

4 Summary

In order to extend the limit of large-scale shell-model calculations, we developed the
advanced MCSM for obtaining low-lying states and for the stochastic estimation of
the nuclear level density. Further details and a review of the advanced MCSM can be
found in Refs. [23,24]. A recent achievement of the MCSM calculations of Zr isotopes
is available in Ref. [12]. Concerning the stochastic estimation of the level density,
Refs. [17, 25] are referred.
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Abstract

The SS-HORSE approach to analysis of resonant states is generalized to
the case of charged particle scattering utilizing analytical properties of partial
scattering amplitudes and applied to the study of resonant states in the 5Li
nucleus and non-resonant s-wave proton-α scattering within the no-core shell
model using the JISP16 and Daejeon16 NN interactions.

Keywords: Charged particle scattering; resonances; scattering amplitude;
effective range function; SS-HORSE approach; no-core shell model

1 Introduction

There is considerable progress in developing ab initio methods for studying nuclear
structure [1] based on a rapid development of supercomputer facilities and recent
advances in the utilization of high-performance computing systems. In particular,
modern ab initio approaches, such as the Green’s Function Monte Carlo (GFMC) [2],
the Hyperspherical expansion [1], the No-Core Shell Model (NCSM) [3], the Coupled-
Cluster Theory [4,5], and the Nuclear Lattice Effective Field Theory [6,7] are able to
reproduce properties of atomic nuclei with mass up to A = 16 and selected heavier
nuclear systems around closed shells.

Within NCSM as well as within other shell model approaches, the calculation of
nuclear ground states and other bound states starts conventionally from estimating
the ~Ω dependence of the energy Eν(~Ω) of the bound state ν in some model space.
The minimum of Eν(~Ω) is correlated with the energy of the state ν. The convergence
of calculations and accuracy of the energy prediction is estimated by comparing with
the results obtained in neighboring model spaces. To improve the accuracy of theoret-
ical predictions, various extrapolation techniques have been suggested recently [8–19]
which make it possible to estimate the binding energies in the complete infinite shell-
model basis space. The studies of extrapolations to the infinite model spaces reveal
general trends of convergence patterns of shell model calculations.
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An extension of the ab initio methods to the studies of the continuum spectrum and
nuclear reactions is one of the mainstreams of modern nuclear theory. A remarkable
success in developing the ab initio reaction theory was achieved in few-body physics
where exact Faddeev and Faddeev–Yakubovsky equations [20] or the AGS method [21]
are nowadays routinely used for calculating various few-body reactions.

The most important breakthrough in developing ab initio theory of nuclear re-
actions in systems with total number of nucleons A > 4 was achieved by combin-
ing NCSM and Resonating Group Method (RGM); the resulting approach is con-
ventionally referred to as NCSM/RGM or No-Core Shell Model with Continuum
(NCSMC) [3,22–24]. It is also worth noting the Lorentz integral transform approach
to nuclear reactions with electromagnetic probes [1,25] and the GFMC calculations of
elastic nα scattering [26]. Nuclear resonance can be also studied within the No-core
Gamow Shell Model (NCGSM) [27].

Both NCGSM and NCSM/RGM complicate essentially the shell model calcula-
tions. A conventional belief is that the energies of shell model states in the con-
tinuum should be associated with the resonance energies. It was shown however in
Refs. [28, 29] that the energies of shell model states may appear well above the en-
ergies of resonant states, especially for broad resonances. Moreover, the analysis of
Refs. [28, 29] clearly demonstrated that the shell model should also generate some
states in a non-resonant nuclear continuum. In Refs. [30–34] we suggested an SS-
HORSE approach which provides an interpretation of the shell model states in the
continuum and makes it possible to deduce resonance energies and width or low-energy
non-resonant phase shifts directly from shell-model results without introducing addi-
tional Berggren basis states as in NCGSM or additional RGM calculations as in the
NCSM/RGM approach.

The SS-HORSE approach is based on a simple analysis of the ~Ω and basis-space
dependencies of the results of standard variational shell-model calculations. We have
successfully applied it to extracting resonance energies and widths in nα scattering
as well as non-resonant nα elastic scattering phase shifts [30, 31] from the NCSM
calculations of 5He and 4He nuclei with JISP16 NN interaction [35]. To describe
democratic decays [36, 37] of few-nucleon systems, we developed a hyperspherical
extension of the SS-HORSE method [38, 39]. An application of this extended SS-
HORSE approach to the study of the four-neutron system (tetraneutron) [38–40] make
it possible to obtain for the first time a low-energy tetraneutron resonance consistent
with a recent experiment [41] with soft realistic NN interactions like JISP16 [35],
Daejeon16 [42] and SRG-evolved chiral effective field theory (χEFT) NN interactions.
On the other hand, the unperturbed χEFT Idaho N3LO interaction [43] does not
support a tetraneutron resonance narrow enough to be detected experimentally but
instead provides a low-lying virtual tetraneutron state [40]. This result provides a
possible explanation why the tetraneutron resonance has not been obtained before in
numerous theoretical studies with various NN interactions with a repulsive core.

In this contribution, we discuss an extension of the SS-HORSE method to the
case of charged particle scattering. The SS-HORSE technique provides the S-matrix
or scattering phase shifts in some energy interval above the threshold where the
shell model calculations generate eigenstates with various ~Ω values and various basis
truncations. Next we parametrize the S-matrix to obtain it in a wider energy interval
and to locate its poles associated with resonances. We have shown [30, 31] that this
parametrization should provide a correct description of low-energy phase shifts. The
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phase shift parametrization utilized in Refs. [30–32] was derived from the symmetry
properties of the S-matrix. However, due to the long-range Coulomb interaction in
the case of charged particle scattering, the analytical properties of the S-matrix be-
come much more complicated and cannot be used for its low-energy parametrization.
In Ref. [33] we suggested a version of the SS-HORSE approach which utilizes the
phase shift parametrization based on analytical properties of the partial scattering
amplitude. In the case of charged particle scattering, instead of the partial scattering
amplitude one can use the so-called renormalized Coulomb-nuclear amplitude [44,45]
which has similar analytical properties. This opens a route to the generalization of
the SS-HORSE method to the case of the charged particle scattering proposed in
Ref. [34] where we have verified this approach using a model problem of scattering
of particles interacting by the Coulomb and a short-range potential. To calculate the
Coulomb-nuclear phase shifts, we make use of the version of the HORSE formalism
suggested in Ref. [46] and utilized later in our studies of Refs. [28, 29].

In this contribution we present the results of SS-HORSE calculations of proton-α
resonant and non-resonant scattering phase shifts based on the ab initio NCSM re-
sults for 5Li and 4He nuclei obtained with the JISP16 [35] and a newer Daejeon16 [42]
NN interaction derived from a χEFT inter-nucleon potential and better fitted to the
description of light nuclei than JISP16. We search for the S-matrix poles to evaluate
the energies and widths of resonant states in 5Li nucleus. The NCSM-SS-HORSE cal-
culations of the 5He resonant states have been performed with the JISP16 interaction
in Refs. [30,31]. We present here also the results of the NCSM-SS-HORSE 5He reso-
nant state calculations with the Daejeon16 to complete the studies of the nucleon-α
resonances with the realistic JISP16 and Daejeon16 NN potentials. The previous
ab initio analyses of nucleon-α resonances with various modern realistic inter-nucleon
interactions were performed in Ref. [26] within the GFMC and in Refs. [22, 47–49]
within the NCSM/RGM.

2 SS-HORSE method for channels

with neutral and charged particles

2.1 General formulae

The SS-HORSE approach relies on the J-matrix formalism in quantum scattering
theory.

Originally, the J-matrix formalism was developed in atomic physics [50] [4]; there-
fore, the so-called Laguerre basis was naturally used within this approach. A gen-
eralization of this formalism utilizing either the Laguerre or the harmonic oscilla-
tor bases was suggested in Ref. [51]. Later the harmonic-oscillator version of the
J-matrix method was independently rediscovered by Kiev (G. F. Filippov and col-
laborators) [52] and Moscow (Yu. F. Smirnov and collaborators) [53] groups. The
J-matrix with oscillator basis is sometimes also referred to as an Algebraic Version
of RGM [52] or as a Harmonic Oscillator Representation of Scattering Equations
(HORSE) [46]. We use here a generalization of the HORSE formalism to the case of
charged particle scattering proposed in Ref. [46].

Within the HORSE approach, the basis function space is split into internal and
external regions. In the internal region which includes the basis states with oscillator
quanta N ≤ N, the Hamiltonian completely accounts for the kinetic and potential
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energies. The internal region can be naturally associated with the shell model basis
space. In the external region, the Hamiltonian accounts for the relative kinetic energy
of the colliding particles (and for their internal Hamiltonians if needed) only and its
matrix takes a form of an infinite tridiagonal matrix of the kinetic-energy operator
(plus the sum of eigenenergies of the colliding particles at the diagonal if they have an
internal structure). The external region clearly represents the scattering channel un-
der consideration. If the eigenenergies Eν , ν = 0, 1, ... and the respective eigenvectors
of the Hamiltonian matrix in the internal region are known, one can easily calculate
the S-matrix, phase shifts and other parameters characterizing the scattering process
(see, e. g., Refs. [46, 51, 54, 55]).

An interesting feature peculiar to the J-matrix method was highlighted as far back
as 1974 [50]. The point is that, at the energies coinciding with the eigenvalues Eν of
the Hamiltonian matrix in the internal region, the matching condition of the J-matrix
method becomes substantially simpler while the accuracy of the S-matrix and phase
shift description at these energies is much better than at the energies far enough from
the eigenvalues Eν [34, 56, 57]. Taking an advantage of this feature, H. Yamani [57]
was able to construct an analytic continuation to the complex energy plane within
the R-matrix method and to obtain accurate estimates for the energies and widths of
resonant states.

The Single-State HORSE (SS-HORSE) method suggested in Refs. [30–32] also
benefits from the improved accuracy of the HORSE approach at the eigenstates of
the Hamiltonian matrix truncated to the internal region of the whole basis space.
In the case of scattering of uncharged particles interacting by a short-range poten-
tial, the phase shifts δl(Eν) in the partial wave with the orbital momentum l at the
eigenenergies Eν of the internal Hamiltonian matrix are given by [30–32]

tan δl(Eν) = −SN+2,l(Eν)

CN+2,l(Eν)
. (1)

Here SN,l(E) and CN,l(E) are respectively regular and irregular solutions of the free
Hamiltonian at energy E in the oscillator representation which analytical expressions
can be found in Refs. [46, 51, 54, 55]. Varying the oscillator basis spacing ~Ω and the
truncation boundary N of the internal oscillator basis subspace, we obtain a variation
of some eigenenergy Eν of the truncated Hamiltonian matrix in some energy interval
and obtain the phase shifts δl(E) in that energy interval by means of Eq. (1). Next
we parametrize the phase shifts δl(E) as discussed in the next subsection to have the
phase shifts and the S-matrix in a wider energy interval which makes it possible to
locate the S-matrix poles.

In the case of scattering in the channels with two charged particles, we, following
the ideas of Ref. [46], formally cut the Coulomb interaction at the distance r = b. As
shown in Ref. [34], an optimal value of the Coulomb cutoff distance b is the so-called
natural channel radius b0 [46],

b = b0 ≡ rclN+2,l = 2r0
√
N/2 + 7/4 , (2)

i. e., b is equivalent to the classical turning point rcl
N+2,l of the first oscillator func-

tion RN+2,l(r) in the external region of the basis space. The parameter r0 =
√
~/(µΩ)

entering Eq. (2) is the oscillator radius and µ is the reduced mass in the channel under
consideration. With this choice of the Coulomb cutoff distance b, the elements of the
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Hamiltonian matrix in the internal region are insensitive to the cut of the Coulomb
interaction. Therefore the shell model Hamiltonian matrix elements in the internal
region can be calculated without any modification of the Coulomb interaction be-
tween the nucleons. The scattering phase shifts δauxl of the auxiliary Hamiltonian
with the cutted Coulomb interaction can be calculated using the standard HORSE
or SS-HORSE technique, e. g., with the help of Eq. (1). To deduce an expression for
the Coulomb-nuclear phase shifts δl, one should match at the distance b the plane-
wave asymptotics of the auxiliary Hamiltonian wave functions with Coulomb-distorted
wave function asymptotics. As a result, we get the following SS-HORSE expression
for the Coulomb-nuclear phase shifts δl(Eν) at the eigenenergies Eν of the internal
Hamiltonian matrix [34]:

tan δl
(
Eν

)
= − SN+2,l

(
Eν

)
Wb(nl, Fl) + CN+2,l(Eν)Wb(jl, Fl)

SN+2,l

(
Eν

)
Wb(nl, Gl) + CN+2,l

(
Eν

)
Wb(jl, Gl)

. (3)

Here jl ≡ jl(kr) and nl ≡ nl(kr) are respectively the spherical Bessel and Neumann
functions [58] while Fl ≡ Fl(η, kr) and Gl ≡ Gl(η, kr) are respectively the regular and
irregular Coulomb functions [58]; k is the relative motion momentum; η = Z1Z2e

2µ/k
is the Sommerfeld parameter; the quasi-Wronskian

Wb(φ, χ) =

(
dφ

dr
χ − φ

dχ

dr

)∣∣∣∣
r=b

. (4)

As in the case of neutral particle scattering, we obtain the Coulomb-nuclear phase
shifts δl(E) in some energy interval by varying the internal region boundary N and
the oscillator basis spacing ~Ω and next parametrize the phase shifts to have them in
a wider energy interval. However the phase shift parametrization is more complicated
for channels with charged colliding particles as discussed below.

An important scaling property of variational calculations with the harmonic os-
cillator basis was revealed in Refs. [9,10]: the converging variational eigenenergies Eν

depend on ~Ω and N not independently but only through a scaling variable

s =
~Ω

N + 7/2
. (5)

This scaling property was initially proposed in Refs. [9, 10] for the bound states. We
have extended the scaling to the case of variational calculations with the harmonic
oscillator basis of the unbound states [30, 31] within the SS-HORSE approach. The
SS-HORSE extension to the case of charged particle scattering discussed here can be
used to demonstrate that the long-range Coulomb interaction does not destroy the
scaling property of the unbound states (see Ref. [34] for details).

2.2 Phase shift parametrization

The total partial-wave amplitude for scattering in the case of Coulomb and short-range
interactions has the form of the sum of the purely Coulomb, fC

l (k), and Coulomb-
nuclear, fNC

l (k), amplitudes [59],

fl(k) = fC
l (k) + fNC

l (k), (6)
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which, in turn, are related to the purely Coulomb, σl = arg Γ(1+l+iη), and Coulomb-
nuclear phase shifts, δl, as

fC
l (k) =

exp (2iσl) − 1

2ik
, (7)

fNC
l (k) = exp (2iσl)

exp (2iδl) − 1

2ik
. (8)

Analytic properties of the Coulomb-nuclear amplitude fNC
l (k) in the complex

momentum plane differ from the analytic properties of the scattering amplitude for
neutral particles. However, the renormalized Coulomb-nuclear amplitude [44, 45],

f̃l(E) =
exp (2iδl) − 1

2ik
· exp (2πη) − 1

2πη
clη, (9)

where

clη =

l∏

n=1

(1 + η2/n2)−1 (l > 0), c0η = 1, (10)

is identical in analytic properties on the real momentum axis with the scattering
amplitude for neutral particles. In particular, the renormalized amplitude can be
expressed [44, 45]

f̃l =
k2l

K̃l(E) − 2ηk2l+1H(η)(clη)−1
(11)

in terms of the Coulomb-modified effective-range function [44, 45]

K̃l(E) = k2l+1(clη)−1

{
2πη

exp (2πη) − 1
[cot δl(k) − i] + 2ηH(η)

}
, (12)

where

H(η) = Ψ(iη) + (2iη)−1 − ln (iη), (13)

Ψ(z) is the logarithmic derivative of the Γ function (digamma or Ψ function) [58].
In the absence of Coulomb interaction (η = 0), the Coulomb-modified effective-range
function transforms into the standard effective-range function for neutral particle
scattering,

K̃l(E) = Kl(E) = k2l+1 cot δl, (14)

while the renormalized amplitude becomes the conventional neutral particle scattering
amplitude,

fl(E) =
k2l

Kl(E) − ik2l+1
. (15)

Due to their nice analytic properties, the renormalized Coulomb-nuclear ampli-
tude, f̃l(E), and the neutral particle scattering amplitude, fl(E), can be used to
parametrize respectively the Coulomb-nuclear and neutral particle scattering phase
shifts ensuring their correct low-energy behavior. In Refs. [33, 34], we introduced an
auxiliary complex-valued function imbedding resonant pole parameters in the am-
plitude parametrization. These resonant pole parameters play a role of additional
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fitting parameters in the phase-shift parametrization. Here we prefer to parametrize
the Coulomb-modified effective-range function (12) or the standard effective-range
function for neutral particle scattering (14) thus reducing the number of fit parame-
ters. The resonant parameters are obtained by a numerical location of the amplitude
pole as discussed below.

The Coulomb-modified effective-range function K̃l(E) as well as the effective-range
function for neutral particle scattering Kl(E) is real on the real axis of momentum k,
is regular in the vicinity of zero, and admits an expansion in even powers of k, or,
equivalently, in power series of the relative motion energy E = ~2k2/2µ [44, 45],

K̃l(E) = w0 + w1E + w2E
2 + ... (16)

The expansion coefficients w0 and w1 are related to the so-called scattering length al
and effective range rl [59]:

w0 = − 1

al
, w1 =

rlµ

~2
. (17)

We use the expansion coefficients w0, w1 and w2 as fit parameters for the phase
shift parametrization. Such a parametrization works well in the case of nucleon-α
scattering but may fail in other problems. Note, as seen from Eq. (12) or Eq. (14),
the energies at which the phase shift takes the values of 0, ±π, ±2π, ..., are the singular
points of the effective-range function. In the case of possible presence of such singular
points in the range of energies of interest for a particular problem, one should use a
more elaborate parametrization of the effective-range function, e. g., in the form of
the Padé approximant.

2.3 Fitting process

In the case of neutral particle scattering, we combine Eqs. (1), (14) and (16) to obtain

w0 + w1E + w2E
2 = k2l+1 CN+2,l(E)

SN+2,l(E)
. (18)

In the case of charged particle scattering, we derive a more complicated equation with
the help of Eq. (3) and (12):

w0 + w1E + w2E
2 = k2l+1(clη)−1

×
{
− 2πη

exp (2πη) − 1

[
SN+2,l(E)Wb(nl, Gl) + CN+2,l(E)Wb(jl, Gl)

SN+2,l(E)Wb(nl, Fl) + CN+2,l(E)Wb(jl, Fl)
+ i

]
+ 2ηH(η)

}
.

(19)

Let E
(i)
ν , i = 1, 2, ..., D, be a set of the lowest (ν = 0) or some other particular

eigenvalues (ν > 0) of the Hamiltonian matrix truncated to the internal region of
the basis space obtained with a set of parameters (N(i), ~Ω(i)), i = 1, 2, ..., D. We
find energies E(i) as solutions of Eq. (18) or Eq. (19) with some trial set of the
effective-range function expansion coefficients w0, w1, w2 for each combination of
parameters (N(i), ~Ω(i)) [note, the oscillator basis parameter ~Ω enters definitions of
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functions SN,l(E) and CN,l(E)]. The optimal set of the fit parameters w0, w1, w2

parametrizing the phase shifts is obtained by minimizing the functional

Ξ =

√√√√ 1

D

D∑

i=1

(
E

(i)
ν − E(i)

)2
. (20)

With the optimal set of the fit parameters w0, w1, w2 we can use Eq. (18) or
Eq. (19) to obtain the ~Ω dependences of the eigenenergies Eν(~Ω) in any basis
space N. Therefore Eqs. (18) and (19) provide extrapolation of the variational results
for unbound states to larger basis spaces.

2.4 Resonance energy Er and width Γ

We obtain resonance energies Er and widths Γ by a numerical location of the S-matrix
poles which coincide with the poles of scattering amplitude. If the amplitude has a
resonant pole at a complex energy E = Ep, the resonance energy Er and its width Γ
are related to the real and imaginary part of Ep [59]:

Ep = Er − i
Γ

2
. (21)

It follows from Eqs. (11) and (15) that locating the pole of the scattering amplitude
is equivalent to solving in the complex energy plane the equation

F(E) ≡ K̃l(E) − 2ηk2l+1H(η)(clη)−1 = 0 (22)

in the case of charged particle scattering or the equation

F(E) ≡ Kl(E) − ik2l+1 = 0 (23)

in the case of neutral particles. We can use the parametrization of functions K̃l(E)
or Kl(E) in Eqs. (22) and (23). To solve these equations, we calculate the integral

Υ =
1

2πi

∮

C

F ′(E)

F(E)
dE (24)

along some closed contour C in the complex energy plane, where F ′(E) = dF
dE . The

contourC should surround the area where we expect to have the pole of the amplitude.
According to the theory of functions of a complex variable [60], the value of Υ is equal
to the number of zeroes of the function F(E) in the area surrounded by the contour C.
If needed, we modify the contour C to obtain

Υ = 1. (25)

The position of the pole in the energy plane is calculated as

Ep =
1

2πi

∮

C

E
F ′(E)

F(E)
dE. (26)

A numerical realization of the algorithm based on Eqs. (24)–(26) provides fast and
stable locating of the poles of scattering amplitude.
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3 Elastic scattering of nucleons by α particle
in the NCSM-SS-HORSE approach

We present here an application of our SS-HORSE technique to nucleon-α scattering
phase shifts and resonance parameters based on ab initio many-body calculations of
5He and 5Li nuclei within the NCSM with the realistic JISP16 and Daejeon16 NN in-
teractions. The NCSM calculations are performed using the code MFDn [61,62] with
basis spaces including all many-body oscillator states with excitation quanta Nmax

ranging from 2 up to 18 for both parities and with ~Ω values ranging from 10
to 40 MeV in steps of 2.5 MeV.

Note, for the NCSM-SS-HORSE analysis we need the 5He and 5Li energies relative
respectively to the n + α and p + α thresholds. Therefore from each of the 5He or
5Li NCSM odd (even) parity eigenenergies we subtract the 4He ground state energy
obtained by the NCSM with the same ~Ω and the same Nmax (with Nmax − 1) ex-
citation quanta, and in what follows these subtracted energies are referred to as the
NCSM eigenenergies Eν . Only these 5He and 5Li NCSM eigenenergies relative to the
respective threshold are discussed below.

We note here that the NCSM utilizes the truncation based on the many-body os-
cillator quanta Nmax while the SS-HORSE requires the oscillator quanta truncation
of the interaction describing the relative motion of nucleon and α particle. A justifica-
tion of using Nmax for the SS-HORSE analysis is obvious if the α particle is described
by the simplest four-nucleon oscillator function with excitation quanta Nα

max = 0.
Physically it is clear that the use of Nmax within the SS-HORSE should work well
also in a more general case when the α particle is presented by the wave function
with Nα

max > 0 due to the dominant role of the zero-quanta component in the α
particle wave function. Instead of attempting to justify algebraically the use of Nmax

within the SS-HORSE, we suggested in Ref. [30, 31] an a posteriori justification: we
demonstrated in Ref. [30,31] that we obtained nα phase shift parametrizations consis-
tent with the NCSM results obtained with very different Nmax and ~Ω values; more,
we were able to predict the NCSM results with large Nmax using the phase shift
parametrizations based on the NCSM calculations with much smaller model spaces.
It was clearly impossible if the use of Nmax truncation for the SS-HORSE analysis did
not work properly. We perform the same a posteriori analysis of our results in this
study of nucleon-α scattering to ensure the justification of our approach though do not
present and discuss it below. Generally the fact that the phase shifts calculated using
Eq. (1) or (3) at the NCSM eigenenergies obtained with different Nmax truncations
form a single curve as a function of energy serves as a confirmation of the consistency
of the whole NCSM-SS-HORSE approach and of the use of the NCSM Nmax for the
SS-HORSE phase shift calculation in particular. The ranges of Nmax and ~Ω values
where this consistency is achieved differ for different NN interactions and different
angular momenta and parities. Such a consistency which can be also interpreted as a
convergence of the phase shift calculations is seen in the figures below to be achieved
in all calculations at least at largest basis spaces in some range of ~Ω values.

