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Abstract

A method to calculate reactions in quantum mechanics is outlined. It is
advantageous, in particular, in problems with many open channels of various
nature, i. e., when the energy is not low. Within this method, there is no need
to specify reaction channels in a dynamics calculation. These channels come
into play at merely the kinematics level and only after the dynamics calculation
is done. Such a calculation is of a bound-state type and continuum spectrum
states never enter the game.

Keywords: Multichannel reactions; microscopic calculations; method of inte-
gral transforms

1 Overview

An approach reviewed in this paper is advantageous, in particular, in problems with
many open channels of various nature, i. e., when the energy is not low. Conventional
approaches dealing with continuum wave functions are impractical in such problems
at least at A > 3. The approach was successfully applied in nuclear reaction prob-
lems with 3 ≤ A ≤ 7 and also recently for A = 12 and 16 proceeding from NN
or NN + NNN forces. Many cases of reactions induced by a perturbation, i. e.,
electromagnetic or weak interaction, were considered. Both inclusive (mostly) and
exclusive processes were studied. Reactions induced by strong interaction still were
not considered although this can be done in a similar way, see below.

The main features of the approach are the following. In a dynamics calculation
within its framework there is no need to specify reaction channels at all. These come
into play at merely the kinematics level and only after the dynamics calculation is
done. Such a calculation is of a bound-state type.

Correspondingly, continuum spectrum states never enter the game. In place of
them, “response-like” functions of the type of Eq. (1) below, are the basic ingredients
of the approach. Reaction observables are expressed in terms of these functions as
quadratures, see Eqs. (3)–(6) below. It should also be noted that, in some problems of
importance, the quantities of the form of Eq. (1) are of interest themselves representing
observable response functions for inclusive perturbation-induced reactions.
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The “response-like” functions of the form of Eq. (1) are obtained not in terms
of complicated continuum spectrum states entering their definition but via a bound-
state type calculation. As the first step, an integral transform of such a function is
performed. This transform is expressed in a closed form and represents a “continuum
sum rule” depending on a σ parameter, see Eq. (12). It is evaluated via a bound-
state type calculation. As the next step, this sum rule is considered as an equation
determining the “response-like” function, i. e., its inversion is performed. Once this
is done, the above mentioned quadratures giving the reaction observables are readily
obtained.
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Figure 1: Comparison of Faddeev and LIT results for the total 3H photoabsorption
cross section in unretarded dipole approximation a) with NN (AV18) force only and
b) with NN(AV18) + NNN(UrbIX) force. Dots are the Faddeev results and two
curves represent the bounds for the LIT inversion. Dotted curve in b) is the result
with AV18 only.
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Thus, as claimed above, a specification of reaction channels in the dynamics cal-
culation and dealing with continuum wave functions are avoided in this approach. A
criterion of accuracy is the stability of the response-like function obtained.

In addition to the stability checks, comparisons with more conventional calcula-
tions that deal with continuum wave functions, have been performed. In the bench-
mark paper [1], the Faddeev results for the 3H photoabsorption total cross section
are compared with the results [2] obtained via the above described approach. In the
framework of this approach, the Lorentz integral transform (LIT), see the next sec-
tion, was used. The Argonne V18 NN interaction and the Urbana IX NNN potential
have been employed. The results are shown in Fig. 1.

A compete agreement is observed in the case when only the NN force is retained,
while in the case when the NNN force is added, such an agreement is observed
everywhere except for the peak region where a slight difference is present. In Ref. [3]
the LIT results in the same problem have been obtained employing expansions over
two different bases at solving the dynamics equation, the correlated hyperspherical
basis (CHH) and the effective interaction hyperspherical basis (EIHH). The results
are shown in Fig. 2.
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Figure 2: (a) The same cross section calculated with the same NN + NNN force
as in Fig. 1(b) (Eγ → ω). It is obtained with the help of LIT at solving the
dynamics equation in two ways. Full and dashed curves represent the results
gained using the CHH and EIHH expansions, respectively. (b) Relative difference
∆σ = [σ(CHH) − σ(EIHH)]/σ(CHH) between these cross sections.



Microscopic approach to multichannel reactions 69

5.75 6 6.25 6.5 6.75
Eγ [MeV]

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

σ γ [
m

b
]

0.001 0.01 0.1 1
E [MeV]

0.1

1

10

S
-f

ac
to

r 
S

1
2
 [

eV
 b

]

(a)

(b)

Figure 3: (a) Total 3He
photoabsorption cross
section in the threshold
region calculated with
the MT NN potential.
Full curve — LIT
results; plus signs —
direct calculation utiliz-
ing explicit continuum
wave functions. (b) The
same as (a) but rescaled
in order to determine
the S-factor. The
inversion error bounds
are shown by dashed
lines. E denotes the
p−d relative motion
energy.