3.1 Phase shifts of resonant pα scattering

The top left panel of Fig. 1 presents the results of the NCSM calculations of the
5Li 3

2

−
ground state energies E

(i)
0 relative to the p + α threshold. The respective
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Figure 1: pα scattering in the 3
2

−
state with JISP16 NN interaction. Top left: the

lowest 5Li 3
2

−
eigenenergies E

(i)
0 relative to the p+α threshold obtained by the NCSM

with various Nmax (symbols) as functions of ~Ω. The shaded area shows the energy
values selected for the SS-HORSE analysis. Solid curves are solutions of Eq. (19) for

energies E with parameters w0, w1 and w2 obtained by the fit. Top right: the 3
2

−
pα

phase shifts obtained directly for all calculated 5Li eigenstates E
(i)
0 using Eq. (3). Bot-

tom left: Coulomb-modified effective range function K̃l(E) calculated using Eq. (16)
with parameters w0, w1 and w2 obtained by the fit (solid curve) and calculated using

the r.h.s. of Eq. (19) at the selected eigenenergies E
(i)
0 (symbols). Bottom right: the

fit of the 3
2

−
pα phase shifts (solid curve) and the phase shifts obtained directly from

the selected 5Li eigenstates E
(i)
0 using Eq. (3) (symbols). Experimental data at the

right panels (stars) are taken from Ref. [63].

phase shifts calculated using Eq. (3) for all 5Li eigenstates E
(i)
0 are shown in the top

right panel of Fig. 1.

For the SS-HORSE analysis we should select a set of consistent (converged) NCSM

eigenstates E
(i)
0 which form a single curve of the phase shifts δl

(
E

(i)
0

)
vs energy as dis-

cussed in detail in Refs. [30–34]. Alternatively one can use for the eigenstate selection

the graph of E
(i)
0 vs the scaling parameter s or the graph of the Coulomb-modified

effective range function points K̃l

(
E

(i)
0

)
vs energy where the converged eigenstates

should also form a single curve. Our selection of the eigenstates E
(i)
0 is illustrated

by the shaded area in the top left panel of Fig. 1 while the method of the eigenstate
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selection is seen from comparing the top right and bottom right panels in the same

figure: the symbols in the top panel depict the phase shifts δ1
(
E

(i)
0

)
corresponding

to all eigenstates E
(i)
0 while those in the bottom panel correspond to the selected

eigenstates only. More details regarding the eigenstate selection can be found in
Refs. [30, 31] and we are not discussing the method of eigenstate selection in this
paper in what follows.

A good quality of reproducing the Coulomb-modified effective range function

points K̃l

(
E

(i)
0

)
by the fit is illustrated by the bottom left panel in Fig. 1. We note

the the quality of description by the fit of the functions K̃l(E) and Kl(E) in cases of
other states and interactions is approximately the same and we shall not present the
graphs of these functions in what follows. A numerical estimate of the fit quality in

our approach is the rms deviation Ξ of the eigenenergies E
(i)
0 presented in Table 1. It

is seen that in all cases Ξ is of the order of few tens of keV.

The bottom right panel in Fig. 1 demonstrates a good quality of the fit of the phase

shift points δ1
(
E

(i)
0

)
. The fitted phase shifts are seen from this panel to be in a good

correspondence with the results of the phase shift analysis of the experimental data
of Ref. [63]. However the theoretical phase shift behavior indicates that the resonance
has a slightly higher energy and a larger width than observed experimentally.

The results of the calculations of the same phase shifts with the Daejeon16 NN
interaction are presented in Fig. 2. It is seen that in this case we reproduce the exper-
imental phase shifts in the resonance region even better than with JISP16. However
we can select for the SS-HORSE analysis much less NCSM results than in the case of
JISP16: only the NCSM states obtained with Daejeon16 with Nmax ≥ 12 are forming

the same curve on the δ1
(
E

(i)
0

)
vs energy plot while in the JISP16 case we utilize for

the SS-HORSE analysis the results with Nmax ≥ 4. In other words, surprisingly, the
convergence of continuum state calculations with the Daejeon16 NN interaction is
much worse than with JISP16 while the Daejeon16 results in a much faster conver-
gence of NCSM calculations for bound states of light nuclei [42]. The same trends in
comparing convergence of Daejeon16 and JISP16 continuum calculations are seen in
all the rest results presented here.
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Figure 2: pα scattering in the 3
2

−
state with Daejeon16 NN interaction. Dashed

curve in the right panel presents phase shifts obtained with JISP16 for comparison.
See Fig. 1 for other details.
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Figure 3: pα scattering in the 1
2

−
state with JISP16 (top panels) and Daejeon16

(bottom panels) NN interactions. Dashed curve in the bottom right panel presents
phase shifts obtained with JISP16 for comparison. See Fig. 1 for other details.

The results of calculations of the pα scattering in the 1
2

−
state with JISP16

and Daejeon16 are presented in Fig. 3. Both interactions are reproducing well the
experimental data in the resonance region while the JISP16 phase shifts are closer to
the experiment at higher energies.

3.2 Phase shifts of resonant nα scattering

We have studied the nα scattering within the NCSM-SS-HORSE approach with the
JISP16 NN interaction in Refs. [30,31]. We present for completeness the resonant nα
phase shifts obtained with Daejeon16 in Fig. 4 in comparison with those from JISP16.

As in the case of the pα scattering, the narrower 3
2

−
resonance is better described

by the Daejeon16 than by the JISP16 interaction while the description of the wider
1
2

−
resonance region is nearly the same by both interaction but the 1

2

−
phase shift

behavior at energies above the resonant is reproduced better by JISP16. We note
again a faster convergence of the JISP16 calculations of nα scattering phase shifts as
compared with those with Daejeon16.
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Figure 4: nα scattering in the 3
2

−
(top panels) and 1

2

−
(bottom panels) states with

the Daejeon16 NN interaction. Dashed curves in the right panels present phase shifts
obtained with JISP16 [30] for comparison. Experimental data (stars) are taken from
Ref. [64]. See Fig. 1 for other details.

3.3 3

2

−

and 1

2

−

resonances in 5Li and 5He nuclei

The results for energies and widths of the 3
2

−
and 1

2

−
resonances in 5Li and 5He nuclei

with respect to the nucleon + α threshold obtained by the numerical location of the
scattering amplitude poles as described in Subsection 2.4, are presented in Table 1.
For comparison, we present in Table 1 also the results for the 5Li resonances obtained
with χEFT NN and NNN interactions in the ab initio NCSM/RGM approach in
Ref. [49]. We note that the energy of the resonance was calculated in Ref. [49] as

a position of the maximum of the derivative dδl(E)
dE while the resonance width was

evaluated as Γ = 2/(dδl/dE)|E=Er
. The phase shift δl(E) may have a contribution

from a non-resonant background which can result in some shift of the resonance
energy Er and in a modification of its width Γ in such calculations as compared with
a more theoretically substantiated method relating the resonance parameters to the
S-matrix and/or scattering amplitude pole. The differences in energy and width from
these different type calculations may be large for wide resonances.

We note that all ab initio calculations of resonance parameters in 5Li and 5He
nuclei provide a good description of the experimental data of Ref. [65]. The differ-

ence in 3
2

−
resonance energies in both nuclei obtained with different interactions is

less than 300 keV, and the experimental resonance energies are within the respective
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Table 1: Energies Er and widths Γ of resonant states 3
2

−
and 1

2

−
in 5Li and 5He

obtained in the NCSM-SS-HORSE approach with JISP16 and Daejeon16 NN inter-
actions. Ξ presents the rms deviation of energies obtained in the fit. The NCSM/RGM
results obtained with χEFT NN and NNN interactions are from Ref. [49] and the
experimental results are from Ref. [65].

Er Γ Ξ Er Γ Ξ ∆
(MeV) (MeV) (keV) (MeV) (MeV) (keV) (MeV)

5Li, 3/2− 5Li, 1/2−

Experiment 1.69 1.23 3.18 6.60 1.49
JISP16 1.80 1.79 45 3.57 6.09 65 1.77

Daejeon16 1.52 1.05 24 3.21 5.63 50 1.70
χEFT NN +NNN 1.77 1.70 3.11 7.90 1.34

5He, 3/2− 5He, 1/2−

Experiment 0.80 0.65 2.07 5.57 1.27
JISP16 0.94 1.02 40 2.63 5.31 62 1.69

Daejeon16 0.68 0.52 22 2.45 5.07 48 1.77

intervals of predictions obtained with different interactions. The theoretical predic-

tions for the 3
2

−
resonance widths also embrace the experimental values. However the

spread of theoretical predictions for the 3
2

−
resonance width is about 750 keV in the

case of 5Li and about 500 keV in the case of 5He that are large numbers as compared
with the width value.

In the case of the wider 1
2

−
resonances in 5Li and 5He nuclei, the spreads of pre-

dictions for 5Li also embrace the respective experimental energy and width values
while our predictions for the 5He resonance energy are slightly above and for the
width are slightly below the experiment. However the spreads of the theoretical pre-

dictions for both energy and width of the 1
2

−
resonances in 5Li and 5He do not exceed

approximately 450 keV with an exception of the NCSM/RGM χEFT NN +NNN

prediction for the 1
2

− 5Li resonance width. Even the 2.3 MeV difference between our

Daejeon16 and χEFT NN +NNN prediction of Ref. [49] for the 1
2

− 5Li resonance
width is much smaller than the experimental width. Therefore we can say that the

relative accuracy of the ab initio predictions for the 1
2

−
resonances in 5Li and 5He

nuclei is much better than that for the 3
2

−
resonances.

The difference ∆ =
(
E

1/2−

r − E
3/2−

r

)
between the energies of the 1

2

−
and 3

2

−

resonances in 5He and 5Li nuclei can be associated with the spin-orbit splitting of
respectively neutrons and protons in the p shell. The ∆ values are presented in Table 1.
The χEFT NN +NNN interaction slightly underestimates the proton spin-orbit
splitting while JISP16 and Daejeon16 overestimate both proton and neutron spin-
orbit splittings. It is interesting to note that the differences between our predictions
with JISP16 and Daejeon16 for the resonance energies are of the order of 300 keV
while the differences in ∆ values are only about 75 keV. It is more important to note
that the charge-independent JISP16 and Daejeon16 NN interactions support nearly
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the same p-shell spin-orbit splittings for protons and neutrons while the experimental
spin-orbit splitting for protons exceeds that for neutrons by approximately 200 keV.

3.4 Non-resonant pα scattering

We have used the NCSM-SS-HORSE approach in Ref. [30–32] for calculations of res-
onant as well as non-resonant nα scattering. The non-resonant phase shifts can be
also calculated within the current extension of the NCSM-SS-HORSE to the case of
channels with charged colliding particles. Contrary to the phase shifts parametriza-
tions based on the S-matrix analytic properties utilized on Ref. [30–32], we use the
same Coulomb-modified effective-range function parametrization of Eq. (16) for both
resonant and non-resonant scattering.

The results of calculations of the non-resonant pα scattering phase shifts in the 1
2

+

state with JISP16 and Daejeon16 NN interactions are presented in Fig. 5. It is seen
that JISP16 provides a faster convergence of the phase shifts in this case too. The
results obtained with JISP16 and Daejeon16 are close to each other and reproduce
well the experimental phase shifts of Ref. [63].
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Figure 5: Non-resonant pα scattering in the 1
2

+
state with JISP16 (top panels) and

Daejeon16 (bottom panels) NN interactions. Dashed curve in the bottom right panel
presents phase shifts obtained with JISP16 for comparison. See Fig. 1 for other details.
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4 Summary

We present here an extension of the ab initio NCSM-SS-HORSE approach to the case
of channels with charged colliding particles where the relative motion wave function
asymptotics is distorted by the Coulomb interaction. The extended approach is ap-
plied to the study of pα scattering and resonances in 5Li nucleus with realistic JISP16
and Daejeon16 NN interaction. The analysis of the nα scattering and resonances in
5He nucleus with JISP16 NN interaction has been performed by us in Ref. [30–32];
we complete this analysis here by the corresponding calculations with Daejeon16.

We demonstrate that the extended NCSM-SS-HORSE approach works with ap-
proximately the same accuracy and convergence rate as its non-extended version
applicable to the channels with neutral particles. Surprisingly, we obtain that the
JISP16 interaction provides a faster convergence of the nα and pα phase shifts than
the Daejeon16 while the convergence of bound states in light nuclei within NCSM is
much faster with Daejeon16 than with JISP16 [42].

Both JISP16 and Daejeon16 provide a good description of the 3
2

−
and 1

2

−
reso-

nances in 5Li and 5He nuclei as well as of the 1
2

+
non-resonant nα and pα phase shifts.

However the spin-orbit splitting of nucleons in the p shell is overestimated by these in-
teractions; more, these charge-independent NN interactions provide nearly the same
result for the spin-orbit splitting of neutrons and protons while experimentally the
spin-orbit splittings for neutrons and protons differ by approximately 200 keV.
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Abstract

Different aspects of the Wave-Packet Continuum Discretization method are
discussed in applications to few-body scattering problems. Scattering observ-
ables in multichannel two-body problems can be found by diagonalization of the
total Hamiltonian in the free wave-packet basis without solving the scattering
equations at all. In few-body case, wave functions and operators are projected
into the discrete wave-packet representation which results in a matrix reduc-
tion of integral equations of the scattering theory. The necessary boundary
conditions are taken into account by an employment of the finite-dimensional
(matrix) representations for the free and channel resolvents. As a numerical il-
lustration, we consider the nd scattering problem with realistic NN interaction,
which is solved via the highly parallelized computational scheme on an ordinary
PC within the GPU technique.

Keywords: Scattering theory; discretization of continuum; graphics processing
unit

1 Introduction

A consistent solution for few-body scattering problems has been done, as is well
known, many years ago by Faddeev and Yakubovsky [1] which gave rise to an ex-
tensive few-body activity worldwide both in theory and experiment. However, a
practical solving of such problems still presents a difficult numerical task in spite of a
great progress in computational facilities. Alternatively, the methods which use L2-
normalized wave functions for continuum states in solving multi-channel and few-body
scattering problems have been developed. Such methods are very useful nowadays in
nuclear and atomic physics [2–5]. Some of them are adapted for treating the realistic
interactions in few-nucleon systems (see the recent review [6]).

About a decade ago, our group in Moscow State University has developed an
original approach [7–10] which allows to formulate problems in the continuum in
terms of normalized analogs of initial scattering states, i. e., stationary wave packets
(WPs) or eigendifferentials as they were introduced by Herman Weyl [11]. One of the
central points of the approach is an analytical finite-dimensional representation for
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the few-body free and channel resolvents. The solution scheme is realized in a discrete
(on energy and momentum) representation allowing to replace few-body scattering
integral equations by their matrix analogs. A detailed description of the entire wave-
packet continuum discretization (WPCD) approach and its various applications can
be found in our review paper [7].

The above WPCD method as well as a treatment of L2 functions in the discretized
continuum, have several important features [7]. First, according to the finite norms
of states, one can take into account the long-range Coulomb interaction without any
screening by using the Coulomb wave-packet formalism. Moreover, these normalized
Coulomb WPs can be approximated in some appropriate L2 basis and even in the
basis of free WPs (the normalized analogs of the plane waves). Second, due to the
matrix form of the resulting equations, there are no additional difficulties in treating
non-local potentials (as well as complex-valued interaction operators). The numerical
scheme remains the same. This fact is very important for the present direct nuclear
reaction studies, where non-local interactions are employed instead of usual local
energy-dependent potentials [12]. Another important feature is related to the fact
that we use the integral equation formalism in the scattering theory with accurate
approximations for the resolvents in the kernels which allows to avoid an explicit
account of the boundary conditions. In particular, there are no difficulties to treat
accurately closed channels in the coupled-channel problems [7].

In the present paper, we discuss mainly two issues of the general WPCD ap-
proach. A special attention is focused on the diagonalization technique, i. e., the
discrete spectral shift (DSS) formalism, which allows to find scattering observables in
a multichannel two-body problem by making use of spectral properties of the total
and free Hamiltonians without solving scattering equations at all. The DSS method
has a close relation to the Lüscher finite volume approach [13] which is well known
in the lattice QCD applications [14]. Also our method has similar features with the
SS-HORSE method which has been developed very recently [15, 16].

Another important theme studied here is a development of an efficient numerical
scheme for a solution of few-body scattering problems in the Faddeev framework
within the WPCD approach. Recently [9] we have performed a parallel optimization
of our computational scheme for the nd elastic scattering problem and adapted it for
a practical realization on a desk PC with the graphics processing unit (GPU). So, we
describe the details of such an optimization in the present paper.

The paper is organized as follows. The definition of the stationary wave pack-
ets and their basic properties are given in Section 2. Section 3 is dedicated to the
diagonalization technique which allows to find scattering observables as well as off-
shell t matrix in a multichannel scattering problem without solving the scattering
theory equations. A brief description of the closed WPCD formalism in solving few-
body scattering problems via the matrix analogs of scattering equations is given in
Section 4. The details of a practical solution of the discretized Faddeev equation for
the three-nucleon system by using the GPU, are presented in Section 5. We summarize
the main results in the last Section 6.
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2 Stationary wave packets and their properties

2.1 Stationary wave packets

Let us consider some two-body Hamiltonian h = h0+v where h0 is a free Hamiltonian
(kinetic energy operator) and v is an interaction potential, and divide the continuous
spectrum of h into a set of non-overlapping intervals {[Ek−1, Ek]}Nk=1. The station-
ary WPs are constructed as integrals of exact scattering wave functions |ψp〉 over
corresponding momentum intervals Dk ≡ [pk−1, pk] (with pk =

√
2mEk):

|zk〉 =
1√
Bk

∫

Dk

f(p) |ψp〉 dp, Bk ≡
∫

Dk

|f(p)|2dp, (1)

where m is the reduced mass of the system, Bk and f(p) are normalization factors
and weight functions respectively which are interrelated.

The states (1) are well known as the Weyl’s eigendifferentials [11]. The integra-
tion over the energy (or momentum) intervals is just enough to make normalized
wave-functions for the continuum. Then a complete system of eigenfunctions of the
Hamiltonian h, according to Weyl, can be constructed from its bound states {|ψn〉}Nb

n=1

and eigendifferentials (see the details in Ref. [7]). In such a representation, the Hamil-
tonian h as well as its resolvent g(E) = [E + i0 − h]−1 have explicit diagonal forms
(see below).

These properties are valid not only for short-range potentials. In fact, one can
build similar wave packets for a Hamiltonian which includes the long-range repulsive1

Coulomb interaction, i. e.,

hC = h0 +
z1z2e

2

r
, (2)

where z1 and z2 are the particle charges, r is the distance between them. For this
Hamiltonian, one can introduce the Coulomb wave packets |xCk 〉 as the basis functions.
These Coulomb WPs are built from the regular Coulomb wave functions Fl(p, r) (for
each partial wave l) by an integration over discretization intervals quite similarly to
the general case [7]:

|xCk 〉 =
1√
Bk

∫

Dk

dp f(p) |Fl(p)〉. (3)

The states (3) are normalized, so that they can be practically constructed using
pseudostates of the Coulomb Hamiltonian (2) on some L2 basis.

2.2 Discrete representation for the total resolvent

The most useful property of the WP states of some Hamiltonian h is that one can
construct a finite-dimensional representation for its resolvent g(E) = [E + i0 − h]−1.
For this purpose, the projector onto the WP space p should be defined:

p =

Nb∑

n=1

|ψn〉〈ψn| +

N∑

k=1

|zk〉〈zk|, (4)

1The Coulomb attraction can be also treated in the WP approach, however it requires a separate
study.
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where |ψn〉 are the bound-state wave functions. So that, one gets analytically the
finite-dimensional representation for the projected resolvent [7],

g(E) = pg(E)p =

Nb∑

n=1

|ψn〉〈ψn|
E − En

+

N∑

k=1

|zk〉gk(E)〈zk|, (5)

where En are bound-state energies, and the eigenvalues gk(E) do not depend on in-
teraction but depend on discretization parameters only. The free and a repulsive
Coulomb Hamiltonians have the same representations (without the bound-state con-
tribution) in the free and Coulomb WP bases respectively.

2.3 Free wave-packets as a basis

The most useful examples of WP states are free WPs corresponding to the kinetic
energy operator h0 since they have explicit forms.

Indeed, in the momentum representation, the free WP functions are simple step-
like functions [7]: they do not vanish only on the given discretization interval, i. e.,
only in the on-shell region. In this area they are completely determined by the weight
function f(p):

xk(p) =
f(p) θ(p ∈ Dk)√

Bk

, (6)

where θ is the Heaviside step-like function which is equal to unity if p ∈ Dk while
outside it is equal to zero [7]. When f(p) = 1 (and Bk = dk where dk = pk − pk−1

is the width of the corresponding momentum interval) all the wave functions in the
momentum WP representation take a histogram form. Being generalized onto a few-
body case, the free few-body WP basis functions are built as a direct products of
step-like functions for each independent momentum variable. Thus, the whole few-
body momentum space is replaced by a finite momentum lattice. In this sense, we
refer to the free WP basis as the lattice basis.

From the practical point of view, the lattice basis can be used in any scattering
calculations on the same footing as a conventional discrete L2 basis like the harmonic
oscillator basis or the basis of Gaussians. Since the basis functions are step-like
functions in momentum space, the momentum dependence of all functions expressed
via such a basis has also a histogram-like form.

2.4 Construction of WP states for the total Hamiltonian

Free WPs can be used as a basis to construct scattering WPs for the total Hamilto-
nian h as its pseudostates. For this purpose, one applies a diagonalization procedure
to the total Hamiltonian matrix in a free WP basis. As a result, one gets a discrete
sets of eigenvalues Ek and respective eigenvectors |z̃k〉.

By such a diagonalization procedure, one derives a very convenient discrete rep-
resentation for the scattering WPs as a superposition of free WPs:

|zk〉 ≈ |z̃k〉 =
N∑

i=1

Oki|xi〉. (7)

As it has been mentioned above, there is no restriction that v should be a short-range
potential. So that, this procedure can be applied even for the long-range Coulomb
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Figure 1: The exact S-wave Coulomb WPs (dashed curves), the pseudostates found
via the free WP basis (solid curves) and the free WPs at the same energy (dotted
curves) for pp system at three center of mass energies: Ec.m. = 0.03 MeV (a), Ec.m. =
0.133 MeV (b) and Ec.m. = 1.474 MeV (c). In the case (c) the Coulomb phase shift
is rather small, hence the respective three curves are very close to each other.

interaction. This statement is illustrated in Fig. 1 where the exact Coulomb WPs
for pp system are compared with the respective Coulomb pseudostates found by the
diagonalization of the Coulomb Hamiltonian hC on the free WP basis, and the free
WPs themselves at the same energy. It is clearly seen from the Figure the Coulomb
WP |xCi 〉 can be very accurately approximated by free WPs.

The pseudostate approximation (7) for the scattering WPs is extremely useful for
few-body scattering studies where one is able to build a few- and many-body WP basis
not only for a free motion Hamiltonian but also for a few-body channel Hamiltonian.

3 Solving scattering problems without equations

3.1 Discrete spectral shift function formalism

The discrete representation for scattering theory objects opens new possibilities in
practical solving scattering problems. Below we briefly report the method based on
the spectral shift function formalism, which allows to the find multichannel scattering
matrix using spectral properties of the free and total Hamiltonian only [10].

The spectral shift function (SSF) ξ(E) ≡ ξ(E;h, h0) is an important object in the
general spectral theory of perturbations which defines a spectral difference for two
Hermitian operators h0 and h = h0 + v (e. g., free and total Hamiltonians) in the
discrete and continuous parts of the entire spectrum [17, 18]. This fact is known as
the trace formula:

Tr [f(h) − f(h0)] =

∫
dE f(E) ξ(E). (8)



210 O. A. Rubtsova, V. N. Pomerantsev and V. I. Kukulin

Here f is some function and ξ does not depend on f but depends on two operators h
and h0 only. Although v is called a perturbation there is no restriction that it should
be small. It is only assumed that the operator v has a finite trace.

The most essential result of the SSF formalism for physical applications is the
famous Birman–Krein formula [17], which relates the SSF with the determinant of
the scattering operator S:

detS(E) = exp
(
−2πiξ(E)

)
. (9)

In the single-channel scattering (e. g., at a fixed angular momentum), this formula im-
plies that the SSF is equal up to a factor of −π to a partial phase shift, δ(E) = −πξ(E).

Let us add that, at negative energies, the SSF is a counting function which changes
by one unit when crossing each bound state energy [10].

To define the SSF in a discretized representation, one has to use a concept of quasi-
continuous spectrum introduced by I. M. Lifshitz [19] (see also details in ref. [10]).

He considered a family of Hermitian operators {h(α)0 } each depending on a small
parameter α and having a purely discrete spectrum of eigenvalues (EVs) {E0

j (α)}
which can be approximated by a single continuous monotonic function w(u):

E0
j (α) = w(jα) +O(α),

D
(α)
j = E0

j+1(α) − E0
j (α) = α

[
dw

du

∣∣∣∣
u=jα

+O(α)

]
.

(10)

All differences D
(α)
j decrease as α decreases and the quasi-continuous spectrum be-

comes more and more dense. Thus, in the limit α→ 0, one has the limiting operator h0
with a continuous spectrum. By adding the perturbation v to h

(α)
0 operators, one gets

a family of total Hamiltonians h(α) with shifted EVs {Ej(α)}. One or several EVs
of the perturbed spectrum may occur to be below the threshold and thus correspond
to the bound states of h while the rest belong to the quasi-continuous spectrum of
this operator. Lifshitz has shown that the following relation between perturbed and
unperturbed EVs in quasi-continuous spectrum takes place [10, 19]:

Ej(α) = E0
j (α) +D

(α)
j ξj + o(α), (11)

where D
(α)
j is defined in Eq. (10) and ξj = ξ

(
Ej(α)

)
is the spectral shift function

defined at discrete energy values. The formula (11) is the basic for the Discrete
Spectral Shift (DSS) method. It results in a very simple approximate expression for
the partial phase shift:

δ(E0
j ) = −πξ(E0

j ) ≈ −π
Ej − E0

j

Dj
. (12)

This method may be applied to any continuum discretization procedure, e. g., when
one considers a particle scattering in a box and the box size R is increased to in-
finity (α ∼ 1

R ) [10]. Another useful case is the solution of the scattering problem in
some finite L2 basis when the parameter α is decreasing with increasing the basis
dimension N [10].

It should be stressed that the above result is related to other methods which allow
to find phase shifts without solving the scattering equations. It is worth to mention
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here the Lüsher approach which is widely used in low energy EFT applications [14].
Recently the SS-HORSE method has been developed [15,16] which can be treated as
a SSF formalism in the Harmonic Oscillator representation.

3.2 New treatment of multichannel pseudostates

In a multichannel case, the total Hamiltonian can be written in a matrix form as

hνν′ = hν0 δνν′ + vνν′ , ν, ν′ = 1, ... , d, (13)

where ν is a channel index, hν0 are the channel unperturbed Hamiltonians and vνν′

are coupling potentials.
The trace (8) and Birman–Krein (9) formulas are valid in the multichannel case

as well. However they correspond to the total spectral density of the matrix Hamil-
tonian h from Eq. (13) and cannot be used for separate calculations of elastic and
inelastic amplitudes in different channels. In particular, the spectral shift function at
each energy is just a sum of all eigenphases [10].

Nevertheless, we have shown that Eq. (12) can be generalized to evaluate sepa-
rate eigenphases from the differences of free and total Hamiltonian eigenvalues [10]
similarly to the single-channel case. Here each EV of the discretized spectrum {E0

j }
of the multichannel free Hamiltonian h0 should be degenerate with the multiplicity d
equal to the number of open channels at the given energy. An inclusion of a channel-
coupling interaction leads to the splitting of the above multiple energy levels. Finally,
the spectrum of the total multichannel Hamiltonian h consists of serieses of eigen-
values {Eκ

j }dκ=1 for each j (here κ is the eigenchannel index) arising from the initial

unperturbed eigenvalues E0
j (see Ref. [10] for the details). This effect is illustrated in

Fig. 2 for a two-channel problem.
Thus a diagonalization of the total Hamiltonian (13) matrix in the coupled-channel

free WP basis {|xνi 〉}dν=1 results in a set of pseudostates |zκk 〉 with EVs Eκ

k expanded
in a series of free WP states:

|zκk 〉 =
∑

ν,i

Oκν
ki |xνi 〉. (14)

These pseudostates can be treated as approximations for the multichannel WPs of
the total Hamiltonian h [7].

h10 h20 h0 h

Figure 2: The splitting effect caused
by the inclusion of the coupled-channel
interaction v: the similar eigenvalues
of free Hamiltonians h10 and h20 form
discretized spectrum of the matrix free
Hamiltonian h0 with degenerated en-
ergy levels each splitted into a pair of
levels (shown with different colors) of
the total Hamiltonian h.
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Then one can define different spectral shift functions in the eigenchannel repre-
sentation (each for a separate eigenchannel) and relate them to the eigenphases of
the multichannel problem. Finally, these eigenphases are defined again through the
discrete spectral shifts:

δκ(E0
j ) ≈ −π

Eκ
j − E0

j

Dj
, κ = 1, ... , d, (15)

where E0
j is the eigenvalue of the free Hamiltonian h0 with the multiplicity d, Eκ

j

is the eigenvalue of the total Hamiltonian h, and Dj is the energy width of the
corresponding discretization interval of h0.

Our results for the model two-channel e−H scattering problem obtained in the
DSS approach are shown in Fig. 3 in comparison with the results of Ref. [20]. A
coupled-channel potential including 1S−2S excitation of the hydrogen atom has been
used in these calculations. The parameters of the model interaction has been taken
from Ref. [20]. It is seen that the DSS technique reproduces the reaction cross section
very well in a wide energy region except only for one or two energy points just near
the threshold of the second channel.
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A detailed description of the DSS approach and various numerical examples of
single- and multi-channel scattering applications, including those with non-local and
complex-valued potentials, can be found in Refs. [10].

3.3 Off-shell multichannel t-matrix from the diagonalization

With the treatment of the multichannel pseudostates as shown above, a finite-dimen-
sional representation for the total resolvent takes a diagonal form in the multichannel
case [7]:

g(E) ≈
Nb∑

n=1

|ψn〉〈ψn|
E − En

+

d∑

κ=1

Nκ∑

k=1

|zκk 〉 gκk (E) 〈zκk |, (16)

which is similar to the single-channel total resolvent (5). It should be stressed that
the above expansion does not represent the pole-like pseudostate approximation for
the total resolvent but it corresponds to the diagonalization of the coupled-channel
continuous spectrum of the total Hamiltonian within the scattering wave-packet for-
malism.

Next, substituting the total resolvent by its representation (16) in the explicit
formula for the transition operator,

t(E) = v + v g(E) v, (17)

one obtaines the off-shell multichannel t-matrix as the following matrix element in
the channel free WP basis:

tνν′(E; p, p′) ∼ 〈xνi |t(E)|xν′

i′ 〉, p ∈ Di, p′ ∈ Di′ . (18)

Thus this technique makes it possible to find the off-shell t-matrix for a multi-
channel scattering problem by a one-fold diagonalization of the total Hamiltonian
matrix in free WP basis for any energy E. Here, at all required energy points, the
same set of pseudostates |zκk 〉 should be used and only the eigenvalues gκk (E) must
be recalculated which is very simple.

As an example of an application of the diagonalization procedure to the calculation
of the NN scattering amplitudes, we present in Fig. 4 the partial phase shifts for the
coupled 3S1−3D1 spin-triplet channels supported by the CD-Bonn NN potential [21].
To check the accuracy of the approach, we compare in this figure the results of the
direct numerical solution for the integral Lippmann–Schwinger equation with the
results of a single diagonalization for the respective NN coupled-channel Hamiltonian
in a very broad interval of laboratory energies Elab from zero up to 800 MeV. The
dimensionality of the free WP bases for these calculations is N = 100 in each partial
wave. As the discretization mesh, we used here the Chebyshev grid (see details in
Ref. [7]). It is clearly seen that the results for the direct and diagonalization solutions
are nearly indistinguishable in the whole energy region studied.

It should be mentioned that the proposed diagonalization technique is useful for
solving scattering problems in medium as well. Very recently [22], we have generalized
this approach to solving the Bethe–Goldstone equation for the reaction matrix in
infinite nuclear matter.
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Figure 4: Partial phase shifts δ1 (a), δ2 (b) and mixing angle ε (c) for the coupled
spin-triplet 3S1−3D1 (left) and 3P2−3F2 (right) channels of NN scattering calculated
using the CD-Bonn NN potential (solid curves) in comparison with the results of a
direct numerical solution of the respective Lippmann–Schwinger equation (dashed
curves).

4 Few-body scattering problem

in the momentum lattice basis

It has been shown above that the diagonalization procedure for the total Hamiltonian
in the free WP basis allows to find on-shell or off-shell quantities for problems in
continuum in a wide energy region without solving scattering equations. However a
generalization of this approach to the three- and few-body cases is not straightfor-
ward due to a complexity of the few-body continuum and corresponding boundary
conditions.
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For the studies of the few-body scattering, we have developed a closed formalism
based on the free WP basis (the momentum lattice basis) which allows to find matrix
analogs of the integral scattering theory equations and to solve them efficiently. We
start below from a general description of this formalism in the two-body case.

4.1 Discrete version of scattering theory

Within the WP lattice formalism, a three-step discretization procedure is introduced:

(i) Division of continuous spectrum of the free Hamiltonian into non-overlapping
intervals and introduction of the free WPs.

(ii) Projection of the scattering (as well as bound-state) wave functions and opera-
tors onto the above WP space.

(iii) Additional energy averaging of energy-dependent operators.

The last item means that one should apply the energy-averaging procedure, e. g., to
the finite-dimensional representation (5) of the free resolvent g0(E) = [E+ i0−h0]−1,

g(E) → gk0 =
1

Dk

∫

Dk

g0(E) dE, (19)

where Dk = Ek − Ek−1 is an energy width of the interval Dk. This averaging makes
it possible to avoid logarithmic singularities at the end-points of the energy inter-
vals which are inherent in the matrix elements gk(E) in Eq. (5) and allows also to
accomplish a complete discretization of the solution scheme [7].

It would be useful to demonstrate how the above discretization procedure works in
practical applications by solving the Lippmann–Schwinger equation for the transition
operator t(E):

t(E) = v + v g0(E) t(E). (20)

Applying the above three steps (i)–(iii), one gets a discrete set of operators tk at
E ∈ Dk (instead of the operator t(E) continuously dependent on energy). The matrix
elements of tk in the WP basis are related directly to the off-shell elements of the
t-matrix:

t(p, p′, E) ≈ [tk]ij√
DiDj

,



p ∈ Di

p′ ∈ Dj

E ∈ Dk


. (21)

These operators tk satisfy simple matrix equations

tk = v + v gk0 t
k, E ∈ Dk, (22)

where the gothic letters denote the WP projections of the respective operators. Using
Eq. (22), one can obtain any of on- and off-shell t-matrix elements whose energy and
momentum dependencies are represented by histograms. It should be emphasized
that the t-matrix constructed in the WP representation satisfies exactly the unitarity
relation [7].

Finally, the S-matrix (and the partial phase shifts) can be found by means of the
relation

S(E) ≈ 1 − 2πi
[tk]kk
Dk

, E ∈ Dk. (23)
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As an illustration of accuracy of this fully-discretized technique for calculating the
transition operator, we present here the solution of the α−α scattering problem with
interaction including both nuclear and Coulomb potentials [7]. The basic S, D and G
partial α−α phase shifts obtained using the above WP technique with the additional
energy averaging are displayed in Fig. 5. Here the Coulomb WPs are used as a basis.

4.2 Wave-packet basis in few-body case

If a few-body Hamiltonian can be written in the form of a direct sum of two-body
ones,

HM = h1 ⊕ h2 ⊕ ...⊕ hM , (24)

the WP basis states for HM can be constructed straightforwardly as direct products
of the two-body ones:

|Zi1i2...iM 〉 = |zi1〉 ⊗ |z̄i2〉 ⊗ . . .⊗ |¯̄ziM 〉, (25)

where we use bars above the z-functions to distinguish states corresponding to differ-
ent subsystems. In the basis (25), the matrix of the Hamiltonian HM is diagonal and
the matrix of the resolvent GM (E) = [E + i0 −HM ]−1 has also an explicit diagonal
form.

In the studies of scattering in a system of three identical particles, 1, 2 and 3,
useful examples of Hamiltonians of the type (24) are the free Hamiltonian,

H0 = h0p ⊕ h0q, (26)

and the channel Hamiltonian,

H1 = (h0p + v1) ⊕ h0q, (27)

defined for a given Jacobi partition (e. g., {23}1) with momenta (p, q), where h0p
and h0q are the kinetic energy operators and v1 is the interaction between the par-
ticles 2 and 3. One can introduce the free WP states |Xγ

ij〉 and the channel WP
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states |Zγ
kj〉 using the two-body ones (with an account of the necessary spin-angular

parts labeled by quantum numbers γ) and relate the latter to the former by a simple
rotation [7] (all necessary quantum numbers should be taken into account):

|Zγ
kj〉 =

∑

γ′,i

Oγγ′

ki |Xγ′

ij 〉. (28)

This channel basis construction scheme can be also generalized to the charged
particle case [7].

4.3 Solution of Faddeev equation for nd problem
in the discrete representation

Here we discuss briefly the solving of Faddeev equations for a scattering of three
identical particles 1, 2 and 3 with mass m (nucleons). In this case, elastic scatter-
ing observables can be obtained from a single Faddeev equation for the transition
operator Ū (the so-called AGS equation), e. g., in the following form [23]:

Ū = PG−1
0 + PtG0Ū , (29)

where t is the two-body off-shell t-matrix in three-body space, G0 = (E + i0−H0)−1

is the free three-body resolvent and P is the permutation operator which changes the
momentum variables from one Jacobi set to another. In the case of three identical
particles, the operator P is defined as a sum of two cyclic permutations:

P = P12P23 + P13P23. (30)

It should be emphasized that a similar permutation operator is included in the kernels
of Faddeev equations in the case of non-identical particles.

We have shown [7] that one can rewrite Eq. (29) in the equivalent half-shell form,

U = Pv1 + Pv1G1U, (31)

where v1 is the two-body interaction and G1(E) = [E + i0−H1]−1 is the resolvent of
the channel Hamiltonian (27).

By projecting the integral equation (31) onto the channel WP basis (28), one
derives the matrix equation

U = PV1 + PV1G1U. (32)

Here V1 and G1 are the matrices of the pairwise interaction and of the channel
resolvent, respectively, which matrix elements can be found in an explicit form.

Thus, to obtain the elastic scattering amplitude, it is required 1) to calculate
the matrix elements of matrices P, V1, G1 and 2) to solve the system of algebraic
equations (32).

The matrix V1 of the potential v1 is diagonal in the indices of the wave-packet
basis corresponding to the Jacobi coordinate q and thus has a block form. Its matrix
in the channel WP basis is defined with the help of interaction matrix V0

1 in the free
WP basis and the rotation matrix O.
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Figure 6: Elastic nd scattering differential cross section (a) and neutron vector an-
alyzing power Ay (b) at 35 MeV obtained within the WP approach (solid curves).
Experiment: pd data at 35 MeV [25] (filled circles), nd data at 36 MeV [26] (empty
circles), nd data 35 MeV [27] (triangles).

The matrix of the operator P in the three-body lattice basis corresponds to the
overlap of basis functions defined in different Jacobi sets:

[P0]γ,γ
′

ij,i′j′ ≡ 〈Xγ
ij |P |X

γ′

i′j′〉. (33)

Such matrix elements are calculated by integration over the basis functions in mo-
mentum space (see details in Refs. [8, 9]). Thus, we have rather simple formulas and
respective numerical algorithms to determine all quantities entering the kernel of the
matrix Faddeev equation (32).

The elastic on-shell amplitude in the wave-packet representation is calculated as a
diagonal (on-shell) matrix element of the U-matrix [7] while the breakup amplitudes
can be found from off-diagonal elements of the same matrix.

The differential cross sections of the nd elastic scattering and the neutron vector
analyzing power Ay calculated using the realistic Nijmegen I NN potential [24] in
the WP approach at 35 MeV are presented in Fig. 6 in comparison with the experi-
mental data. It is evident from the figure that the agreement with the data is rather
well. Here the WP basis of the dimensionality over the discretized p and q momenta
of N × N̄ = 100 × 100 has been used and the partial waves with the total angular
momentum up to J ≤ 17/2 have been taken into account.

5 Solving by GPU

5.1 Details of numerical scheme for solving Faddeev equation
in the discrete representation

As shown above, we have reduced the integral Faddeev equation (31) to the matrix
equation (32). As a result, the conventional difficulties of solving the integral equa-
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tion (29) are avoided, however the price to be paid is a high dimensionality of the
resulting system of algebraic equations.

In fact, we have found [7] that quite satisfactory results can be obtained with a
basis size for each Jacobi momentum N ∼ N̄ ∼ 100−150. This means that even in
the simplest single-channel case when all quantum numbers in the set γ are conserved
(e. g., for spin-quartet S-wave three-fermion scattering or S-wave three-boson scat-
tering), one gets a kernel matrix of the dimensionality M = N × N̄ ∼ 10000−20000.
In the case of a realistic three-body scattering, it is necessary to include many spin-
angular channels (up to 62 channels in the case of three-nucleon system) and therefore
the dimensionality of the kernel matrix increases up to 5 · 105−106. It is clear that
the kernel matrix of this size cannot be stored in the RAM of an ordinary PC.

However a specific matrix structure of the kernel of Eq. (32) makes it possible to
overcome this difficulty and to eliminate completely the need for the external memory.
Indeed, the matrix kernel K in Eq. (32) can be written as a product of four matrices,

K = PV1G1 ≡ OP
0
Ṽ1G1, (34)

where Ṽ1 = OTV1. Here G1 is a diagonal matrix, P0 is the permutation matrix of a
high sparsity, while Ṽ1 and O are block matrices comprising identical blocks of the
dimensionality N (see Fig. 7).

The problem of the high dimensionality is resolved by storing only the individual
multipliers of the matrix kernel K in RAM. Moreover, one can store the highly sparse
matrix P0 in a compressed form (i. e., only its nonzero elements), then the complete
set of data required for the iteration process can be placed in RAM. Although three
extra matrix multiplication is added at each iteration step in this case, the computer
time spent on iterations is reduced more than 10 times as compared to the procedure
employing the external memory.

Thus our overall numerical scheme includes the following main steps:

1. Processing of the input data.

2. Calculation of nonzero elements of the permutation matrix P0.

3. Calculation of the channel resolvent matrix G1.

4. Iterations of the matrix equation (32) and finding its solution using the Padé
approximant technique.

The runtimes for the steps 1 and 3 are practically negligible in comparison with
the total running time, while the execution of the step 4 — finding the solution of the
matrix system by iterations — takes about 20% of the total time needed for a single-
thread computing of the whole problem. Hence we shall discuss below an optimization
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Figure 8: Some of S, D and P partial phase shifts of the elastic nd scattering obtained
within the WP approach (solid curves) and within the standard Faddeev calculations
(circles) [23].

of the step 2 only, viz. the calculation of the matrix P0 elements. Since all these
elements are calculated using the same code and are completely independent from each
other, the algorithm seems to be suitable for a parallelization and implementation on
multiprocessor systems like GPU. However, since the matrix P0 is of a high sparsity,
we have developed a special technique in order to get an essential acceleration due
to the GPU realization. In particular, we apply an additional pre-selection of the
nonzero P

0 matrix elements.
It should be emphasized that the steps 1 and 2 do not depend on the incident

energy. The current energy is taken into account only at steps 3 and 4 when one
calculates the channel resolvent matrix elements and solves the matrix equation for the
scattering amplitude. Therefore, if one needs to calculate the scattering observables in
a wide energy region, the whole computing time is not increasing essentially because
the most time-consuming part of the code (step 2) is carried out only once for many
energy points.

Various even- and odd-parity partial phase shifts of the elastic nd scattering calcu-
lated with the Nijmegen I NN potential via the proposed WP approach are presented
in a wide energy region in Fig. 8. The same permutation matrix has been used to
derive all these results.

5.2 GPU acceleration for the nd scattering problem
with s-wave NN potential

There is a number of issues associated with the organization of the data transfer be-
tween the RAM and GPU and also with the GPU computation itself which makes
highly nontrivial the GPU realization in this case. These issues impose severe re-
strictions on the acceleration due to the GPU realization. One can define the GPU
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acceleration η as a ratio of the single-thread CPU computation runtime to the mul-
tithread GPU computation runtime:

η = tCPU/tGPU. (35)

This acceleration depends on the ratio of the actual time for the calculation of a single
matrix element t0 to the time of transmitting the result from the GPU back to the
RAM T , on the number of GPU cores Nc and their speed rGPU compared to the
speed of the CPU core rCPU, and also on the dimension of the matrix M :

η = f

(
t0
T
,Nc, rGPU, rCPU,M

)
. (36)

Figure 9 shows the dependence of the CPU and GPU computing times as well as the
GPU acceleration η in calculation of the permutation matrix on its total dimensional-
ity M = N× N̄ (for N = N̄) in the case of the s-wave NN interaction MT III. In this
calculation, the GPU code was executed with 65 536 threads. For the comparison,
we display in this figure also the CPU and GPU times needed for the pre-selection
of nonzero matrix elements. It is clear from the figure that one needs to use the
GPU not only for the calculation of nonzero elements which takes most of the time
in the single-thread CPU computing, but also for the pre-selection of nonzero matrix
elements to achieve an essential acceleration.