These results practically coincide with each other which testifies to that the LIT
results in Fig. 1(b) are accurate.

One more test [4] is presented in Fig. 3. The total cross section of the 3He(γ, p)d
reaction in the threshold region is calculated in two ways, by means of the LIT as
discussed above, and via a direct calculation of the pd continuum wave functions.
In this case, there is no real need to use the method of integral transforms since the
problem is single-channel. Another point is that the problem considered is unfavorable
for this method since the cross section at the threshold is tiny, and the values of the
response function at such energies contribute extremely little to the integral pertaining
to the corresponding integral equation (12) and therefore to the input to solving
this equation. Despite this, a complete agreement of the results of two methods is
observed. This is most clearly seen from Fig. 3(b) where the quickly varying Gamow
factor is factored out from the cross section, and the remaining astrophysical S-
factor is presented. The central Malfliet–Tjon NN potential was employed in this
calculation. Let us also mention that the pd continuum wave functions that have led
to the results in Fig. 3, provide the phase shifts practically indistinguishable from
those of another group [5].

The basic points of the approach are presented in the next Section, and Section 3
contains further comments.
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2 Basics of the method

As said above, “response-like” quantities of the type

R(E) =
∑

n

〈Q′|Ψn〉〈Ψn|Q〉 δ(E − En) +
∑∫

dγ 〈Q′|Ψγ〉〈Ψγ |Q〉 δ(E − Eγ) (1)

are the basic ingredients of the approach. Here Ψn are bound states and Ψγ are con-
tinuum spectrum states. They represent a complete set of eigenstates of the Hamil-
tonian of a problem. The subscript γ denotes collectively a set of continuous and
discrete variables labeling the states which is symbolized in the summation over inte-
gration notation. The normalizations 〈Ψn|Ψn′〉 = δn,n′ and 〈Ψγ |Ψγ′〉 = δ(γ − γ′) are
adopted, so that ∑

n

|Ψn〉〈Ψn| +
∑∫

dγ |Ψγ〉〈Ψγ | = I, (2)

I being the identity operator.
In the method discussed, the quantities R(E) of Eq. (1) are obtained not in terms

of complicated states Ψγ entering their definition but via a bound-state type calcula-
tion. Reaction observables are expressed in terms of R(E) as quadratures.

Let us first explain the latter of these points. Consider a strong interaction in-
duced reaction. Denote Aφi(E) and Aφf (E) the antisymmetrized “channel free-
motion states”. Here the subscript i (f) refers to the initial (final) state of the
reaction, φi,f (E) are products of fragment bound states and of factors describing
their free relative motion [6], and A denotes the operator realizing antisymmetriza-
tion with respect to identical particles (A2 = A) [6]. Denote φ̄i(E) = A(H − E)φi(E)

and φ̄f (E) = A(H − E)φf (E) where H is the Hamiltonian. One has φ̄i = AV res
i φi

and φ̄f = AV res
f φf , where V res

i,f are interactions between fragments in the initial and

final states. Here it is assumed that these interactions are of a short range so that
the outer parts of the long-range inter-fragment Coulomb interaction are disregarded.
This point is reconsidered below.

The T matrix determining the reaction rates is [6]

Tfi = TBorn
fi + 〈φ̄f (E)|(E −H + iǫ)−1|φ̄i(E)〉, ǫ→ +0. (3)

Here TBorn
fi is the simple Born contribution,

TBorn
fi = 〈φf |φ̄i〉 = 〈φ̄f |φi〉,

and the main problem is a calculation of the second term in Eq. (3) that includes the
Green function (E −H + iǫ)−1. This contribution may be presented as
∫
dE′RE(E′) (E − E′ + iǫ)−1 ≡ −iπRE(E) + P

∫
dE′RE(E′) (E − E′)−1, (4)

where

RE(E′) =
∑

n

〈φ̄f (E)|Ψn〉〈Ψn|φ̄i(E)〉 δ(E′ − En)

+
∑∫

dγ 〈φ̄f (E)|Ψγ〉〈Ψγ |φ̄i(E)〉 δ(E′ − Eγ). (5)
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The quantity (5) is just of the structure of Eq. (1) (with the E → E′ replacement).
Thus, indeed, to calculate matrix elements of the T matrix it is sufficient to have the
quantities of this structure. Once they are available, the integrations in Eq. (4) are
readily done.