It is seen that the runtime for the calculation of the P0 nonzero elements which
takes the main fraction of the CPU computing time, is reduced by more than 100
times. The total GPU acceleration in calculating the S-wave partial phase shifts
reaches 50. As a result of all these innovations, the total three-body scattering calcu-
lation takes only 7 sec on an ordinary PC with GPU.
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Figure 9: Left: the CPU (solid curves) and GPU (dashed curves) computing times
for the pre-selection (triangles) and calculation of the P

0 nonzero elements (circles) in
the case of s-wave NN interaction. Right: the GPU acceleration η for calculation of
the permutation matrix (dashed curve) and for the complete solution of the S-wave
nd scattering problem (solid curve). Here M is the total basis dimensionality.
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5.3 GPU acceleration in the nd scattering problem
with realistic NN potential

Unlike the simplest single-channel nd scattering discussed above, in the case of realis-
tic NN interactions, we have many coupled spin-angular channels (up to 62 channels
if the total angular momentum in NN pairs is restricted to j ≤ 3). In this case, the
calculation of each element of the permutation matrix P0 comprises numerical calcu-
lations of several tens of double numerical integrals containing Legendre polynomials.

Figure 10 demonstrates the GPU acceleration η versus the total basis dimension-
ality M in the solution of 18-channel Faddeev equation for the partial three-body

elastic amplitude with the total angular momentum J = 1
2

+
in the case of realistic

Nijmegen I NN interaction. The dashed and dash-dotted curves present the GPU
acceleration at the stages of the pre-selection of nonzero elements of the permutation
matrix P0 and of calculation of these elements, respectively.

From these results, it is evident that the acceleration for calculating the large
coupled-channel permutation matrix is about 15 times that is considerably smaller
than in the above single-channel case. Nevertheless, switching from the CPU to
the GPU realization on the same PC makes it possible to obtain a quite impressive
acceleration of about 10 times in the solution of the 18-channel scattering problem.

In realistic calculations of the observables of elastic three-body scattering, it is nec-
essary to include up to 62 spin-orbital channels. For the current numerical scheme, the
efficiency of the GPU optimization decreases with increasing the number of channels.
As is shown in Ref. [9], the time of calculations of the permutation matrix elements
is decreased by 8.7 times only due to the GPU optimization. Moreover, in this case,
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Figure 10: Dependence of the GPU acceleration η on the dimensionality of the basisM

for the nd scattering problem with Nijmegen I NN potential at J = 1
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curve — acceleration for the pre-selection of nonzero elements in the permutation
matrix P0, dash-dotted curve — acceleration for the calculation of these nonzero
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the major fraction of the computational time is spent not on the permutation matrix
but on the successive iterations of the very large matrix equation, i. e., on the final
step 4. This step takes now about 69% of the total computational time; as a result,
the total acceleration of the entire procedure is only 3.2. It should be stressed however
that the current numerical scheme can be further optimized. We plan to parallelize
the final step 4 in our next studies. It is also clear that the use of a more powerful
specialized graphics processor like Tesla K80 would lead even to a considerably larger
acceleration of the calculations.

6 Summary

We have described here a general technique for solving few-body scattering prob-
lems based on a complete continuum discretization and a projection of scattering
operators and wave functions onto the basis of stationary wave packets. Due to
the properties of the basis functions, the approach combines the advantages of the
L2-type techniques associated with calculations with normalized wave functions and,
on the other hand, with the rigorous integral equation formalism of the scattering
theory. As a result, such a WP projection makes it possible to transform compli-
cated singular multi-dimensional integral equations like the Lippmann–Schwinger or
Faddeev–Yakubovsky equations to regular matrix equations which can be solved di-
rectly within computational procedures similar to those used in the bound-state type
calculations.

Moreover, it has been shown that the above computational procedures can be
rather easily adapted to a parallel realization, in particular, they are suitable for pro-
cessing on a desktop PC supplied with a GPU. Although we have found out that
the acceleration achieved due to the GPU realization depends strongly on the dimen-
sionality of the basis and on the complexity of the problem, e. g., on the number
of spin-angular channels involved, the results obtained for the elastic nd scattering
problem with semi-realistic and realistic NN potentials appear to be very promising
for further investigations.

Let us note that the developed GPU-accelerated discrete approach for quantum
scattering problems can be implemented in other areas of quantum physics, as well
as in a number of important areas of classical physics involving the need to solve
multidimensional problems for continuous media studies.
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Abstract

In this contribution, we present a procedure that aims to reduce the compu-
tational complexity of large-scale shell-model calculations by taking into account
the rejected degrees of freedom in an effective approach. Starting from a gen-
eral large-scale shell-model Hamiltonian, the study of the behavior of its effective
single-particle energies as a function of the number of valence nucleons, allows
to establish a reduced model space made up only by orbitals needed to describe
a certain class of isotopes or isotones. Next, an unitary transformation of the
original Hamiltonian is performed from its model space into the truncated one.
By virtue of this transformation, a new shell-model Hamiltonian is obtained,
which is defined in a smaller model space preserving effectively the role of the
excluded single-particle orbitals. As an application of this procedure, we present
the results obtained for Mo isotopes outside the 88Sr core, starting from shell-
model Hamiltonians derived by way of the many-body perturbation theory from
a realistic nucleon-nucleon potential. We present also a study of the dependence
of shell-model results upon different truncations of the original model spaces, in
order to demonstrate the reliability of this truncation procedure.

Keywords: Nuclear shell model; realistic nucleon-nucleon potentials; effective
interactions

1 Introduction

The nuclear many-body problem is far more computationally complex than other
physical many-body problems because of the nature of the nuclear force. The latter
is responsible for correlations between the constituent particles of the nuclei which are
stronger than the corresponding ones in atomic and molecular systems, giving a hard
life to nuclear microscopic models that take into account single-particle (SP) degrees
of freedom of the nucleons.

Recent advances in computer technology have stimulated the development of ab
initio nuclear structure models which have extended their range of application from
light- to medium-mass nuclei.

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 226.
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For heavier mass nuclei, the nuclear shell model (SM) is still the most profitable
approach to the description of nuclei in terms of microscopic degrees of freedom of
the valence nucleons with respect to the inert core.

As mentioned before, high-performance computing devices are widely accessible
and the SM calculations with large model spaces and for nuclear systems with many
valence nucleons are becoming more feasible. These large-scale shell-model (LSSM)
calculations are at present a formidable tool to describe the collective properties of
atomic nuclei within a microscopic approach and a sound support of experimental
efforts aimed to improve the knowledge of the chart of the nuclides in the rare-ion-
beam era.

In this regard, it is worth to mention, among many works, the study of the onset
of collectivity at N = 40 [1], the revelation of a novel shape evolution in nickel
isotopes [2], the merging of the islands of inversion at N = 20 and N = 28 [3], the
description of shell evolution leading to the quenching of the N = 82 shell gap near
120Sr [4].

However, there exists always an upper limit to the dimension of matrices that
have to be diagonalized to solve the SM eigenvalue problem, in spite of the progress
in the computer technology. Consequently, most of the LSSM calculations need to
introduce some truncation of the SM basis in order to compute theoretical quantities.

In Ref. [1], in order to study the observed onset of collectivity at N = 40 in the
chromium and iron isotopic chains, a LSSM calculation has been performed employing
a model space spanned by the four fp proton orbitals and five fpgd neutron ones,
with 4 and 6 valence protons and up to 12 valence neutrons. In order to diagonalize
the SM Hamiltonian using the NATHAN code [5], the authors have truncated the
basis including up to= 14p−14h excitations across the Z = 28 and N = 40.

The appearance of the shape coexistence in low-energy states of nickel isotopes
[2] has been investigated in terms of the SM considering both proton and neutron
model spaces spanned by six orbitals 0f7/2, 1p3/2, 1p1/2, 0f5/2, 0g9/2, 1d5/2 outside the
doubly-closed 40Ca core. In the m-scheme the dimension of the basis is ≃ 1024, so
in Ref. [2] it has been resorted to the importance sampling of the SM states per-
formed within the Monte Carlo Shell Model (MCSM) approach to reduce the matrix
dimension to 50 [6].

The N = 20 and N = 28 islands of inversion have been described by the LSSM
calculations within the full sdpf model space [3], but the basis has been restricted so
that only the neutron N = 20 cross-shell excitations have been taken into account.
In such a case, the SM basis has a dimensionality of up to 1010.

In Ref. [4], the authors aim to study the evolution of the neutron N = 82 shell
gap along the isotonic chain by way of the LSSM calculations. They have employed a
model space spanned by proton orbitals 0f5/2, 1p3/2, 1p1/2, 0g9/2, 0g7/2, 1d5/2, and 7
neutron orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2, 1f7/2, 2p3/2, which allow core excita-
tions across both the N = 82 neutron and Z = 50 proton shell gaps. In such a case,
the diagonalization of the SM Hamiltonian could be performed only by truncating
the basis so to allow only one valence-neutron in the 1f7/2, 2p3/2 neutron orbitals.

These examples show how the calculations for nuclei with many valence nucle-
ons — within large model spaces — are very demanding from the computational
point of view, and oblige the researchers in many situations to employ some trunca-
tion of the SM basis.

However, whenever the number of valence particle increases, we should consider
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also an evolution of theoretical effective SP energies (ESPE) of the SM Hamiltonian.
This evolution of the behavior of the ESPE as a function of the number of valence

protons or neutrons may be helpful to locate the relevant degrees of freedom to de-
scribe the spectroscopy of a class of isotopes or isotones, and consequently to provide
a criterion to reduce the degrees of freedom of the model space.

In a recent work [7], we have proposed a method, already employed in Ref. [8],
to perform a very effective truncation of the model space, based on the study of the
ESPE of the SM Hamiltonian H as a function of Zval and/or Nval. Next, a new SM
Hamiltonian H̃ defined in a reduced model space with a smaller number of orbitals,
is built up through an unitary transformation of the “mother Hamiltonian” H .

Here, as an application of this method, we will report some results obtained for
Mo isotopes outside the closed-shell nucleus 88Sr.

The “mother Hamiltonian” H is derived from the CD-Bonn potential [9], whose
high-momentum repulsive components are smoothed out using the Vlow−k approach
[10], utilizing the time-dependent perturbation theory [11]. This will be done within
a large model space that includes seven psdgh proton and five sdgh neutron orbitals.

At the following step, the behavior of the proton and neutron ESPE as a function
of the number of valence neutrons and protons is analyzed. The study of the ESPE
suggests how to reduce the number of proton and neutron orbitals. After this, we
derive — by means of a unitary transformation of the starting SM Hamiltonian —
new effective Hamiltonians defined in the reduced model spaces and tailored to study
specific isotopic chains. Finally, the SM calculations with these effective Hamiltonians
are performed and the theoretical results are compared.

In the following Section, we present some details about the derivation of our shell-
model Hamiltonians and effective charges of the electric quadrupole operators, and
how we derive the new effective Hamiltonians within the truncated model spaces.
In Section 3, we report the results of our calculations for Mo isotopes starting from
different model spaces. Finally, we summarize our results in the final Section.

2 Outline of calculations

The first step in our procedure is the derivation from the CD-Bonn NN potential [9] of
a starting effective SM Hamiltonian in the framework of the many-body perturbation
theory. More explicitly, we first renormalize high-momentum repulsive components
of the bare NN potential using the so-called Vlow−k approach [10], which provides
a smooth potential preserving exactly the on-shell properties of the original NN
potential up to a cutoff momentum Λ = 2.6 fm−1. Next, the SM Hamiltonian is
derived using the well-known Q̂-box plus folded-diagram method, where the Q̂-box
is a collection of irreducible valence-linked Goldstone diagrams which we calculate
through the third order in the Vlow−k [11].

The effective Hamiltonian Heff can be written in an operator form as

Heff = Q̂− Q̂′

∫
Q̂ + Q̂′

∫
Q̂

∫
Q̂− Q̂′

∫
Q̂

∫
Q̂

∫
Q̂ + ... , (1)

where the integral sign represents a generalized folding operation, and Q̂′ is obtained
from Q̂ by removing the terms of the first order in Vlow−k. The folded-diagram series
is summed up to all orders using the Lee–Suzuki iteration method [12].
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The effective Hamiltonian Heff provides both the SP energies and two-body ma-
trix elements of the residual interaction [11], and we can derive consistently, within
the same perturbative approach, the effective operators Ôeff (e. g., electromagnetic
operators, Gamow–Teller transition operator) whose effects we want to study.

Both Heff and Ôeff are defined in a large model space labelled [Np, Nn], where Np

and Nn are the numbers of proton and neutron orbitals spanning the model space,
respectively. Therefore, for the sake of clarity, we dub the effective Hamiltonian and
the effective operators as HNpNn and ÔNpNn.

As mentioned in the Introduction, in the case of large model spaces, the major
computational difficulties arise when evolving the number of the valence protons Zval

(isotonic chains) and/or of the valence neutrons Nval (isotopic chains) makes the
calculation unfeasible with up-to-date SM codes. It is then mandatory to reduce the
complexity of the SM problem to be solved.

In the following we describe an approach that we have adopted with success in
Refs. [7, 8], which leads to new effective Hamiltonians defined in truncated model
spaces by way of a unitary transformation of HNpNn . The choice of the truncated
model space, [np, nn], is driven by the analysis of the behavior, as a function of Zval

and Nval, of the proton and neutron ESPE of the original Hamiltonian HNpNn so as
to find out what are the most relevant degrees of freedom to describe the physics of
nuclear systems of interest.

Here we describe the derivation of the new SM effective Hamiltonian Hnpnn start-
ing from the “mother Hamiltonian” HNpNn.

The eigenvalue problem for HNpNn can be written in terms of its eigenvalues Ei

and eigenfunctions ψi,
HNpNn |ψi〉 = Ei|ψi〉, (2)

where HNpNn may be expressed as the sum of a SP Hamiltonian H0 and a residual
two-body potential V :

HNpNn = H0 + V. (3)

As it has been mentioned before, the analysis of the behavior of the ESPE in-
duces a possible reduction of the number SP orbitals that span the model space. The
original model space [NpNn] is then split up into two subspaces defined by the pro-
jectors P ≡ Pnpnn and Q ≡ QNp−np,Nn−nn, with the projector P expressed in terms
of the H0 eigenvectors

P =
∑

i=1,d

|i〉〈i|, H0|i〉 = E0
i |i〉. (4)

The P -space effective Hamiltonian Hnpnn is defined by the equation

Hnpnn |φk〉 = (PHoP + V npnn) |φk〉 = Ek|φk〉, (5)

where we require that the eigenfunctions φk are the projections of the eigenfunc-
tions ψk of the “mother Hamiltonian”,

|φk〉 = P |ψk〉.

Formally, we can express Hnpnn as

Hnpnn =

d∑

k=1

Ek|φk〉〈φ̃k|, (6)
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where |φ̃k〉 are the |φk〉 biorthogonal states satisfying |φ̃k〉〈φk′ | = δkk′ and obtained
using the Schmidt biorthonormalization procedure.

The effective residual interaction V npnn can therefore be expressed as

V npnn =

d∑

k=1

Ek|φk〉〈φ̃k| − PH0P. (7)

The knowledge of the eigenvalues and eigenfunctions of HNpNn is therefore essen-
tial to derive explicitly the effective Hamiltonian Hnpnn.

Let us now briefly describe the derivation of the P -space effective operator Ônpnn.
By definition, Ônpnn has to satisfy the following condition

〈Ψk|ÔNpNn |Ψk′〉 = 〈φ̃k|Ônpnn |φk′〉, (8)

where ÔNpNn is the operator defined in the starting large model space. By analogy
with what we have done for the Hamiltonian, we can express Ônpnn formally as

Ônpnn =

d∑

α,β=1

〈Ψα|ÔNpNn |Ψβ〉|φα〉〈φ̃β |. (9)

It can be easily shown that the above expression satisfies Eq. (8). The knowledge of
the 〈Ψk|ÔNpNn |Ψk′〉 matrix elements is therefore essential for the explicit derivation
of the effective operator Ônpnn.

It is worth to point out that when solving the HNpNn eigenvalue problem for
a Aval valence-nucleon system, the corresponding effective Hamiltonian Hnpnn and
effective operator Ônpnn contain 1-body, 2-body, ... , Aval-body contributions. To
our knowledge, however, there are no public SM codes able to handle either these
n-body forces with n ≥ 3 or the effective operator n-body contributions with n ≥ 2.
Therefore, we have applied the above transformation only to the two valence-nucleon
systems, thus obtaining only two-body matrix elements of Hnpnn , while we have taken
into account only the one-body component of Ônpnn.

3 Results of SM calculations

As already mentioned in the Introduction, we considered for calculations outside the
88Sr core the model space spanned by seven proton 1p1/2, 0g9/2, 0g7/2, 1d5/2, 1d3/2,
2s1/2, 0h11/2 and five neutron 0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2 orbitals. Hereafter
this model space will be labelled [75]. In accord with notations introduced in the
previous Section, the respective SM effective Hamiltonian is dubbed H75, the su-
perscript referring to the number of proton (seven) and neutron (five) model-space
orbitals. This large model space is able to take explicitly into account the Z = 50
cross-shell excitations of protons jumping from the 1p1/2, 0g9/2 orbitals to the sdgh
ones.

We report in Table 1 the calculated SP energies and in Table 2 the theoretical
proton and neutron effective charges, the latter being close to the usual empirical
values (eemp

p = 1.5e, eemp
n = 0.5−0.8e).

The trouble with the SM Hamiltonian H75 is the computational complexity which
arises when the atomic number Z of the isotopic chain under investigation is evolved.
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Table 1: Theoretical SM SP energy
spacings (in MeV) (see text for details).

nlj
proton

SP energies
neutron

SP energies

1p1/2 0.0
0g9/2 1.5
0g7/2 5.7 1.5
1d5/2 6.4 0.0
1d3/2 8.8 3.4
2s1/2 8.7 2.2
0h11/2 10.2 5.1

Table 2: Proton and neutron effective
charges of the electric quadrupole oper-
ator E2.

nalaja nblbjb 〈a||ep||b〉 〈a||en||b〉
0g9/2 0g9/2 1.53
0g9/2 0g7/2 1.58
0g9/2 1d5/2 1.51
0g7/2 0g9/2 1.77
0g7/2 0g7/2 1.84 1.00
0g7/2 1d5/2 1.84 0.98
0g7/2 1d3/2 1.86 0.98
1d5/2 0g9/2 1.59
1d5/2 0g5/2 1.73 0.92
1d5/2 1d5/2 1.73 0.87
1d5/2 1d3/2 1.71 0.90
1d5/2 2s1/2 1.76 0.73
1d3/2 0g7/2 1.83 0.94
1d3/2 1d5/2 1.79 0.93
1d3/2 1d3/2 1.81 0.92
1d3/2 2s1/2 1.83 0.75
2s1/2 1d5/2 1.73 0.73
2s1/2 1d3/2 1.73 0.73

0h11/2 0h11/2 1.89 0.87

For example, this Hamiltonian cannot be diagonalized for any tin isotope with up-to-
date SM codes.

In order to apply the procedure reported in Section 2, we study the evolution of
both proton and neutron ESPE as a function of Zval which are reported in Figs. 1
and 2.

In Fig. 1, it can be observed that a well-defined separation between the proton
subspaces [1p1/2, 0g9/2, 1d5/2, 0g7/2] and [2s1/2, 1d3/2, 0h11/2] is provided by an almost
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Figure 1: Calculated proton ESPE
of H75 as a function of the number
of valence protons Zval.
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Figure 2: Calculated neutron
ESPE of H75 as a function of the
number of valence protons Zval.

constant energy gap, leading to the conclusion that we can truncate the proton model
space to the lowest four orbitals only.

On the neutron side, Fig. 2 evidences that the filling of the proton 0g9/2 orbital
induces a relevant energy gap at Z = 50 between the [1d5/2, 0g7/2] subspace and
the [2s1/2, 1d3/2, 0h11/2] one. On the above grounds, it looks reasonable to investigate
the neutron model space spanned only by the 1d5/2 and 0g7/2 orbitals.

Following the procedure reported in Section 2, we have derived two new effective
Hamiltonians H45

eff and H42
eff defined within two model spaces [45] and [42] consisting

of the proton 1p1/2, 0g9/2, 1d5/2, 0g7/2 and of the neutron 0g7/2, 1d5/2, 1d3/2, 2s1/2,
0h11/2 and 0g7/2, 1d5/2 orbitals, respectively. To verify the reliability of our truncation
scheme, we consider the Mo isotopes, more precisely 92,94,96Mo, whose Hamiltonians
may be diagonalized within the [7, 5] model space.

In Fig. 3 we compare the absolute energies of yrast J = 0+, 2+, 4+ states in
92,94,96Mo obtained by means of the above mentioned effective SM Hamiltonians. It
can be noted that both H45

eff and H42
eff are able to reproduce quite well the absolute

energies of the “mother Hamiltonian” H75.

It should be also pointed out that, for 96Mo, H42
eff reproduces nicely the 2+ exci-

tation energy but underestimates the collectivity predicted by the “mother Hamilto-
nian”. In fact, the R4/2 ratio between the calculated excitation energies of the 4+

versus 2+ states equal to 2.0 with H75 and H45
eff , drops to 1.6 when evaluated with H42

eff .

As a matter of fact, from the inspection of Fig. 2, we should not expect the H42
eff results

to be in a good agreement with those from H75 since there is no a clear separation of
the model space P from its complement Q for Zval = 4 (Mo isotopes).

The above results evidence the adequacy of our truncation scheme when it is
grounded on a neat separation of the model space P from its complement Q as
depicted by the ESPE behavior (see Figs. 1 and 2).

As regards the calculation of the E2 transition rates using the effective charges de-
rived consistently from the theory, we obtain, for 92Mo, B(E2; 2+1 → 0+1 ) = 148 e2fm4

with H75
eff and 160 e2fm4 with H45,42

eff . For 94Mo, the calculated result with H75
eff is

B(E2; 2+1 → 0+1 ) = 381 e2fm4, 323 e2fm4 with H45
eff , and 231 e2fm4 with H42

eff . Finally,

in the case of 96Mo, B(E2; 2+1 → 0+1 ) = 487 e2fm4 with H75
eff , 451 e2fm4 with H45

eff , and

244 e2fm4 with H42
eff . It is evident that a faster degradation of the original E2 transi-

tion rate reproduction occurs when employing the [4, 2] model space as compared to
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that calculated within the [7, 5] model space.
As pointed out at the end of Section 2, in order to preserve exactly also the

calculated transition rates for the two-valence nucleon systems when dealing with the
effective Hamiltonians Hpn, the effective E2 operator should be further renormalized
to take into account the neglected degrees of freedom. In this way, one would obtain
an effective two-body E2 operator to be employed to calculate the electric quadrupole
properties of the systems with a number of valence nucleons larger than two. As a
consequence, the eventual observed discrepancy between the E2 properties calculated
with H75 and those with the effective Hamiltonians H42

eff is a signature of the fact
that the corresponding H75 wave functions have relevant components outside the
truncated [42] model space.

4 Summary

In this paper we have reported on a double-step approach to simplify the computa-
tional problem of large-scale SM calculations. The method is based on the study of the
ESPE of the large-scale Hamiltonian to identify the most relevant degrees of freedom
to be taken into account in the construction of a truncated SM Hamiltonian. To this
end, a unitary transformation is employed to derive new effective SM Hamiltonians
defined within a reduced set of SP orbitals, accordingly to the ESPE analysis.

This procedure has been applied to a realistic SM Hamiltonian within a model
space designed to describe the Z = 50 cross-shell excitations for nuclei outside 88Sr
by employing seven proton and five neutron orbitals. The behavior of the proton
and neutron ESPE allows to identify two truncated model spaces made up by four
proton orbitals and five or two neutron ones, and we have transformed our original
Hamiltonian in these subsets.

As a test case, we have performed the calculations for Mo isotopes to check the
reliability of our procedure. The results obtained with the effectively truncated Hamil-
tonians testifies the ability to reproduce the eigenvalues and electromagnetic transition
rates of the original SM Hamiltonian when the ESPE provide a neat separation in
energy between the new model subspaces and their complement.

We are confident that this double-step approach may provide a reliable truncation
procedure in any large-scale SM calculation and a theoretical tool that may be ap-
plied in other regions where large model spaces lead to critical situations due to the
computational complexity, especially when increasing the number of valence nucleons.
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Abstract

In the asymptotic region Ω0 (large hyperradius), the two-electron contin-
uum wave function presents formally a logarithmic phase term corresponding
to the electron-electron interaction. The idea of this contribution is to include
this phase into a Convoluted Quasi Sturmian (CQS) basis whose elements al-
ready behave asymptotically as an outgoing (incoming) six-dimensional spheri-
cal wave. With an appropriately introduced phase factor, the new CQS possess
an asymptotic form very close to the formal one, and hopefully constitute a suit-
able set of basis functions for the three-body Coulomb continuum wave function
representation in the entire space. As demonstrated numerically by solving a
first order (e, 3e) non-homogeneous Schrödinger equation in a two-channel case,
a considerable improvement of the convergence rate is observed with a simple
two-parameter form of the introduced phase factor.

Keywords: Ionization of atoms; three-body Coulomb continuum; three-body
wave function asymptotic behavior

1 Introduction

The continuum spectrum of three charged particles is notoriously difficult to describe.
In atomic or molecular ionization problems imposing cumbersome boundary condi-
tions, the wave function should obey constituents of these conditions of primary math-
ematical and numerical difficulties. Besides, the long range nature of the Coulomb
interaction implies solving Schrödinger equation on relatively large spatial domains
and hence requires to use large basis sets and a high computational cost. Ideally, such
a domain should be extended up to the boundary of the asymptotic region where all
three particles are well separated. In real calculations, however, the domain size is
not known in advance, even though the general boundary condition form has been ob-
tained in Ref. [1]. As a general rule, the convergence rate of basis function expansion
reflects its capacity in building up adequately the intricate asymptotic behavior.

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 236.
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For the sake of simplicity, hereafter we consider the two-electron continuum asso-
ciated with the problem of two electrons with coordinates r1 and r2 escaping in the
field of a nucleus of charge Z. Such a state may arise as a results of a single or double
ionization of atoms or molecules by a charged projectile or by a photon.

A few ab initio methods (see, e. g., the review [2] and Introduction of Ref. [3])
have been and are being developed for constructing numerically three-body contin-
uum wave functions. Two of them convert the ionization problem into an inhomo-
geneous differential equation with a spatially confined driven term, equation that
is solved within a finite size box. The exterior complex scaling (ECS) method [4]
makes it possible to solve the problem without explicit use of the asymptotic form of
the wave function by recasting the original problem into a boundary problem with
zero boundary conditions. An interesting extension of ECS to the case of long-range
Coulomb interaction has been proposed in Refs. [5–7]. The generalized Sturmian
approach [8, 9] makes use of an expansion in terms of products of two single-particle
generalized Sturmian functions with Coulomb outgoing-wave boundary conditions set
at the box border; the angular coupling builds up a three-body scattering solution
with a hyperspherical wave front in the Ω0 region where all inter-particle distances
are large. On the other hand, within the convergent close coupling method [10–12],
the ionization problem is treated using a finite set of square integrable single-particle
functions; in this case, accurate boundary conditions need not be imposed. Alterna-
tive approaches are provided by the Coulomb–Sturmian separable expansion [13, 14]
and the J-matrix [15, 16] methods which deal with the wave function in the entire
space using the Laguerre basis representation; the two-electron continuum problem is
transformed in this case into a Lippmann–Schwinger equation with a kernel which is
generally non-compact, and thus the validity of these approaches may be questionable.

In this contribution, we would like to put forward an alternative approach to the
two-electron continuum representation in the entire space. The key idea is to use a
basis set of functions with asymptotic behavior as close as possible to the formal one
in the Ω0 region [1, 17]. Our principal goal is to show that the adequate asymptotic
property leads to an acceptable convergence rate for expansions in such a basis.

The proposed basis set contains two ingredients. First, it uses two-particle func-
tions named Convoluted Quasi Sturmians (CQS) in Ref. [3] behaving asymptotically
as a six-dimensional outgoing (incoming) spherical wave. This means that, contrary
to pure products of single-particle functions, the basis functions already possess intrin-
sically some three-body features. However truncated expansions in CQS functions fail
to converge satisfactorily. The reason behind that is the lack of an important term

in the large hyperradius
(
ρ =

√
r21 + r22

)
domain, the Coulomb logarithmic phase

corresponding to the inter-electronic interaction. This brings us to the second ingre-
dient, which is the introducing — from the outset — of an appropriate phase factor
into the basis set. The modified CQS functions possess an asymptotic behavior closer
to the formal one, and lead to a considerable convergence improvement in numerical
results. We have already mentioned that, when dealing with the Coulomb three-body
scattering problem, we do not know a priori the size of the finite domain in which
one needs to solve the corresponding driven Schrödinger equation. With the modified
CQS basis, we know however that the functions satisfy the equation in the asymp-
totic region Ω0, and thus the size of this domain is determined by the range of the
‘perturbation’ operator (at least of its basis-independent part) induced by the phase
factor.
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As we focus on the region Ω0, we consider as a numerical test case the double
ionization channel of helium atom in kinematical conditions measured experimentally
[18]. In our previous paper [3] we analyzed the feasibility of the proposed approach
within the Temkin–Poet framework. Here we extend the study by including higher
partial waves. We first investigate the compatibility of introducing the phase factor
when using truncated expansions to solve the Schrödinger driven equation in the
entire space. Then, we use a simple two-parameters form of the introduced phase
factor to demonstrate that a satisfactory convergence rate can be achieved indeed.

Atomic units (~ = e = me = 1) are used throughout unless otherwise stated.

2 Problem statement

The first order treatment of ionization of atoms can be recast into a driven differential
equation with a square integrable inhomogeneity. For example, in the case of the
double ionization of helium by photon impact or by impact of a fast charged projectile,
the inhomogeneous Schrödinger equation takes the form

[
E − Ĥ

]
Φ(+)(r1, r2) = Ŵfi(r1, r2) Φ(0)(r1, r2), (1)

where E =
k2
1

2 +
k2
2

2 is the energy of the two ejected electrons with coordinates r1
and r2, Φ(0)(r1, r2) represents the ground state of the helium atom, and the three-
body helium Hamiltonian is given by

Ĥ = Ĥ1 + Ĥ2 +
1

r12
, (2)

Ĥj = −1

2
△rj −

2

rj
, j = 1, 2; (3)

r12 = |r1 − r2| denotes the relative inter-electronic distance. In the case of high
incident electron impact energy, the perturbation operator is given by [9, 19]

Ŵfi(r1, r2) =
1

(2π)3
4π

q2
(−2 + eiq·r1 + eiq·r2), (4)

where ki and kf are the momenta of the incident and scattered electrons, and
q = ki − kf is the transferred momentum. The solution Φ(+) with outgoing wave
boundary condition, contains all information on the scattering dynamics.

In this section we examine the solution of Eq. (1) for given quantum numbers

(L,M) in the space of CQS functions Q
ℓ1ℓ2(+)
n1n2

[3],

|n1ℓ1n2ℓ2;LM〉Q ≡ Q
ℓ1ℓ2(+)
n1n2 (E; r1, r2)

r1r2
Yℓ1ℓ2
LM (r̂1, r̂2), (5)

where the bispherical harmonics are given by

Yℓ1ℓ2
LM (r̂1, r̂2) =

∑

m1+m2=M

(ℓ1m1ℓ2m2 |LM)Yℓ1m1
(r̂1)Yℓ2m2

(r̂2). (6)

The radial CQS functions Q
ℓ1ℓ2(±)
n1n2

satisfy the inhomogeneous equation

[
E − ĥℓ11 − ĥℓ22

]
Qℓ1ℓ2(±)

n1n2
(E; r1, r2) =

ψℓ1
n1

(r1)ψℓ2
n2

(r2)

r1r2
, (7)
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where

ĥℓ = −1

2

∂2

∂r2
+

1

2

ℓ(ℓ+ 1)

r2
− 2

r
, (8)

and
ψℓ
n(r) = [(n+ 1)2ℓ+1]

− 1
2 (2br)ℓ+1e−brL2ℓ+1

n (2br) (9)

are square integrable Laguerre basis functions with a scaling parameter b. A number
of properties of these CQS functions have been obtained in Ref. [3]. For example,
they can be expressed as a convolution integral of two single-particle Quasi Sturmian
functions [20]; using Green’s function, the radial CQS can be expressed through a
contour integral which is useful for deducing the leading asymptotic behavior at large
hyperradius ρ:

Qℓ1ℓ2(+)
n1n2

(E; r1, r2) ≃
√

8

π
e

iπ
4 Sn1ℓ1(p1)Sn2ℓ2(p2)

1√
kρ

× exp

{
i

[
kρ− β1 ln(2p1r1) − β2 ln(2p2r2) + σℓ1(p1) + σℓ2(p2) − π(ℓ1 + ℓ2)

2

]}
,

(10)

where α is the hyperangle, tan(α) = r2/r1; k =
√

2E, p1 = k cos(α), p2 = k sin(α),

β1 = −2
p1

, β2 = −2
p2

, and σℓ(p) = Arg [Γ(ℓ+ 1 + iβ)] is the Coulomb phase shift. Snℓ(p)

is the sine-like J-matrix solution [21] [an explicit expression can be found, e. g., in
Ref. [3], Eq. (14a)].

Assuming that the outgoing solution of Eq. (1) can be expanded as

Φ(+) (r1, r2) =

∞∑

ℓ1, ℓ2=0

∞∑

n1, n2=0

CL(ℓ1ℓ2)
n1n2

|n1ℓ1n2ℓ2;LM〉Q , (11)

we find the formal asymptotic expression

Φ(+)(r1, r2) ≃ A (r̂1, r̂2)
1

ρ5/2
exp {i [kρ− β1 ln(2p1r1) − β2 ln(2p2r2)]}, (12)

A (r̂1, r̂2) =
2

E sin(2α)

√
2

π
(2E)3/4e

iπ
4

×
∞∑

ℓ1ℓ2=0

Yℓ1ℓ2
LM (r̂1, r̂2) exp

{
i

[
σℓ1(p1) + σℓ2(p2) − π(ℓ1 + ℓ2)

2

]}

×
∞∑

n1,n2=0

CL(ℓ1ℓ2)
n1n2

Sn1ℓ1(p1)Sn2ℓ2(p2). (13)

The leading asymptotic behavior of the two-electron continuum wave function is
known [1, 17] to include the Coulomb phase corresponding to the inter-electronic
interaction 1/r12,

W3(r1, r2) = −ρ
k

1

r12
ln (2kρ) . (14)

Expression (12) clearly does not contain such a phase. As observed within a Temkin–
Poet framework [3], this failure leads to a lack of convergence for the proposed CQS
basis. The remedy proposed in Ref. [3] for the S-wave case is extended here to higher
partial waves.
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3 Two-electron continuum representation

In order to describe better the two-electron correlation in the continuum, in particular,
in the Ω0 region, we propose a solution of the form

Φ(+) (r1, r2) = eiW(r1,r2) Φ̃(+) (r1, r2), (15)

where the leading asymptotic form of the phase W is given by Eq. (14). Assuming Φ̃(+)

to be properly expandable in terms of the CQS functions (5),

Φ̃(+)(r1, r2) =
∞∑

ℓ1,ℓ2=0

∞∑

n1,n2=0

C̃L(ℓ1ℓ2)
n1n2

|n1ℓ1n2ℓ2;LM〉Q , (16)

the expression (15) is hereafter referred to as a two-electron continuum (TEC) repre-
sentation of the solution.

Substituting Φ(+) (r1, r2) in Eq. (1) by Eq. (15), we obtain
[
E − Ĥ1 − Ĥ2 + L̂

]
Φ̃(+)(r1, r2) = e−iW(r1,r2) Ŵfi Φ(0)(r1, r2), (17)

where the operator

L̂ =
i

2
[△r1W + △r2W ] − 1

2

[
(∇r1W)

2
+ (∇r2W)

2
]

+ i [(∇r1W) · ∇r1 + (∇r2W) · ∇r2 ] − 1

r12
, (18)

can be eventually treated as a perturbation. Using the gradient operator expres-
sion [22],

∇r =
r

r

∂

∂r
+

1

r
∇Ω, (19)

we present the operator (18) as

L̂ = Û + V̂ , (20)

where

Û =
i

2
[△r1W + △r2W ] − 1

2

[
(∇r1W)2 + (∇r2W)2

]

+ i

[
1

r1
(∇r1W) · ∇Ω1

+
1

r2
(∇r2W) · ∇Ω2

]
, (21)

V̂ = i

[
(∇r1W) · r1

r1

∂

∂r1
+ (∇r2W) · r2

r2

∂

∂r2

]
− 1

r12
. (22)

The operator Û acts only on the bispherical harmonics, and it can be easily verified
that it is a short-range potential. Concerning the operator V̂ , the phase W in the
asymptotic region is given by Eq. (14), an hence at large ρ

∇r1W ≃ − 1

k

{
r1
r12ρ

[1 + ln (2kρ)] − r12
r312

ρ ln (2kρ)

}
, (23)

∇r2W ≃ − 1

k

{
r2
r12ρ

[1 + ln (2kρ)] +
r12
r312

ρ ln (2kρ)

}
. (24)
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Moreover, using the asymptotics of the radial CQS functions (10), we obtain (j = 1, 2):

∂

∂rj
|n1ℓ1n2ℓ2;LM〉Q ≃ ik

rj
ρ
|n1ℓ1n2ℓ2;LM〉Q . (25)

Finally, by applying the operator (22) to Eq. (5) and taking into account Eqs. (23)

and (25), we conclude that V̂ acts upon these basis functions as a short-range potential
that vanishes faster than ρ−1 in the limit ρ → ∞. Thus the operator (18) may be
treated as a perturbation and therefore the expansion (16) of the solution in our TEC
representation is expected to converge.

The following issue has to be taken into account. Although the use of the phase
factor allows one to take care of the Coulomb potential 1/r12, we cannot employ
Eq. (14) directly because singular terms 1/r312 and 1/r412 appear in Eq. (21). However,
this difficulty can be easily circumvented by using in both the Hamiltonian and the
phase factor a truncated multipole expansion,

V12 =

λmax∑

λ=0

(
rλ<

rλ+1
>

)
Pλ(x), (26)

x =
r21 + r22 − r212

2r1 r2
, (27)

instead of 1/r12. In Ref. [3] we considered only the λ = 0 case (Temkin–Poet model).

4 Two-channel case

As an illustration, we compare below the functions Φ(+) and Φ̃(+) by solving the

inhomogeneous Eq. (1). More precisely, we consider the truncated expansions of Φ
(+)
N

and Φ̃
(+)
N containing N×N terms and compare their convergence rate as N increases.

For test purposes, we consider the case of zero total angular momentum, L = M = 0,
and, for simplicity, we retain in the partial-wave expansions in Eqs. (11) and (16)
only two bispherical terms Y00

00 and Y11
00 . Hence it is sufficient to retain the first three

multipole terms in Eq. (26).

We solve Eq. (1) with the initial helium ground state wave function in the driven
term given by the product of hydrogen functions (with Ze = 2 − 5/16), and we
set E = 0.791 (i. e., 20 eV) and q = 0.24, as in one of the Orsay experiments [18] (see
also Ref. [19]). The scale parameter of the CQS basis is chosen to be b = 0.6.

Consider first the expansion

Φ
(+)
N (r1, r2) =

∑

ℓ=0,1

N−1∑

n1,n2=0

Cℓ
n1n2

|n1ℓn2ℓ; 00〉Q . (28)

With the help of Eq. (7) we rewrite Eq. (1) as

∑

ℓ=0,1

N−1∑

n1,n2=0

Cℓ
n1n2

[
1

r1r2
|n1ℓn2ℓ; 00〉L − 1

r12
|n1ℓn2ℓ; 00〉Q

]
= Ŵfi Φ(0)(r1, r2), (29)
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Figure 1: Convergence of the amplitudes Aℓ
N (filled symbols) and Ãℓ

N (open symbols)
for α = π

4 and ℓ = 0, 1. We present separately the results for the arguments Arg
(
Aℓ

N

)

and Arg
(
Ãℓ

N

)
(left panel) and absolute values

∣∣Aℓ
N

∣∣ and
∣∣Ãℓ

N

∣∣ (right panel).

where the coupled Laguerre basis functions

|n1ℓ1n2ℓ2;LM〉L ≡ ψℓ1
n1

(r1)ψℓ2
n2

(r2)

r1 r2
Yℓ1ℓ2
LM (r̂1, r̂2). (30)

We obtain a matrix equation for the coefficients Cℓ
n1n2

(see, e. g., Ref. [23]) by pro-
jecting Eq. (29) onto the basis set (30) and making use of the orthogonality relation

L〈n′
1ℓ

′
1n

′
2ℓ

′
2;LM | 1

r1r2
|n1ℓ1n2ℓ2;LM〉L = δn′

1
n1
δn′

2
n2
δℓ′

1
ℓ1 δℓ′2ℓ2 . (31)

The asymptotic behavior of the proposed solution is given by Eq. (12) where the
amplitude

A (r̂1, r̂2) =
∑

ℓ=0,1

Aℓ
N Yℓℓ

00(r̂1, r̂2) (32)

is expressed in terms of partial amplitudes

Aℓ
N =

2

sin(2α)

√
8

π
e

iπ
4 k−1/2 exp {i [σℓ(p1) + σℓ(p2) − πℓ]}

×
N−1∑

n1,n2=0

Cℓ
n1n2

Sn1ℓ(p1)Sn2ℓ(p2). (33)

The amplitudes Aℓ
N for α = π

4 and ℓ = 0, 1 are shown in Fig. 1 as functions of N
(filled symbols). A poor convergence of both the argument Arg

(
Aℓ

N

)
and the absolute

value
∣∣Aℓ

N

∣∣ clearly demonstrates a limited practical usefulness of the expansion (28).
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Consider now the solution Φ̃(+) in the TEC representation given by the truncated
expansion

Φ̃
(+)
N (r1, r2) =

∑

ℓ=0,1

N−1∑

n1,n2=0

C̃ℓ
n1n2

|n1ℓn2ℓ; 00〉Q . (34)

Upon substitution into Eq. (17) we find

∑

ℓ=0,1

N−1∑

n1,n2=0

[
1

r1r2
|n1ℓn2ℓ; 00〉L + L̂ |n1ℓn2ℓ; 00〉Q

]
C̃ℓ

n1n2

= e−iW(r1,r2) Ŵfi Φ(0)(r1, r2). (35)

This equation should be solved in the same manner as Eq. (29) to obtain the expansion

coefficients C̃ℓ
n1n2

.
We have seen how the leading asymptotic form of the phase W given by Eq. (14)

determines the features of the operator (18) acting on the CQS basis functions in
the region Ω0. There is no need to reproduce precisely the r.h.s of Eq. (14) since it
is asymptotical. On the other hand, we have to ensure the regularity at the origin

of the L̂ operator representation. Apart from this constraint, we are free to modify

properties of L̂ at moderate distances by including higher order terms in W with
the aim to optimize the basis set. We use the following phase parametrization (note,
various other parametrizations can be also explored):

W(r1, r2) = − s

k
[ln(2ks) + d]

(
1

u
+
r1 r2
u3

P1(x) +
(r1r2)2

u5
P2(x)

)
, (36)

u =
√
a2 + r2>, s =

√
c2 + ρ2, (37)

where real positive parameters a and c are introduced to avoid singularities at the
origin (for simplicity we set c2 = a). We have also introduced a real parameter d that
allows one to improve the convergence rate of expansion (34). The results presented
below are obtained with a = 5 and d = −4.75.

Let us now come back to the proposed truncated expansion (34). The asymptotic

behavior of Φ̃
(+)
N is still given by Eq. (12) with the amplitude A (r̂1, r̂2) which should

be calculated using Eq. (32) where the partial amplitudes Aℓ
N should be replaced by

Ãℓ
N =

2

sin(2α)

√
8

π
e

iπ
4 k−1/2 exp {i [σℓ(p1) + σℓ(p2) − πℓ]}

×
N−1∑

n1,n2=0

C̃ℓ
n1n2

Sn1ℓ(p1)Sn2ℓ(p2). (38)

The convergence behavior of Ãℓ
N is shown in Fig. 1 (open symbols). As expected,

the rate and smoothness of convergence are considerably improved by the TEC repre-
sentation. This result demonstrates numerically that the inclusion of an appropriate
phase factor into the basis functions is able to adequately absorb the leading asymp-
totic effect of the electron-electron interaction.
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5 Summary

In our previous publication [3], we have proposed the phase factor method as a new
approach to double ionization problems represented by the three-body driven equation
with a square integrable inhomogeneity. Specifically, we tried to solve the S-model
equation describing the fast electron impact double ionization of helium by expanding
the solution in terms of the so-called Convoluted Quasi Sturmian functions. Since the
asymptotic behavior of these functions is inconsistent with that of formal Coulomb
three-body continuum states, the CQS basis cannot represent the solution in the entire
space. Even worse, we have found out that our solution diverges as the basis size
increases. In order to circumvent this failure, and thus to improve the convergence
rate, we have suggested equipping the basis CQS functions with the phase factor
corresponding to the inter-electronic interaction. Within the S-wave framework, this
strategy has been demonstrated to be successful.

In this paper an extension of the phase factor approach of Ref. [3] to arbitrary
angular momenta is proposed. Since the phase factor is intended to account for the
inter-electronic Coulomb interaction, it is natural to use the same truncated multipole
expansion of 1/r12 in the generalized phase as employed to approximate this poten-
tial in the Hamiltonian. We examine the validity of our modified CQS approach in a
two-channel case by constructing a suitable formula for the phase. The inclusion of
higher order terms in 1/ρ in the leading asymptotic behavior, results in a significant
convergence acceleration of the calculated amplitudes. We also demonstrate the con-
vergence rate of the solution expansion to be rather sensitive to the phase behavior
at moderate distances; optimized parameters (only two in our case) can therefore
improve the efficiency of the basis. We expect the CQS basis combined with the pro-
posed phase method to provide an efficient tool for the studies of full (e, 3e) processes
as well.
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[7] E. Yarevsky, S. L. Yakovlev, Å. Larson and N. Elander, J. Phys. B 48, 115002
(2015).

[8] G. Gasaneo, L. U. Ancarani, D. M. Mitnik, J. M. Randazzo, A. L. Frapiccini and
F. D. Colavecchia, Adv. Quant. Chem. 67, 153 (2013).

[9] M. J. Ambrosio, F. D. Colavecchia, G. Gasaneo, D. M. Mitnik and L. U. Ancar-
ani, J. Phys. B 48, 055204 (2015).

[10] I. Bray and A. T. Stelbovics, Phys. Rev. Lett. 69, 53 (1992).

[11] I. Bray, D. V. Fursa, A. Kheifets and A. T. Stelbovics, J. Phys. B 35, R117
(2002).

[12] A. S. Kadyrov, A. M. Mukhamedzhanov, A. T. Stelbovics and I. Bray, Phys.
Rev. A 70, 062703 (2004).

[13] Z. Papp, C.-Y. Hu, Z. T. Hlousek, B. Kónya and S. L. Yakovlev, Phys. Rev. A
63, 062721 (2001).

[14] Z. Papp, J. Darai, C.-Y. Hu, Z. T. Hlousek, B. Kónya and S. L. Yakovlev, Phys.
Rev. A 65, 032725 (2002).