The amplitude of a perturbation-induced reaction is 〈Ψ−
f |Ô|Ψ0〉 where Ô is a per-

turbation, Ψ0 is an unperturbed initial bound state, and Ψ−
f is a continuum spectrum

state. To calculate this amplitude, let us substitute 〈Ψ−
f | in it by the expression [6]

〈Ψ−
f | = 〈φf | + 〈φ̄f |(E −H + iǫ)−1.

Then
〈Ψ−

f |Ô|Ψ0〉 = 〈φf |Ô|Ψ0〉 + 〈φ̄f |(E −H + iǫ)−1|ÔΨ0〉, (6)

and one may proceed as above with the replacement φ̄i → ÔΨ0.
Modifications of the above relations required to incorporate the long-range inter-

fragment Coulomb interaction are outlined in Ref. [7]. (If the response function itself
is the objective of the calculation, the Coulomb interaction does not require a special
consideration as will be seen below.) These modifications consist in changes of the Q
and Q′ states which include the Coulomb functions in the inner region of the relative
motion of fragments. Of course, it is very easy to obtain such Coulomb functions in
the case of two-fragment reaction channels.

Now let us explain the above mentioned point by calculating the quantities ex-
pressed by Eq. (1). Let us rewrite Eq. (1) as

R(E) =
∑

n

Rn δ(E − En) + f(E), Rn = 〈Q′|Ψn〉〈Ψn|Q〉, (7)

f(E) =
∑∫

dγ 〈Q′|Ψγ〉〈Ψγ |Q〉 δ(E − Eγ). (8)

The contribution (8) includes an integration over few- or many-body continuum
states Ψγ that are very complicated except for low energies, and the main prob-
lem is just the calculation of this contribution. If Ethr denotes the threshold value
for the continuum state energies then f(E) is different from zero at Ethr ≤ E ≤ ∞.

An easy task is the sum rule calculation. Using Eq. (2) one gets
∫ ∞

Ethr

f(E) dE +
∑

n

Rn = 〈Q′|Q〉. (9)

Obviously, knowing the quantity (9) is not enough to reconstruct the R(E) itself. To
achieve this goal, let us consider “generalized sums” of the form

∫
K(σ,E)R(E) dE. (10)

These sums are equal to

∑∫
dγ 〈Q′|Ψγ〉K(σ,Eγ)〈Ψγ |Q〉 +

∑

n

〈Q′|Ψn〉K(σ,En)〈Ψn|Q〉. (11)

Since Eq. (2) is valid, this quantity is equal to 〈Q′|K(σ,H)|Q〉 where, as above, H is
the Hamiltonian of a problem. Thus one comes to the relation
∫ ∞

Ethr

K(σ,E) f(E)dE+
∑

n

K(σ,En)Rn = Φ(σ), Φ(σ) ≡ 〈Q′|K(σ,H)|Q〉, (12)
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where f(E) and Rn are the continuous part and discrete contributions to the response-
like function R(E), see Eqs. (8) and (7). Since this relation is valid for any σ, it may
be considered as an equation to determine R(E), i. e., f(E) and Rn, provided that
one is able to calculate the quantity 〈Q′|K(σ,H)|Q〉.

3 Further comments

Thus an equation of the form given by Eq. (12) is to be solved. First, one needs to
calculate the right-hand side input. If one is able to diagonalize the Hamiltonian on
a sufficiently big subspace of basis functions this can be readily done. In this case,
one can use an approximation of the type

〈Q′|K(σ,H)|Q〉 ≃
N∑

n=1

〈Q′|ϕN
n 〉K(σ,EN

n )〈ϕN
n |Q〉. (13)

Here N is the dimensionality of the subspace and other notations are obvious. Sup-
pose, for example, that the kernel K(σ,E) = exp[−(σ − E)2/σ2

0 ] is employed. At a
given accuracy of the input Φ(σ), smaller σ0 values would lead to a better reproduc-
tion of details of f(E) at solving Eq. (12). Indeed, at large σ0 values, contributions
to Φ(σ) from peculiarities of f(E) are spread over large σ intervals, and sizes of these
contributions may be comparable with sizes of inaccuracies in calculated Φ(σ). At
the same time, smaller σ0 values require use of subspaces of basis functions of higher
dimensionality. Indeed, accurate Φ(σ) values emerge only at such sizes of these sub-
spaces that (at σ values of significance) the energy ranges σ−σ0 ≤ E ≤ σ+σ0 contain
sufficiently large numbers of EN

n eigenvalues.