[15] S. A. Zaytsev, V. A. Knyr, Yu. V. Popov and A. Lahmam-Bennani, Phys. Rev.
A 75, 022718 (2007).

[16] M. S. Mengoue, M. G. Kwato Njock, B. Piraux, Yu. V. Popov and S. A. Zaytsev,
Phys. Rev. A 83, 052708 (2011).

[17] M. R. H. Rudge, Rev. Mod. Phys. 40, 564 (1968).

[18] A. Lahmam-Bennani, I. Taouil, A. Duguet, M. Lecas, L. Avaldi and J. Berakdar,
Phys. Rev. A 59, 3548 (1999).

[19] G. Gasaneo, D. M. Mitnik, J. M. Randazzo, L. U. Ancarani and F. D. Colavec-
chia, Phys. Rev. A 87, 042707 (2013).

[20] J. A. Del Punta, M. J. Ambrosio, G. Gasaneo, S. A. Zaytsev and L. U. Ancarani,
J. Math. Phys. 55, 052101 (2014).

[21] A. D. Alhaidari, E. J. Heller, H. A. Yamani and M. S. Abdelmonem (eds.), The
J-matrix method. Developments and applications. Springer, 2008.

[22] D. A. Varshalovich, A. N. Moskalev and V. K. Khersonskii, Quantum theory of
angular momentum. World Scientific, Singapore, 1988.

[23] M. S. Aleshin, S. A. Zaitsev, G. Gasaneo and L. U. Ancarani, Izv. Vyssh. Uchebn.
Zaved. Fiz. 58, No 7, 62 (2015) [Russ. Phys. J. 58, 941 (2015)].



Highlights from the 17-Year Heavy Ion Program

at the PHENIX Experiment at RHIC

John C. Hill
for the PHENIX Collaboration

Department of Physics and Astronomy, Iowa State University, Ames, IA 50011, USA

Abstract

A review is given of evidence from particle yields, elliptic flow and temper-
ature measurements that a Quark Gluon Plasma (QGP) has been formed in
relativistic collisions of heavy Au + Au nuclei. PHENIX studies of d +Au and
3He + Au collisions at 200 GeV/A were carried out to see if such correlations
persist at lower energies compared to those at the LHC. Data from Au + Au
collisions collected during the beam energy scan (BES) were used to determine
both quark and nucleon number scaling. The HBT method was used to de-
termine radii of the nuclear fireball at kinetic freeze out. Implications for the
nuclear Equation of State (EoS) are discussed. After taking data starting in
the year 2000 PHENIX was shut down in 2016. Plans for its successor named
sPHENIX will be briefly discussed.

Keywords: RHIC; PHENIX; nuclear modification factor RAA; elliptic flow;
QGP temperature; d+Au; 3He + Au; HBT; sPHENIX

1 Introduction

The Relativistic Heavy Ion Collider (RHIC) was built at Brookhaven National Lab-
oratory (BNL) and collisions of beams of 130 GeV/A Au nuclei were observed in
June 2000. PHENIX and STAR are two large detector systems built to study these
collisions. In the summer of 2001 experiments with collisions of Au beams at the
full RHIC energy of 200 GeV/A were studied. After extensive analysis of the results
of runs from the years 2000 to 2004 a white paper [1] was published where evidence
was given for the production of a Quark Gluon Plasma (QGP). The plasma was des-
ignated sQGP in illusion to the strong coupling observed. In addition the sQGP
behaved not as a gas as many expected but like a liquid with almost zero viscosity,
the so called “perfect liquid”. In 2010 the collisions of Pb nuclei were observed at
the Large Hadron Collider (LHC) at a much higher energy density than at RHIC.
This talk first discusses the suppression of particles in the hot dense nuclear medium
created at RHIC which gives evidence that the QGP is strongly coupled. Next evi-
dent for flow of the QGP indicates that the plasma acts like a liquid rather than a

Proceedings of the International Conference ‘Nuclear Theory in the Supercom-
puting Era — 2016’ (NTSE-2016), Khabarovsk, Russia, September 19–23, 2016.
Eds. A. M. Shirokov and A. I. Mazur. Pacific National University, Khabarovsk,
Russia, 2018, p. 246.

http://www.ntse-2016.khb.ru/Proc/Hill.pdf.
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gas. A description of recent measurements at PHENIX to measure the temperature
of the QGP are presented. Results of measurements made at RHIC on d + Au and
3He + Au systems to determine if long-range correlations exist in small systems will
be presented. Results of the low energy scan of Au + Au collisions and HBT mea-
surements of the radius of the nuclear fireball at freeze out will be given. Finally a
short discussion of future experiments possible with the upgrade of PHENIX entitled
sPHENIX will be presented followed by the conclusions.

2 Particle suppression in the QGP

In order to produce a QGP you need not only high energies but large volumes (times
of the order of magnitude of 10 fm/c and 3–10 times normal nuclear density). This
is necessary to sustain high energy densities and temperatures for an adequately long
period of time. In the initial collision products of hard scattering are created followed
by the creation of large numbers of quarks and gluons out of the vacuum resulting
in a dense partonic medium. This medium can initially be the QGP but as it cools
and expands it evolves into a hadronic gas. For 200 GeV/A Au collisions of the order
of 104 particles are created. In order to study the properties of the QGP, particles that
traverse the hot dense medium serve as a probe of its properties. For these studies of
the properties of the medium we introduce a Nuclear Modification Factor RAA.

14
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Figure 1: Plots showing RAA for the 0 to 10 percent most central 200 GeV/A Au + Au
collisions for a wide variety of mesons, protons and direct photons at particle trans-
verse momenta up to 19 GeV/c. Note the large suppression of hadrons but not direct
photons.



248 John C. Hill for the PHENIX collaboration

R
A
A

(4
<
p
T
<

6
G

eV
/
c)

Npart

Au+Au, π0, |η| < 0.35
√
sNN=39 GeV

√
sNN=62.4 GeV

√
sNN=200 GeV

1.5

1.0

0.5

0

0 100 200 300 400

R
A
A

(p
T
>

6
G

eV
/
c)

Npart

Au+Au, π0, |η| < 0.35√
sNN=39 GeV

√
sNN=62.4 GeV

√
sNN=200 GeV

1.5

1.0

0.5

0

0 100 200 300 400

Figure 2: RAA results for π0 mesons for collision energies of 62.4 and 39 GeV/A.
Particle numbers from 0 to 400 indicate a range from the most central to the most
peripheral collisions.

In this factor the yield in nucleus-nucleus collisions is divided by the yield in p+ p
collisions but scaled by the appropriate number of binary collisions Ncoll which is cal-
culated using the Glauber model. We do not expect to produce the QGP in p+ p col-
lisions. Thus if the particles are not suppressed by the medium we expect RAA = 1.0.
A large number of measurements have been carried out at PHENIX to measure
the response of various particles to passage through the hot dense medium created
in Au + Au collisions. Using both Au + Au and p + p data measured at PHENIX,
RAA for a number of different particles has been measured and the results are shown
in Fig. 1 from the 2005 white paper [1]. Particularly striking is the large suppression
of π0 mesons [2] all the way out to 19 GeV/c. In addition large suppression of η [3]
and ω mesons [4] was observed. This is an evidence for a strong suppression of mesons
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Figure 3: Plot showing
RAA for 200 GeV/A
Au + Au collisions
at PHENIX and
2.76 TeV/A Pb + Pb
collisions at ALICE.

composed of the light u and d quarks in the sQGP.

The suppression of φ and K+ mesons that contain a heavy s quark was measured.
The suppression was less but still [5] significantly below an RAA of 1.0 [5]. It might be
expected that photons produced in direct interactions with the colliding quarks and
gluons would not be suppressed by the sQGP since they only interact electromagnet-
ically with the hot dense medium. This can be seen in the results in Fig. 1 for direct
photons [6] where their RAA is 1.0 within the error. We conclude that the sQGP
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Figure 4: Plots of RAA and v2 in parts (a) and (b), respectively, for electrons from
the decay of open charm and beauty. The data is for Au + Au collisions at 200 GeV
and the 10 percent most central collisions.

strongly suppresses mesons made up of light u and d quarks but also significantly
suppresses mesons composed of a heavier s quark. As expected direct photons are
not significantly suppressed by the sQGP.

An important question is how does suppression in the sQGP change if we reduce
the collision energy or the centrality of the collision. We would thus expect less sup-
pression both for lower collision energy and more peripheral collisions. The Au + Au
collisions were studied at 39 and 62.4 GeV/A and the results are compared with
those at 200 GeV/A in Fig. 2. The suppression for a collision energy of 62.4 GeV/A
is very similar to that for 200 GeV/A except that the suppression is slightly lower
at 62.4 GeV/A for π0 momenta below 6 GeV/c. By contrast when the collision
energy is lowered to 39 GeV/A the π0 is still suppressed but to a lesser extent than
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at 62.4 GeV/A. It would be of interest to determine how far can we go down in
collision energy and still see suppression. The data in Fig. 2 also shows that π0 sup-
pression is still large at all three collision energies [7] down to peripheral collisions
where of the order of 50 particles are emitted.

The LHC has produced Pb+Pb collisions with an energy of 2.76 TeV/A. RAA for
the production of charged hadrons was measured with the ALICE detector. These
results for RAA are compared with those from Au + Au collisions at PHENIX [8] at
a collision energy of 200 GeV/A in Fig. 3. From the figure it is observed that there is
very little change in the suppression of the charged hadrons even though the collision
energies at ALICE are much greater. One might expect a higher suppression due to
the greater energy densities at ALICE but many more particles are produced so the
recombination must be taken into account.

The suppression of u, d and s quarks in the sQGP is significant so it is interesting
to test to what extent the much heavier c and b quarks are suppressed. To study
this the RAA for Au + Au collisions at 200 GeV/A was measured for electrons and
positrons from decay of open charm and beauty. The RAA for these particles is shown
in the top part of Fig. 4 and compared [9] with results from π0. For the most central
collisions electrons with pT greater than 2.0 GeV/c are significantly suppressed.

From the study of the hot dense medium produced in Au + Au collisions at RHIC
we can conclude the following:

1. In Au + Au collisions we have created a color opaque medium called the sQGP.
The evidence is an observation of nuclear modification factors RAA < 1.0.

2. Suppression of particles in the medium is prominent for collision energies down
to 39 GeV/A.

3. The level of suppression at the higher energy densities at the LHC is similar to
that at RHIC.

4. The level of suppression is still very significant for the heavy c and b quarks.

3 Evidence for flow in the QGP

A critical aspect of the establishment of the nature of the QGP has been the observa-
tion that the hot dense matter created in relativistic heavy ion collisions flows. The
geometry of flow is illustrated in Fig. 5.

In studying the flow the following points are relevant.

1. The reaction geometry produces an almond shaped interaction region.

2. The compression of mass in the center produces an anisotropic pT distribution.

3. The resulting pT distribution is described in terms of
[
1+

∞∑
n=1

2v2 cos[n(φ− ΨR]
]
.

4. A finite v2 is termed the elliptic flow. Ψ is in the plane of the beam and the
impact parameter.

Flow data [8] for v2 for collisions of Au + Au from PHENIX along with data from
the much higher Pb + Pb collisions at the LHC is shown in Fig. 6. The values of v2
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Figure 5: Diagram showing the geometry
of flow for collisions of heavy nuclei.

show that flow is a prominent feature of Au+Au collisions. Relativistic hydrodynamic
calculations [9] are a good fit to the data for pT < 2.0 GeV/c. A saturation of v2 occurs
as the energy reaches the RHIC regime. At saturation the QGP reaches the maximum
achievable collective flow predicted by ideal hydrodynamics and the medium behaves
as a nearly perfect fluid with very low viscosity. The ratio of shear viscosity to entropy
density is very near the quantum lower bound. The data in Fig. 6 indicates that the
fluid produced at LHC energies is very similar to that at RHIC. Evidently a much
higher energy density is needed to create the QGP as a gas.

The quark scaling is an important signal indicating that a QGP has been formed.
In Fig. 7 v2 vs mT −m0 is plotted on the upper panel for a number of mesons (nq = 2)

0.1

0.2

0
10 10 1032

Figure 6: Data for v2−4 for collisions of A+A at RHIC and LHC energies.
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and baryons (nq = 3) for 200 GeV/A Au+Au collisions. Note that on the average the
v2 for baryons is higher than for mesons. On the bottom panel we have plotted the
same parameters but with each divided by the appropriate quark number nq. Note
that the meson and baryon points come together in a common curve thus scaling
according to the valence quark count. The scaling identifies collective behavior as
established during the partonic phase of evolution of the system indicating that the
degrees of freedom are partonic. This is a direct signature of deconfinement and
production of the QGP.

Although the flow has been established for particles containing u, d and s quarks,
it is of interest to determine if the much heavier c and b quarks produced in 200 GeV/A
Au + Au collisions exhibit flow. In the bottom part of Fig. 4 v2 is plotted in blue
for electrons and positrons from decays of particles with open c and b quarks. For
comparison v2 for π0 is shown in red. The flow for particles with c and b quarks is
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less than for π0 but is still significant.

The results from the studies of flow at RHIC and LHC can be summarized as
follows:

1. The elliptic flow is observed for Au and Pb collisions.

2. The flow at higher energy densities at the LHC is very similar to that at RHIC
indicating the saturation.

3. The flow is significant for heavy c and b quarks.

4. The quark scaling of v2 supports the formation of the QGP.

4 Temperature of the QGP

A primary goal of studies of the sQGP is to measure its temperature through obser-
vation of prompt gamma rays emitted as the nuclear fireball expands. The gamma
ray spectrum is complex since the photons are emitted in all phases of the expan-
sion. A diagram illustrating this process is shown in Fig. 8. In the initial phase hard
scattering of the incident quarks produces jets that emit bremsstrahlung and ther-
malize producing the sQGP. The plasma next expands into a mixed phase eventually
hadronizing into a hadron gas. The phases from sQGP to the hadron gas can be
described by relativistic hydrodynamics.

In order to estimate the temperature of hot hadronic matter produced at RHIC,
PHENIX measured dilepton production for 200 GeV/A Au and p collisions. These
data were used to deduce the direct photon spectra shown in Fig. 9. The figure also
shows estimated yields of photons from various stages of the collision. As can be
seen from the figure the photon yield becomes softer but more intense as the reaction
progresses from the initial hard scattering to the final stages of hadronization.

The data from the PHENIX measured dilepton production for 200 GeV/A Au
and p collisions are also shown in Fig. 10. The data are compared with a num-
ber of theoretical calculations that assume a system with an initial temperature
between 300 and 600 MeV and formation times between 0.6 and 0.15 fm/c. The
PHENIX data are in good agreement with calculations [9] that assume initial tem-
peratures above 300 MeV which is well above the predicted formation temperature
for the QGP of 170 MeV.

Figure 8: Diagram showing
the phases in formation and
expansion of the sQGP.
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5 The QGP and long-range correlations in low mass
systems

In relativistic A + A collisions a sQGP medium is formed which signals its presence
through the long range correlations and a finite flow v2. It was thought that p + p
and p+A collisions could not form such a medium because of the small system size.
Recently results from ALICE [10] and CMS [11] for 5.02 TeV p + Pb collisions at
the LHC indicate the presence of long range correlations. A small v2 and ridge were
observed indicating the long range correlations and a significant flow. One might
argue that for the lower beam energies at RHIC such correlations would be absent
or much smaller. It is thus of interest to explore whether v2 and a ridge would be
observed with d+ Au collisions at RHIC at 200 GeV/A. In Fig. 11 results for v2 for
200 GeV d+ Au for the 0 to 5% most central collisions are shown [12] and compared
with the results of similar centrality for 5.02 TeV p+ Pb collisions at the LHC [10].
The following observations can be made.

1. A mass splitting of v2 is seen for both d + Au and p + Pb reactions with v2
generally larger for pions.

2. The viscous hydrodynamics [6] describes d+ Au below pT = 2.0 GeV/c.

3. Note a larger mass splitting for p+Pb below pT = 2.0 GeV/c that may indicate
a stronger radial flow for p+ Pb.

It is clear from Fig. 11 that a non-zero v2 and flow are observed for both relativistic
d+ Au collisions at RHIC and p+ Pb collisions at the LHC. It is thus of interest to
determine if a ridge is observed in d+ Au collisions at RHIC. Therefore a correlation
function C(∆φ, pT ) is constructed in the following steps.

1. Correlate one track in the central arm with one in the forward muon piston
calorimeter.

!"#$%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&"$%

Figure 11: v2 observed for 200 GeV d+ Au collisions.
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Figure 12: Correlation functions for Au + Au and p+ p collisions at RHIC.

2. Construct a signal distribution S(∆φ, pT ) where φ = φtrack − φtower.

3. Construct mixed-event distribution M(∆φ, pT ) from different events.

4. Construct a normalized correlation function C(∆φ, pT ).

Correlation functions for central d+ Au collisions and mid-bias p+ p collisions for
several pT ranges [12] are shown in Fig. 12. Fits from c1 to c4 in cos(n∆φ) are shown.
The following conclusions can be drawn.

1. The p+ p reactions are dominated by the dipole term (no ridge).

2. The d+ Au reactions show a near side peak (ridge) that increases with pT .

Since the d + Au reactions show a ridge it is of interest to study in more detail
the separate correlation functions from the d going and the Au going sides of the
reaction. The result of this comparison is shown in Fig. 13. Note that a ridge is
clearly visible for the Au but not for the d going side. Also the c2 component for
the d going side is not zero but is much reduced compared to c2 for the Au going side.
Studies of the correlation functions have also been made for the d and Au going sides
as a function of centrality. For the Au going side there is a clear ridge that emerges
as the centrality is increased. The peripheral collision pattern is similar for the d and
Au sides showing essentially no ridge. For the d side no ridge is observed but the c2
correlation increases with centrality [7].
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Since long range correlations were observed in d+ Au collisions it was of interest
to observe if such correlations were present in 3He+ Au collisions. Data was collected

6"@AB+(
6"@AB+(

Figure 14: Measured
v2 and v3 for 0–5%
3He + Au collisions.
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!

Figure 15: Quark scaling observed in central 3He + Au collisions.

for 3He + Au collisions for two weeks at 200 GeV/A at RHIC. A sample of 2.2 billion
events at MB was collected. These collisions can be thought of as producing three hot
spots that should result in a significant n3 as well as a n2 component of flow. A ridge
was observed in high multiplicity (0–5%) 3He + Au collisions. In the reference p+ p
collisions, the correlation was dominated by momentum conservation (including di-
jets). A sizable v2 and v3 were observed in 0–5% 3He + Au collisions [13], extracted
by the event plane method as is shown in Fig. 14. The v2 in 0–5% 3He + Au and
0–5% d+Au collisions is very similar [12]. Also a significant v3 component is observed
for the 3He + Au collisions.

For identified charged particles v2 was determined for the 0–5% 3He+Au collisions
at 200 GeV/A. Differences in the values for nucleons and mesons was observed at
high pT . This behavior is very similar to that in Au+Au collisions. As can be seen in
Fig. 15 mesons and nucleons fall on a smooth curve when each particle v2 is divided by
its nq. Thus the conclusion is that the quark scaling observed in Au + Au collisions
has now been seen in the small 3He + Au system. Flow and the ridge have been
observed for collisions of Au on p, d and 3He at RHIC and p+ Pb at the LHC. This
suggests that in some cases QGP droplets have been formed in high energy collisions
of large with small nuclei.

6 Results from low energy scans of Au+Au systems

Since the first collisions of Au + Au in the summer of 2000, RHIC has run a number
of energy projectile combinations including Au + Au, U + U, Cu + Au, Cu + Cu,
3He + Au, d + Au and p + p. The results from Au + Au collisions can be used to
test the beam energy scaling. RHIC has provided Au + Au collision energies of 7.7,
15, 19.6, 27, 39, 62.4, 130 and 200 GeV/A providing a wide range of energies to test
the energy scaling. To test the quark scaling, the yields of Au + Au collisions from
7.7 to 200 GeV/A were determined as a function of centrality [14]. The results are
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Figure 16: Beam energy scan quark scaling results for Au + Au collisions.

shown in Fig. 16. The plot on the upper panel in the figure shows the yield of Au+Au
collisions from 7.7 to 200 GeV/A as a function of centrality but divided by the number
of valence quarks. The plot on the lower panel shows the same data but with the
highest centrality points for each beam energy normalized to 1.0 to show the trends.

As can be seen from Fig. 16, the quark scaling works well from 200 to 62 GeV but
breaks down at lower energies. A plot can also be made (not shown) [14] where the
yield is divided by the number of nucleons rather than the number of quarks. That
plot shows that the nucleon scaling works well for energies below 40 GeV.
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7 Studies of the nuclear fireball radii
using the HBT method

In 1956 Hanbury Brown and Twiss (HBT) measured the angular diameter of Sirius
from light by observing correlations of light from different parts of the planet’s sur-
face [15]. In 1960 Goldhaber et al. [16] measured correlation functions between pions
in p+ p̃ reactions. It is thus possible to use HBT to determine correlation functions for
the QGP fireball at kinetic freeze out. In order to do this, the 2-particle pion corre-
lation functions of the form C2(q) = A(q)/B(q) were constructed using the following
steps.

1. A(q) is the measured distribution momentum difference q = p2 − p1.

2. B(q) is the pair uncorrelated distribution from different events.

3. C2(q) = N [(λ(1 +G(q)))Fc + (λ− l)].

4. G(q) = exp(−R2
side q

2
side −R2

out q
2
out −R2

long q
2
long).

78$

$

Figure 17: C2 for 39, 62 and 200 GeV Au + Au central collisions.
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In the equations above N is a normalization factor, λ is the correlation strength,
Fc is the Coulomb correction factor and the R’s are the measured Gaussian HBT
radii. The parameterization of Bertsch [17] and Pratt [18] was used for R where
Rlong is measured in the qlong = 0 frame. The parameter qlong is along the beam
direction, qout is parallel to kT of the pair and qside is perpendicular to the beam and
kT of the pair. The measured C2(q) can be used to determine R.

The C2 correlation functions for 39, 62 and 200 GeV collisions of Au + Au [19] are
shown in Fig. 17. From the correlation functions C2(qout), C2(qside) and C2(qlong) the
corresponding HBT pion radii Rout, Rside and Rlong were calculated [14]. The radii
have interesting scaling properties. Results for radii determined by both STAR [20]

and PHENIX [21] are consistent with radii scaling linearly with m
−1/2
T . In addition

it is found that the HBT pion radii scale linearly with the initial radius [19]. These
results are consistent with calculations [21] which associate a larger expansion time
with a larger size. In Fig. 18 the measured HBT pion radii are plotted as a function
of Au + Au collision energy [19]. The results include data from PHENIX, STAR and
ALICE. All the data is interpolated to mT = 0.26 GeV. This is valid due to the mT

scaling. For all three radii an increase of kinetic freeze out radius with collision energy
is observed.

Figure 18: Results
for HBT radii vs col-
lision energy.
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of radii results
with energy.

Ratios and differences of various HBT radii give information on both the kinetic
freeze out time τ and the duration of kinetic freeze out ∆τ . R2

out−R2
side is a proxy for

emission duration ∆τ and Rside/Rlong is a proxy for expansion speed and the speed
of sound cs in the medium [22]. The results for these parameters as a function of
Au + Au collision energy are shown in Fig. 19. The results are not linear with energy.
The curve for R2

out−R2
side shows a maximum in the vicinity of 30 GeV collision energy.

The curve for Rside/Rlong shows a minimum in the vicinity of 30 GeV [19]. These
non-monotonic patterns are consistent with the minimum observed as a function of
collision energy for the viscous coefficients [22] and could be a further indication of
trajectories passing through the softest region in the Equation of State (EoS).

8 The future and sPHENIX

The next generation of PHENIX is designated sPHENIX. A primary goal of the
sPHENIX program is to complete the picture for the sQGP of its evolution and
coupling strength from the initial high temperature through expansion and cooling
to the transition scale and below. A fragmentation of partons will be studied by
measuring jets and the melting of the three Υ states, namely 1s, 2s and 3s. The
direct photons and high pT hadrons will be measured with higher statistics than in
the past due to high rates and large acceptance expected with sPHENIX. It will be
possible to study the RAA of photons, jets, charged mesons and baryons and π0s
at higher pT . For example it should be possible to measure direct γ and charged
hadrons up to 50 GeV/c. The detector will be optimized to study jets. It should thus
be possible to study jets up to 75 GeV/c and b jets up to 40 GeV/c.

An artists view of sPHENIX is shown in Fig. 20. A critical component of the
detector was the solenoid magnet acquired from the Babar experiment. The sPHENIX
detector is basically cylindrically symmetric. Starting from the interaction point at
the center of the detector there is an electromagnetic calorimeter followed by an inner
hadronic calorimeter. Next comes the Babar solenoid magnet and finally the outer
hadronic calorimeter. Tracking detectors will be located near the beam interaction
point.

A major goal for the sPHENIX program will be to study melting of the three Υ
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Figure 20: An artist’s view of sPHENIX.

states in the sQGP. Figure 21 shows a simulation of RAA data for the three Υ states
that could be obtained after 22 weeks of Au + Au and 10 weeks of p + p running.
Calculations [16] indicate the relative suppression of the three states. This should
give information on the temperature of the sQGP at the point where the melting of
the Υ states occurs.

 

Figure 21: Nuclear modification projections for Υ.
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The present status of sPHENIX is as follows. A Department of Energy panel ac-
cepted the science case for sPHENIX at a review completed May 2015. Brookhaven
National Laboratory (BNL) has made sPHENIX an integral part of its plan for the
future now that the PHENIX experiment has been completed in 2016. Design, simu-
lation, R&D, and prototyping for sPHENIX are all moving forward. BNL convened a
workshop to form a new sPHENIX collaboration in June 2015 and the first collabora-
tion meeting was held on December 10–12, 2015 at Rutgers University. The planning
calls for the sPHENIX detector to begin operation in 2022.

9 Conclusions

The main conclusions from the above paper are listed below:

1. A hot dense medium has been created in Au + Au collisions. The evidence is a
nuclear modification factor RAA < 1.0.

2. The hot dense medium flows. The sQGP acts as a high temperature low viscosity
liquid. The evidence is v2 > 0.

3. The sQGP is actually created. The evidence is the quark scaling of v2 for mesons
(q = 2) and baryons (q = 3).

4. No phase transition is observed implying the crossover from the sQGP to a
hadron gas.

5. The evidence for QGP droplets is observed in p, d and 3He collisions with heavy
nuclei.

6. HBT studies measured radii at freeze out and point to a possible softening of
the nuclear EoS around 30 GeV.

7. The predicted first order phase transition and critical point yet to be observed.

8. The PHENIX program ended in 2016 and now the collaboration is transitioning
to sPHENIX.
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Abstract

Radiative capture reactions being an important class of nuclear fusion pro-
cesses attract a significant interest, in particular, for nuclear astrophysics. Their
cross sections at low energies are strongly suppressed by the Coulomb barrier
and therefore are not available for reliable experimental measurements. As a
result, there is a strong need in theoretical approaches to the studies of the
radiative capture reactions cross sections.

In this work, the basic ideas of the algebraic versions of the resonating group
and orthogonality condition models are presented. Microscopic approaches to
the radiative capture reactions based on the algebraic version of resonating group
model and semimicroscopic one combining the algebraic versions of resonating
group and orthogonality condition models, are reviewed. An applicability of
these approaches is demonstrated. Perspectives of their further applications are
discussed.

Keywords: Algebraic version of resonating group model; algebraic version of
orthogonality condition model; microscopic approach; radiative capture reac-
tions; low energies; cross section; astrophysical S-factor; nuclear astrophysics

1 Introduction

Cross sections of a number of nuclear reactions at low sub-Coulomb energies are de-
sired for numerous fundamental studies and advanced applications. For example,
radiative capture cross sections at low energies are required for the studies of stellar
processes, nucleosynthesis in the Universe, etc. [1–5]. These cross sections are strongly
suppressed by the Coulomb barrier and therefore are not available for reliable exper-
imental measurements. As a rule, cross section extrapolations to low energies also
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turn out to be unreliable. As a result, theoretical predictions based on microscopic
approaches are expected to be the most justified and promising way to obtain the
cross sections in the energy region inaccessible for experiment. These microscopic
approaches should be able to describe a dynamics of all nucleons of a nuclear system
considered with a complete account of the Pauli exclusion principle and a rigorous
treatment of the center-of-mass motion. From the mathematical viewpoint, it means
that the wave functions should be fully antisymmetrized and translationally invari-
ant and have an explicit dependence on space and spin-isospin coordinates of all the
nucleons of the system.

At the present moment, there is a number of approaches to the description of radia-
tive capture reactions. In particular, there are various two-body approaches utilizing
either the direct capture model [6,7] or the potential cluster model [8–12]. There are
also hybrid approaches which use either the variational Monte Carlo method [13, 14]
or the no-core shell model [15–17] for bound states and the potential cluster model
for continuum. Finally, there are fully microscopic approaches based either on the
resonating group model (RGM) [18–21] or on the fermionic molecular dynamics [22],
as well as on the no-core shell model with continuum [23].

In the present work, two microscopic approaches and a semimicroscopic approach
to the radiative capture reactions [24–32] are briefly reviewed. One of these micro-
scopic approaches [24–29] is based on the single-scale algebraic version of RGM
(AVRGM) [33, 34] while the other [32] relies on the multiscale AVRGM. The semi-
microscopic approach [30, 31] combines the single-scale AVRGM with the algebraic
version of the orthogonality condition model (AVOCM) [35–39]. An applicability to
the radiative capture processes and capabilities of these approaches have been demon-
strated in the studies of mirror 3H(α, γ)7Li and 3He(α, γ)7Be reactions important for
nuclear astrophysics. Both these reactions are responsible for the 7Li production dur-
ing the Big Bang nucleosynthesis. Their cross sections at low energies are necessary
for calculating the 7Li abundance required to resolve a number of problems concern-
ing the Big Bang nucleosynthesis and to get a general understanding the primordial
nucleosynthesis. Moreover, the latter reaction is a starting point of the second and
the third chains of the pp cycle of hydrogen burning in stars. The cross section of this
reaction at low energies is necessary for the studies of processes in the solar core and
for the solar model verification.

2 Brief description of AVRGM and AVOCM.

Generating functions method

In the framework of the single-channel RGM, the total wave function of a two-cluster
nuclear system is expressed as an antisymmetrized product of internal wave func-
tions φ(1), φ(2) of the clusters and the wave function f of their relative motion [40,41]:

Ψ = Â
{
φ(1)φ(2)f

}
. (1)

The translationally-invariant oscillator shell-model wave functions of the lowest states
compatible with the Pauli principle are conventionally adopted as the internal wave
functions of the clusters. The relative motion wave function is unknown and should
be found by solving the integro-differential equation of RGM.
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The main idea of AVRGM is to expand the relative motion wave function in series
of the oscillator basis functions:

fνlm(~q) = Nνl q
l L

(l+1/2)
(ν−l)/2(q2) exp(−q2/2) Ylm(~n~q),

q = q/r0, Nνl = (−1)(ν−l)/2

√
2Γ((ν − l + 2)/2)

r30 Γ((ν + l + 3)/2)
,

(2)

where ~q is the Jacobi vector characterizing the relative distance between the clus-
ters; r0 is the oscillator radius; ν is the oscillator quanta; l and m are the orbital

momentum and its projection respectively; Γ is the gamma-function; L
(β)
n is the gen-

eralized Laguerre polynomial; Ylm is the spherical harmonic. As a result, the total
wave function can be written as an expansion,

Ψ =
∑

JπMlsν

CJπMlsν ΨJπMlsν , (3)

over the so-called AVRGM basis,

ΨJπMlsν = NJπlsν Â

{ ∑

m+σ=M

CJM
lm sσ[φ(1)s1 φ

(2)
s2 ]sσ fνlm(~q)

}
. (4)

Here J and M are the total angular momentum and its projection respectively; π
is the parity of the system; s1 and s2 are the cluster spins coupled to the channel
spin s with projection σ; CJM

lm sσ is the Clebsch–Gordan coefficient; NJπlsν is the
normalization factor; CJπMlsν are unknown expansion coefficients satisfying an infinite
set of homogeneous linear algebraic equations [33, 42],




s1+s2∑
s=|s1−s2|

J+s∑
l=|J−s|

∞∑
ν=ν0

(〈
JπMl̃s̃ν̃

∣∣Ĥ
∣∣JπMlsν

〉
− E δs̃s δl̃l δν̃ν

)
CJπMlsν = 0,

s̃ = |s1 − s2|, ... , s1 + s2, l̃ = |J − s̃|, ... , J + s̃, ν̃ = ν0, ν0 + 2, ...

(5)

Here Ĥ and E are the Hamiltonian and the total energy of the system respectively, ν0
is the minimal oscillator quanta compatible with the Pauli principle. It should be
noted that the summations over ν in Eqs. (3) and (4) as well as in other expressions
below are performed with a step of 2 since ν = 2nr + l, where nr = 0, 1, 2, ... is the
radial quantum number.

In the case of the discrete spectrum, we can use instead of Eq. (5) a reduced finite
set of algebraic equations,




s1+s2∑
s=|s1−s2|

J+s∑
l=|J−s|

νmax∑
ν=ν0

(〈
JπMl̃s̃ν̃

∣∣Ĥ
∣∣JπMlsν

〉
− E δs̃s δl̃l δν̃ν

)
C

(D)
JπMlsν = 0,

s̃ = |s1 − s2|, ... , s1 + s2, l̃ = |J − s̃|, ... , J + s̃, ν̃ = ν0, ν0 + 2, ... , νmax ,

(6)

where νmax should be sufficiently large depending on a desired accuracy. In the
case of the continuum, the AVRGM equations (5) should be rewritten as a set of
inhomogeneous linear algebraic equations,




∑
s

∑
l

νas−2∑
ν=ν0

(〈
JπMl̃s̃ν̃

∣∣Ĥ
∣∣JπMlsν

〉
− E δs̃s δl̃l δν̃ν

)
C

(C)
JπMlsν = FJπMl̃s̃ν̃ ,

s̃ = |s1 − s2|, ... , s1 + s2, l̃ = |J − s̃|, ... , J + s̃, ν̃ = ν0, ν0 + 2, ... , νas .

(7)
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The expansion coefficients C
(C)
JπMlsν are replaced starting from ν = νas by their asymp-

totic expressions C
(as)
JπMlsν [34, 43] entering the right-hand side (inhomogeneity) of

Eq. (7):

FJπMl̃s̃ν̃ = −
∑

s

∑

l

ν′
max∑

ν=νas

〈
JπMl̃s̃ν̃

∣∣Ĥ
∣∣JπMlsν

〉
C

(as)
JπMlsν . (8)

Although the AVRGM and the RGM are similar from the physical viewpoint, their
numerical realizations differ essentially: the AVRGM requires to find solutions of lin-
ear algebraic equations while within the conventional single-channel RGM one has to
solve a more complicated integro-differential equation. In the case of the multichannel
RGM, one faces a problem of solving a set of integro-differential equations [40, 41].

One of the main problems of the AVRGM realization is a calculation of the Hamil-
tonian matrix elements between the antisymmetrized AVRGM basis functions (4).
This problem can be resolved using an elegant technique of the generating functions
method [33, 42, 44, 45]. The basic idea of this method is to utilize the generating
function of the harmonic oscillator functions:

fνlm(~q) = Aνl
∂ν

∂Rν

∫
exp(−q2/2r20 + ~q ~R/r0 −R2/4)Ylm(~n~R) d~n~R

∣∣∣
R=0

,

Aνl =
2ν−1/2

(πr0)3/2 ν!

√
Γ
(
(ν − l + 2)/2

)
Γ
(
(ν + l + 3)/2

)
.

(9)

With the help of Eq. (9) one can easily derive the generating functions for the AVRGM
basis. The calculations are essentially simplified by constructing Slater determinants
of the generating functions for the initial and final states,

∣∣~R
〉

=
1√
A!

∑

{j1, j2,..., jA}

(−1)P ({j1, j2,..., jA}) ϕj1(1)ϕj2(2) . . . ϕjA(A),

∣∣~Q
〉

=
1√
A!

∑

{j1, j2,..., jA}

(−1)P ({j1, j2,..., jA}) φj1(1)φj2(2) . . . φjA(A),

(10)

or sums of these Slater determinants. In Eq. (10), P ({j1, j2, ... , jA}) is the parity
of the permutation {j1, j2, ... , jA} of indices {1, 2, ... , A}. Moreover, expressing ma-

trix elements
〈
J
πf

f Mf lfsfνf
∣∣V
∣∣Jπi

i Milisiνi
〉

of some operator V in the AVRGM basis

through its generating matrix elements
〈
~Q, sf σf

∣∣V
∣∣~R, si σi

〉
,

〈
J
πf

f Mf lfsfνf
∣∣V
∣∣Jπi

i Milisiνi
〉

=
1

κνf lfsf κνilisi νf ! νi!

∂νf

∂Qνf

∂νi

∂Rνi
Ii→f (Q,R)

∣∣∣
Q=R=0

,

(11a)

Ii→f (Q,R) =
∑

mfσfmiσi

C
JfMf

lfmf sfσf
CJiMi

limi siσi

×
∫∫

Y ∗
lfmf

(~n~Q)
〈
~Q, sfσf

∣∣V
∣∣~R, siσi

〉
Ylimi

(~n~R) d~n~Q d~n~R, (11b)



AVRGM and AVOCM as fundamentals for describing radiative capture 271

κ2νls =
1

(ν!)2
∂ν

∂Qν

∂ν

∂Rν

∫∫
Y ∗
lm(~n~Q)

〈
~Q, sσ

∣∣~R, sσ
〉
Ylm(~n~R) d~n~Q d~n~R

∣∣∣
Q=R=0

, (11c)

one can additionally simplify the calculations by making use of the so-called recurrence
technique [42] suitable for numerical realization.

If the single-particle states ϕj and φk entering the Slater determinants in Eq. (10)
satisfy the orthogonality condition

〈
φk
∣∣ϕj

〉
∼ δkj , (12)

matrix elements in the basis of Slater determinants of an operator V which is a sum

of two-particle operators Vkj , V =
A∑

k>j

Vkj , can be written as

〈
~Q
∣∣V
∣∣~R
〉

=

A∑

k>j

(〈
φk(1)

∣∣〈φj(2)
∣∣V12

∣∣ϕj(2)
〉∣∣ϕk(1)

〉

−
〈
φk(1)

∣∣〈φj(2)
∣∣V12

∣∣ϕk(2)
〉∣∣ϕj(1)

〉) ∏

n6=k,j

〈
φn
∣∣ϕn

〉
. (13)

In this expression, the terms of the type

〈
φk(1)

∣∣〈φj(2)
∣∣V12

∣∣ϕj(2)
〉∣∣ϕk(1)

〉 ∏

n6=k,j

〈
φn
∣∣ϕn

〉
(14)

are referred to as direct ones while the terms of the type

〈
φk(1)

∣∣〈φj(2)
∣∣V12

∣∣ϕk(2)
〉∣∣ϕj(1)

〉 ∏

n6=k,j

〈
φn|ϕn

〉
(15)

are referred to as exchange ones. If the operator V is an operator describing the
interaction in the system, the terms (15) with the indices k and j corresponding to
single-nucleon states belonging to different clusters are responsible for the exchange
effects in the cluster-cluster interaction. The neglect of these exchange terms in the
interaction matrix elements simplifies significantly the calculations and leads to the
AVOCM [35–39].

It should be emphasized that the potential cluster model widely used in literature
neglects all exchange terms in the matrix elements of the Hamiltonian and all other
operators describing the reactions. From this point of view, the AVOCM is a better
approximation since within this model the exchange terms associated with permuta-
tions of indexes related to nucleons belonging to different clusters are only neglected
in the matrix elements of the interaction operator. Matrix elements of the kinetic
energy and electromagnetic operators as well as the overlaps are calculated precisely.

3 Approaches to description of radiative capture.
The 3H(α, γ)7Li and 3He(α, γ)7Be reactions

At low energies, the mirror 3H(α, γ)7Li and 3He(α, γ)7Be reactions proceed mainly
via the electric dipole (E1) transitions with formation of 7Li and 7Be nuclei in their
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ground and first excited states. The respective cross sections are denoted σ0 and σ1
and the total cross section is their sum, σ = σ0+σ1. Similarly, σ0 and σ1 are the sums
of respectively three and two partial cross sections. An expression for these partial
cross sections was derived [25,27,29] using the Fermi golden rule, the long-wavelength
limit [46], and an expansion of the initial and final state wave functions in the series
of the AVRGM basis functions (4):

σi→f (Ec.m.) =
8π

9~(2li + 1)

(
Eγ

~c

)3

×
∣∣∣∣
∑

νi,νf

C
(D)

J
πf
f

lf sνf

〈
J
πf
f lfsνf

∣∣∣∣ME
1

∣∣∣∣Jπi
i lisνi

〉
C

(C)

J
πi
i lisνi

∣∣∣∣
2

. (16)

Here Ec.m. is the relative motion energy of the colliding clusters (nuclei) in the center-
of-mass system, Eγ is the energy of the emitted photon, and ME

1 is the electric
dipole operator. For the considered E1 transitions, a pair of the initial quantum
numbers (Ji, li) in Eq. (16) can take the values of (1/2, 0), (3/2, 2) and (5/2, 2) for the
capture to the ground state [(Jf , lf ) = (3/2, 1)], and the values of (1/2, 0) and (3/2, 2)
for the capture to the first excited state [(Jf , lf ) = (1/2, 1)].

We use three approaches in the present work to calculate the discrete C
(D)

J
πf
f

lfsνf
and

continuous C
(C)

J
πi
i lisνi

spectrum wave function expansion coefficients in the AVRGM

basis and hence the partial cross sections of the considered reactions. The first ap-
proach [24–29] hereafter referred to as a conventional AVRGM, is based on the single-
scale AVRGM. In the framework of this microscopic approach, we utilize an unified
AVRGM basis with a single oscillator radius playing a role of scale parameter. The
second approach [30, 31] combining the single-scale AVRGM and AVOCM, is here-
after referred to as a combined AVRGM + AVOCM. The AVOCM is utilized in this
semimicroscopic approach to simplify the calculation of the expansion coefficients for
the continuum wave functions, all the rest calculations are performed using the single-
scale AVRGM. The third approach [32] is based on the multiscale AVRGM. This is
a more advanced approach utilizing the AVRGM bases with different oscillator radii
to expand the discrete and continuous spectrum wave functions. It is the principle
feature of this microscopic approach which we refer to as a multiscale or generalized
AVRGM.

The radiative capture cross section drops down exponentially with the energy
decrease at low sub-Coulomb energies. As a result, this cross section is conventionally
expressed through the astrophysical S-factor S(Ec.m.),

σ(Ec.m.) =
1

Ec.m.
exp
(
−
√
EG/Ec.m.

)
S(Ec.m.), (17)

where EG is the Gamow energy. The astrophysical S-factor has a smoother behavior
than the cross section and therefore is more suitable for analysis at low energies.

The astrophysical S-factors for the considered reactions calculated within the con-
ventional AVRGM are presented in Figs. 1 and 2 by solid curves. The dashed curves
in these figures are the results obtained within the combined AVRGM + AVOCM.
All calculations are performed with the oscillator radius r0 = 1.22 fm and the ad-
justable intensity of the central Majorana force gc = 1.035 which is a parameter of
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Figure 1: Astrophysical S-factor for the 3H(α, γ)7Li reaction. Solid curve — conven-
tional AVRGM; dashed curve — combined AVRGM + AVOCM; symbols — experi-
mental data from Refs. [48–53].

the effective modified Hasegawa–Nagata NN potential [47] used to describe the inter-
nucleon interaction. The obtained cross sections are seen to be in an agreement with
experimental data of Refs. [48–53] and [54–64] for the 3H(α, γ)7Li and 3He(α, γ)7Be
reactions respectively. The results for the phase shifts in the entrance channels of
these reactions also agree with experimental findings of Refs. [65–71].

It should be noted that the conventional AVRGM generates observables that differ
only slightly from those obtained in the framework of the combined AVRGM+AVOCM
(see Figs. 1 and 2). Therefore the exchange effects do not affect essentially these
reactions in the low energy region. This fact can be used to develop approximate
approaches to the description of reactions in heavier systems where the neglect of the
exchange terms becomes necessary due to an avalanche-like growth of the calculation
complexity with the number of nucleons.

We present in Figs. 3 and 4 the astrophysical S-factors for the 3H(α, γ)7Li and
3He(α, γ)7Be reactions calculated within the generalized AVRGM. The results are
seen to agree well with the experimental data of Refs. [48–64]. The continuum wave
functions for the 4He + 3H and 4He + 3He systems are expanded over the AVRGM
basis with the oscillator radius r01 = 1.386 fm which results in the α particle bind-
ing energy of Eα = 28.296 MeV consistent with experiment [72]. The wave functions
of the ground and first excited states of 7Li are expanded over the AVRGM bases
with the oscillator radii r020 = 1.303 fm and r021 = 1.282 fm respectively; in the case
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Figure 2: Astrophysical S-factor for the 3He(α, γ)7Be reaction. Symbols — experi-
mental data from Refs. [54–64]; see Fig. 1 for other details.

of 7Be the respective oscillator radii are r020 = 1.3068 fm and r021 = 1.4205 fm —
these values are tuned to reproduce the experimental breakup thresholds [73] of
the ground (ε0 = 2.467 MeV) and the first excited (ε1 = 1.989 MeV) states of 7Li
with respect to the 4He + 3H channel and the 7Be thresholds (ε0 = 1.586 MeV,
ε1 = 1.157 MeV) with respect to the 4He + 3He cnannel. The intensity of the central
Majorana force gc = 0.977 is set to describe the 4He + 3H and 4He + 3He phase shifts
extracted from the experiments in Refs. [65–71].

Thus the generalized AVRGM provides reasonable energy dependences of the as-
trophysical S-factors of the 3H(α, γ)7Li and 3He(α, γ)7Be reactions as well as of the
scattering phase shifts in the entrance channels of these reactions together with the
description of the α-particle binding energy and of the breakup thresholds in 7Li
and 7Be nuclei. This is a significant advantage of the generalized AVRGM as com-
pared to the conventional AVRGM and combined AVRGM + AVOCM which un-
derestimate [25, 27–29] the α-particle binding energy and the 7Li and 7Be breakup
thresholds.

4 Conclusions

The main points of the present work are the following:
1. Theoretical approaches to the description of radiative capture reactions based
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Figure 3: Astrophysical S-factor for the 3H(α, γ)7Li reaction. Solid curve — general-
ized AVRGM.

on AVRGM and AVOCM have been reviewed.

2. The results of the mirror 3H(α, γ)7Li and 3He(α, γ)7Be reaction studies within
these approaches have been discussed.

3. Abilities of these approaches to describe simultaneously the astrophysical S-
factors and scattering phase shifts in the entrance channels of the radiative capture
reactions have been demonstrated.

4. We revealed an advantage of the generalized AVRGM over other reviewed
approaches that is a capability of an unified description of the astrophysical S-factors
of the mirror 3H(α, γ)7Li and 3He(α, γ)7Be reactions and of the scattering phase shifts
in the 4He + 3H and 4He + 3He systems along with the breakup thresholds in the
7Li and 7Be nuclei.

5. An insignificance of the exchange terms in the matrix elements of interaction
operator in the entrance channels of the reactions at the considered energies has
been shown. This feature is useful for realization of approximate approaches to the
description of reactions with heavier nuclei.
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Figure 4: Astrophysical S-factor for the 3He(α, γ)7Be reaction. Solid curve — gener-
alized AVRGM.
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Abstract

We continue the study of the tetraneutron resonance within the democratic
SS-HORSE extension of the ab initio No-Core Shell Model [16] using mod-
ern NN interactions. With Daejeon16 and SRG-evolved chiral Idaho N3LO
NN interactions we obtain the S-matrix pole corresponding to the tetraneu-
tron resonance with energy between 0.7 and 1.0 MeV and width between 1.1
and 1.7 MeV. However we do not obtain a low-lying narrow resonance with the
original Idaho N3LO but, instead, we obtain a very low-lying virtual state with
the energy of 15 keV.

Keywords: Tetraneutron; resonant states; realistic NN-interactions; No-Core
Shell Model; SS-HORSE method; democratic decay

1 Introduction

Interest in the tetraneutron was revived by a recent experiment [1] where a few events
were detected which were interpreted as a resonant state in the four-neutron system
with an energy of 0.83 ± 0.65 (stat.) ± 1.25 (syst.) MeV and a width not exceed-
ing 2 MeV. As indicated in a historical review of the studies of few-neutron systems
of Ref. [2], this is the first observation of the tetraneutron resonance which has been
sought for more than fifty years [3]. The possibility of a bound tetraneutron state
was proposed 15 year ago in Ref. [4] in the 14Be breakup reaction 14Be → 10Be + 4n.
This experimental result, however, has not been confirmed.

The state-of-the-art theoretical studies conclude [5–14] that the tetraneutron can-
not be bound without a significant altering of modern nuclear forces that will spoil
a description of other nuclei. There are some indications on the existence of a low-
lying tetraneutron resonance based on an artificial binding of the tetraneutron by
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strengthening the NN interaction [5] or by putting the four-neutron system in a
trap [15] and by extrapolating these bound states to the case when the strength-
ening parameter is continuously reduced or the trap is continuously removed. Such
extrapolations cannot predict the width of the resonance and should not be regarded
as a firm proof of the resonant state. Existing calculations that explicitly account
for the continuum [6,9–14] using various approaches [hyperspherical harmonics (HH),
Faddeev–Yakubovsky equations, no-core Gamow shell model, complex scaling, etc.]
with various realistic inter-nucleon forces resulted in the absence of a low-lying tetra-
neutron resonance narrow enough to be detected experimentally.

However, in our recent theoretical study [16], we obtained the tetraneutron res-
onance with the energy Er = 0.8 MeV and the width Γ = 1.4 MeV. To the best of
our knowledge, this is an only theoretical prediction consistent with the experimen-
tal finding of Ref. [1]. These calculations utilized the NN interaction JISP16 [17]
and were performed within the so-called SS-HORSE (single state harmonic oscil-
lator representation of scattering equations) extension [18–22] of the no-core shell
model (NCSM) [23] adapted in Ref. [16] to the description of democratic decays (also
known as a true four-body scattering or 4 → 4 scattering) [24, 25]. So, it is impor-
tant to understand whether this low-lying resonance should be associated with the
JISP16 NN interaction which was used in the tetraneutron studies only in Ref. [16]
or with the new democratic NCSM-SS-HORSE approach able to describe correctly
some specific features of the four-particle decay which are likely beyond the scope of
other methods.

To this end, we perform here the NCSM-SS-HORSE calculations of the tetra-
neutron resonance with additional contemporary NN interactions. In particular, we
adopt a new NN interaction Daejeon16 [26] which is better fitted to observables in
light nuclei than JISP16. We also adopt the chiral NN interaction Idaho N3LO [27],
both unperturbed (‘bare’) and softened by the methods of the Similarity Renormal-
ization Group (SRG) [28, 29] with flow parameters Λ = 1.5 fm−1 and 2.0 fm−1.
We note that the Daejeon16 interaction was obtained by applying phase-equivalent
transformations to the SRG-evolved with Λ = 1.5 fm−1 Idaho N3LO which adjust
the interaction to describe light nuclei without referring to three-nucleon forces.

The next Section presents a brief description of the SS-HORSE method and its
application to calculating democratic four-body decays within the NCSM. The tetra-
neutron calculation results with the Daejeon16, SRG-evolved and ‘bare’ Idaho N3LO
interactions are given in Sections 3, 4, and 5 respectively. The last Section summarizes
these studies.

2 SS-HORSE method for the 4 → 4 scattering

We use here the same theoretical approach as in our previous paper [16]. That is, we
utilize the democratic decay approximation [24,25] to describe the four-neutron decay
channel within the NCSM-SS-HORSE approach. A decay of a system into A particles
is called ‘democratic’ if none of subsystems built of these A particles has a bound state.
In particular, the tetraneutron presents a nice example of nuclear system decaying
through a four-body democratic channel only, and the study of the tetraneutron of
Ref. [30] is one of the first applications of the democratic decay approximation.
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It is natural to study democratic decays within the HH method, which intro-

duces a ‘democratic’ collective coordinate, the hyperradius ρ =
√∑A

i=1(ri −R)2 (ri

are the coordinates of individual nucleons and R is the center-of-mass coordinate),
and describes the dynamics of a system in terms of this coordinate. Formally, the
democratic decay channel involves a superposition of an infinite number of HH with
hypermomenta K = Kmin, Kmin + 2, ..., where Kmin is the minimal hypermomentum
consistent with the Pauli principle for a given nucleus; however, in practical applica-
tions, one usually uses a restricted set of HH adequate for the description of the decay
channel. We use here the minimal approximation for the tetraneutron decay mode,
i. e., we retain only the HH with hypermomentum K = Kmin = 2. This approxima-
tion relies on the fact that the decay in the hyperspherical states with K > Kmin is
strongly suppressed by a large hyperspherical centrifugal barrier L(L + 1)/ρ2, where
the effective angular momentum

L = K +
3A− 6

2
= K + 3. (1)

Note, the minimal approximation is used for the description of the decay channel
only, i. e., for the description of the wave function asymptotics, while all possible HH
are retained in the NCSM basis. The accuracy of this approximation was confirmed
in studies of democratic decays in cluster models [31–34].

The NCSM utilizes the harmonic oscillator basis, and a natural extension of the
NCSM to the continuum can be achieved within the J-matrix [35] (also known as the
HORSE [36]) formalism in scattering theory, in particular, in an efficient SS-HORSE
version [18–22] of this formalism. The general theory of the democratic decay within
the HORSE formalism was proposed in Refs. [37, 38]; a derivation of the democratic
SS-HORSE version along the lines suggested in Refs. [18, 19] is strightforward [16].

Within the minimal approximation, the S-matrix of the four-body decay is ex-
pressed through the hyperspherical phase shift δ as

S = e2iδ. (2)

The SS-HORSE formalism provides the following expression for the phase shifts at
the eigenenergies Eν of the NCSM Hamiltonian [16, 18, 19]:

tan δ(Eν) = −SN+2,L(Eν/~Ω)

CN+2,L(Eν/~Ω)
. (3)

Here, SNL and CNL are linearly-independent solutions of the infinite tridiagonal
free Hamiltonian matrix in the hyperspherical harmonic oscillator basis for which
analytical expressions can be found in Refs. [37, 38], and N is the maximal total
quanta of many-body oscillator states included in the NCSM basis,

N = Nmax +Nmin, (4)

Nmin = 2 is the quanta of the lowest possible oscillator state of the 4n system,
and Nmax is the maximal excitation quanta in the NCSM basis.

Varying Nmax and ~Ω in the NCSM calculations, we obtain the phase shifts and
S-matrix in some energy interval. Parametrizing the S-matrix in this energy interval,
we obtain information about its nearby poles and hence resonances in the system.
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Note, the phase shifts used for the parametrization should form some curve as a
function of energy. However some phase shifts calculated by Eq. (3), especially those
corresponding to the NCSM results obtained in small enough model spaces, deviate
from the common curve signaling that convergence is not achieved. Therefore, before
parametrizing the phase shifts, one needs to preselect the NCSM results retaining
only those that are sufficiently converged so as to lie on the common curve.

Due to S-matrix symmetry properties [39,40], the hyperspherical phase shift δ(E)
should be an odd function of momentum k ∼

√
E,

δ(E) = v1
√
E + v3

(√
E
)3

+ ...+ v9
(√
E
)9

+ v11
(√
E
)11

+ ... (5)

On the other hand, at low energies, i. e., in the limit k → 0, the phase shifts should
behave as δ ∼ k2L+1 [39, 40]. In the case of 4 → 4 scattering, L = Kmin + 3 = 5 and
therefore the expansion (5) starts at the eleventh power, i. e.,

v1 = v3 = ... = v9 = 0. (6)

To parametrize the phase shifts, we use the equation

− arctan
SNmax+4,5(E/~Ω)

CNmax+4,5(E/~Ω)
=
∑

p

δp(E) + φ(E), (7)

which is obtained by rewriting Eq. (3) with the help of Eq. (4). Here φ(E) is a
background phase, which is expected to be a smooth function parametrized as a Padé
approximant,

φ(E) = −
w1

√
E + w3

(√
E
)3

+ c
(√
E
)5

1 + w2E + w4E2 + w6E3 + dE4
. (8)

The sum in the rhs of Eq. (7) presents rapidly changing with E contributions from pole
terms associated with the S-matrix poles located close to the origin of the complex
momentum plane, in particular, resonant poles (p = r), false (redundant) poles at
a positive imaginary momentum (p = f) which does not correspond to a bound
state [39,40], or virtual state poles at a negative imaginary momentum (p = v) [39,40].
The respective phase shifts are

δr(E) = − arctan
a
√
E

E − b2
, (9a)

δf (E) = − arctan

√
E

|Ef |
, (9b)

δv(E) = arctan

√
E

|Ev|
. (9c)

The resonance energy Er and width Γ are expressed through parameters a and b as

Er = b2 − a2/2, Γ = a
√

4b2 − a2. (10)

We attempted various fits including one, two, or three pole terms in Eq. (7) aimed
to obtain a smooth background phase φ(E). The parameters w1, w2, w3, w4, and w6
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should guarantee that Eq. (6) is satisfied [note, the pole terms contribute to the low-
order expansion terms in Eq. (5)]. The parameters c and d entering Eq. (8) together
with the parameters a, b, Ef , and Ev of the included pole terms are used as fit
parameters.

For each set of parameters, we solve Eq. (7) to find the energies E(i) = E(N i
max, ~Ωi)

for each combination of N i
max and ~Ωi values and search for the parameter set mini-

mizing the rms deviation

Ξ =

√√√√ 1

D

D∑

i=1

(
E

(i)
0 − E(i)

)2
(11)

of E(i) from the selected set of the lowest NCSM eigenenergies Ei
0 obtained with the

same N i
max and ~Ωi.

3 Results with Daejeon16

We performed the NCSM calculations using the code MFDn [41,42] for the tetraneu-
tron with Nmax values ranging from 2 to 20 and ~Ω values ranging from 1 to 50 MeV.
As in Refs. [16,18–22], we select for the phase shift parametrization the NCSM results
generating the phase shifts according to Eq. (3) that form approximately a common
curve as a function of energy E. Additionally, we do not include in the analysis the
NCSM eigenenergies above 7 MeV thus improving the description of the resonance
region. The eigenenergy selection is shown by the shaded area in left panel of Fig. 1.
The right panel of Fig. 1 shows the phase shifts obtained directly from the selected
NCSM results using Eq. (3).
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Figure 1: Left panel: the lowest 0+ tetraneutron states obtained in the NCSM with
the Daejeon16NN interaction (symbols) with variousNmax as functions of ~Ω and the
energies E(i) (solid curves) obtained from the phase shifts parametrization; the shaded
area shows the NCSM result selection for the phase shift parametrization. Right panel:
the 4 → 4 phase shift parametrization (solid curve) and phase shifts obtained directly
from the selected NCSM results using Eq. (3) (symbols); contributions to the phase
shifts of the resonant pole, the false pole and the background phase are shown by
dashed, dashed-dotted and dashed-double-dotted curves respectively.
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Table 1: Tetraneutron resonance energy Er and width Γ and other fit parameters
including the energy of the false pole Ef and of the virtual state |Ev| as well as
the rms deviation of energies Ξ characterizing the quality of the fit, obtained with
JISP16 [16], Daejeon16, SRG-evolved with flow parameters Λ = 1.5 and 2.0 fm−1

Idaho N3LO, and ‘bare’ Idaho N3LO NN interactions.

Interaction JISP16, Daejeon16 Idaho N3LO, SRG Idaho N3LO
Ref. [16] Λ = 1.5 fm−1 Λ = 2.0 fm−1

a (MeV
1
2 ) 0.701 0.749 0.613 0.662 —

b2 (MeV) 1.09 1.28 0.970 1.07 —

c (MeV− 5
2 ) −27.0 −16.2 −31.6 −28.1 4960

d (MeV−4) 0.281 0.717 0.720 0.776 2330
Er (MeV) 0.844 0.997 0.783 0.846 —
Γ (MeV) 1.38 1.60 1.15 1.29 —
Ef (keV) −54.9 −63.4 −52.1 −54.5 —
|Ev| (keV) — — — — 15.2
Ξ (keV) 43.8 47.9 29.0 31.7 19.4

We can accurately describe the NCSM results using only one resonant pole term.
However this parametrization, as in the case of JISP16 [16], results in a very rapid
changes of the background phase signaling the presence of another S-matrix pole in
the vicinity of zero energy. A description of the selected NCSM eigenenergies approx-
imately with the same rms deviation is achieved also by a parametrization with two
pole terms associated with a resonant state and a false state. This parametrization
essentially decreases the variation of the background phase and appears to be accept-
able from the physical viewpoint. The resulting phase shifts are presented in the right
panel of Fig. 1 while the fit parameters including the resonance energy and width and
the energy of the false pole are given in Table 1. It is seen that the Daejeon16 NN
interaction suggests a low-lying resonance in the system of four neutrons with energy
about 1 MeV and width about 1.6 MeV consistent with the experimental observations
of Ref. [1].

For comparison, we present in Table 1 also the results of Ref. [16] obtained with the
JISP16 interaction with the same two-pole parametrization. It is seen that JISP16 and
Daejeon16 interactions provide very similar predictions not only for the tetraneutron
resonance energy and width but also for other fit parameters.

4 Results with SRG-evolved Idaho N3LO

As it was already noted, the Daejeon16 interaction was fitted to the observables in
light nuclei by applying phase-equivalent transformations to the SRG-evolved Idaho
N3LONN interaction with flow parameter Λ = 1.5 fm−1. Therefore it is interesting to
investigate the effect of this adjustment of the NN interaction, which makes it possible
to calculate nuclei without an explicit use of three-nucleon forces, on the tetraneutron
resonance. We perform the tetraneutron calculations with the SRG-evolved Idaho
N3LO NN interaction with flow parameters Λ = 1.5 fm−1 and Λ = 2.0 fm−1 to
examine also the dependence of the tetraneutron resonance energy and width on the
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Figure 2: NCSM results for the lowest 0+ tetraneutron states and the 4 → 4 phase
shifts obtained with SRG-evolved Idaho N3LO NN interactions with flow parame-
ters Λ = 1.5 fm−1 (upper panel) and Λ = 2.0 fm−1 (lower panel). See Fig. 1 for
details.

flow parameters Λ.

It is interesting to note here that the SRG-evolved chiral Idaho N3LO with these
values of flow parameters Λ, as well as the JISP16 and Daejeon16 interactions, provide
without three-nucleon forces ground states of the bound A = 3 and A = 4 systems
close to experiment while the original Idaho N3LO significantly underbinds these sys-
tems (see, e. g., Ref. [23,43]). For example, the SRG-evolved chiral Idaho N3LO with
our adopted flow parameters Λ, as well as the JISP16 and Daejeon16 interactions,
all provide ground state energies of A = 3 nuclei and 4He within 100 keV of exper-
iment. On the other hand, the original Idaho N3LO underbinds 3H by 620 keV and
underbinds 4He by 2.9 MeV.

We perform the calculations similar to those presented in the previous Section.
In particular, we use the same set of Nmax and ~Ω values in the NCSM calculations
and make similar though not identical selections of the NCSM results for the phase
shift parametrizations. We again come to a conclusion that physically reasonable
parametrizations should include pole terms corresponding to resonant and false states,
which suggest low-energy tetraneutron resonances. The results are presented in Fig. 2
and Table 1.

It is seen that we obtain the results similar to those obtained with JISP16 and
Daejeon16 interactions. It is interesting that the interaction with Λ = 2.0 fm−1
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results in the values of the resonance energy and width as well as in the energy of the
false state nearly identical to those obtained with JISP16. Decreasing Λ to 1.5 fm−1

causes small decreases of the resonant energy and width which become nearly 30%
smaller than the width obtained with Daejeon16 while the difference in resonance
energies is about 20%. These differences between the Daejeon16 and SRG-evolved
with Λ = 1.5 fm−1 interactions may serve as a rough estimate of the three-body force
effects in the tetraneutron since the Daejeon16, being fitted to light nuclei, mimics
three-body force effects by off-shell properties of this two-nucleon only interaction.

A close look at the phase shift parametrizations in Figs. 1 and 2 reveals that the
discrete energies, Ei

0, in the region of the extracted resonance are not as well converged
as those outside this region. This slower convergence is reasonable in light of the low
energy of the resonance which results from the delicate cancelation of small kinetic
and small potential contributions to the values of Ei

0.
Generally, the results obtained with the SRG-evolved Idaho N3LO interactions

are consistent with those from JISP16 and Daejeon16 interactions and with the ex-
periment [1].

5 Results with original Idaho N3LO

Although the original Idaho N3LO interaction significantly underbinds the bound
light nuclei with A > 2, we include results with this interaction since it does produce
an excellent description the two-nucleon data. That is, normally, one includes a three-
nucleon interaction with the original Idaho N3LO interaction to produce good binding
results for the bound light nuclei with A > 2. It is also interesting to compare our
results for this interaction with numerous studies of other authors that employed NN
interactions with a strong short-range repulsion and did not obtain a narrow low-lying
resonance in the tetraneutron.

We find that the same calculations with the ‘bare’ Idaho N3LO NN interaction
alone, without a three-nucleon interaction, bring us to a very different conclusion
about the tetraneutron resonance.

The NCSM calculations are performed in the same range of Nmax, 2 ≤ Nmax ≤ 20,
and ~Ω, 1 MeV ≤ ~Ω ≤ 20 MeV; Fig. 3 shows the low-energy fraction (below 6 MeV)
of the obtained NCSM results for the tetraneutron ground state together with the
selection of eigenstates for the further SS-HORSE analysis. The phase shifts obtained
directly from all NCSM results using Eq. (3) are shown in the left panel of Fig. 4.
Contrary to other interactions discussed above, we have a convergence with the ‘bare’
N3LO only at low enough energies, below approximately 6 MeV, where the phase shifts
with increasing Nmax tend to a common curve formed by the phase shifts from the
largest available model spaces. Therefore we select for the phase shift parametrization
only the NCSM results with Nmax = 16, 18, and 20 lying below 6 MeV. Starting from
the energies of 6 MeV, the convergence is clearly not achieved. One can speculate
that the tendency of the phase shifts in this energy region suggests that the converged
phase shift will form an additional smooth increase between 6 and 15 MeV that may
indicate a presence of a wide resonant state with energy around 10 MeV, which, most
probably, will be not possible to detect experimentally. There is also an indication
that the convergence is achieved at energies around 20 MeV and higher which are of
no interest for our analysis.

The behavior of the converged phase shifts in the right panel of Fig. 4 which
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Fig. 1 for details.
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Figure 4: 4 → 4 phase shifts obtained directly from all available (left panel) and from
the selected (right panel) NCSM results using Eq. (3) (symbols) together with the
4 → 4 phase shift parametrization (solid curve).

are increasing smoothly up to approximately 80◦ in a wide enough energy interval,
suggests an absence of a narrow resonance; however, this phase shift increase may
be caused by a wide resonance or by a low-lying virtual state as well as by some
combination of S-matrix poles of different types. We have studied various possibilities
and have come to the conclusion that the only way to describe the NCSM results
with the unperturbed Idaho N3LO NN interaction is to introduce a single pole term
associated with a virtual state with a very small energy of 15.2 keV. The fit parameters
are listed in Table 1, the fitted hyperspherical phase sifts are depicted in the right
panel of Fig. 4.

6 Summary and conclusions

We have studied in a democratic NCSM-SS-HORSE approach with various NN in-
teractions a low-lying resonance in a system of four neutrons, which was recently
observed in a RIKEN experiment [1]. We found that a narrow resonance consistent
with experimental data is supported by soft NN interactions, in particular, by JISP16
and Daejeon16 interactions accurately describing the two-nucleon data and fitted to
properties of light nuclei without making use of three-nucleon forses as well as by the
SRG-evolved chiral Idaho N3LO NN interactions with flow parameters Λ = 1.5 fm−1
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and 2.0 fm−1. All these interactions provide similar results indicating a resonance
with energy between 0.7 and 1.0 MeV and width between 1.1 and 1.7 MeV. On the
other hand, the original Idaho N3LO, which underbinds light nuclei in the absence of
a three-body interaction, does not support a tetraneutron resonance but predicts a
very low-lying tetraneutron virtual state with the energy of 15 keV. This is consistent
with results of other theoretical studies of various authors who did not obtain a nar-
row low-lying tetraneutron resonance within various approaches with NN interactions
with a strong short-distance repulsion. However, it appears that nobody before was
searching for a virtual state in the four-neutron system.

Regarding the comparison with the experiment [1], we note that the experimen-
talists are not studying the S-matrix poles in the system of four neutrons but are
studying cross sections of a complicated reaction 4He(8He, 8Be), where the reaction
mechanism plays a very important role. This reaction mechanism can reveal the
tetraneutron resonance but, probably, at a somewhat shifted energy, or just mimic a
resonance behavior in a system that has no low-lying resonance but a broad contin-
uum structure as discussed in Ref. [9]. It is also possible that the virtual tetraneutron
state can manifest itself as a resonant structure of the cross section due to some fea-
tures of the reaction mechanism. Therefore it would be very interesting to study the
reaction 4He(8He, 8Be) in a realistic reaction-theory approach which will account for
the pole structure of the tetraneutron.

It would also be interesting to study the tetraneutron with a combination of mod-
ern NN and three-nucleon forces. We experience technical difficulties in allowing
for three-nucleon forces in our approach. In particular, we need matrix elements
of a three-nucleon force in oscillator bases with large Nmax and very small ~Ω val-
ues which presents a real challenge. This need arises since the NCSM results with
large Nmax and small ~Ω are of special importance for calculating low-energy behav-
ior of the S-matrix and for locating its poles. We, however, hope to overcome this
difficulty in future studies. The effects of the three-nucleon force on the tetraneutron
resonance properties are roughly estimated to be around 20–30% by comparing the
results obtained with Daejeon16 and SRG-evolved N3LO interactions.
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