The right-hand side of Eq. (13) represents the result of smoothing the pseudo-
response

N∑

n=1

〈Q′|ϕN
n 〉〈ϕN

n |Q〉 δ(E − EN
n )

with the help of the smoothing function K(σ,E). Such type smoothings were per-
formed in the literature and their results were considered as approximations to true
responses for perturbation-induced inclusive reactions. Contrary to this, within the
present approach such results are not adopted as approximations to the true responses.
Here they play the role of an input to the integral equation which solution provides
the final true responses. This refinement makes it possible to obtain more accurate
and consistent results.

At some choices of the kernel K, it is possible to calculate the input Φ(σ) to
Eq. (12) without the diagonalization of the Hamiltonian. The simplest example is the
Stieltjes kernel K(σ,E) = (σ+E)−1 where σ is real and lies apart from the spectrum
of the Hamiltonian. In this case one has

Φ(σ) = 〈Q′|ψ̃〉, ψ̃ = (H + σ)−1Q, (14)

i. e., ψ̃ is a solution of the inhomogeneous Schrödinger-like equation

(H + σ)ψ̃ = Q. (15)



Microscopic approach to multichannel reactions 73

From the fact that 〈Q|Q〉 is finite it follows that the solution is localized, and such a
solution is unique. Another example is the so-called Lorentz kernel,

K(σ = σR + iσI , E) = 1/[(σR − E)2 + σ2
I ]. (16)

By writing

1

(σR − E)2 + σ2
I

=
1

2iσI

(
1

σR − E − iσI
− 1

σR − E + iσI

)
, (17)

one reduces the calculation in this case to that with the Stieltjes complex kernels.
The solutions of respective equations of the type of Eq. (15) are also localized and
unique.

Since the Lorentz kernel has a limited range, the inversion of the transform is more
accurate than in the case of the Stieltjes kernel at the same accuracy in the input, cf.
the reasoning above. Still, if an expansion over a basis is applied to solve Eq. (15),
the convergence of Φ(σ) in the Stieltjes case is faster than that in the Lorentz case
with a small σI . Indeed, at σI → 0, the continuum spectrum regime is recovered
at σR values of interest belonging to the scattering line.

One more example is the Laplace kernel K(σ,E) = exp(−σE). The corresponding
input 〈Q′|e−σH |Q〉 may be calculated with the Green’s Function Monte Carlo method.

We shall not discuss here methods of solving Eq. (12), i. e., the inversion of the
transform, referring for this to the literature. Let us mention only that such an
equation represents a classical “ill-posed problem” (this does not mean at all that the
problem is a very difficult one!). A standard regularization procedure was applied
in practical calculations and convergent results have been obtained. Still, with such
a procedure, a sufficient accuracy of the input Φ(σ) may be harder to achieve in
problems with not a small number of particles. A new method to solve Eq. (12) has
been proposed recently [8]. In this method, the number of maxima and minima of
the desired solution is imposed as an additional constraint. The method does not
require a regularization. It has been proved that the method is convergent at least
everywhere except for the points of maxima and minima of f(E). Thus, apart from
this restriction, the problem becomes a well-posed one with the constraint imposed.
With the same approximate inputs, the method provides much more accurate results
than the standard regularization procedure in simple examples considered. However
its further study is still required.

The discrete contributions Rn in Eq. (12) may be calculated separately. A conve-
nient way to do this in the cases of the Lorentz or Stieltjes transforms can be found in
Ref. [7]. Another option is the following. A general algorithm for solving Eq. (12) sug-
gests to express f(E) through some parameters and to fit these parameters to Φ(σ).
The Rn amplitudes may be included in the set of such parameters.

A limitation of the present approach is that in order to reproduce very fine details
of spectra of reactions, such as widths of narrow resonances, an increased accuracy
in the input Φ(σ) is required. The reason is the same as the discussed above in
connection with Eq. (13). This feature is similar to the situation with extracting, say,
widths of narrow resonances from experiments measuring scattering or reaction cross
sections. However narrow resonances are usually located at low energies whereas the
present method is designed for calculations of reactions with many open channels, i. e.,
not at low energies. Furthermore, the information on the widths of narrow resonances
taken from experiment or from alternative calculations may be readily incorporated
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in the algorithm of solving Eq. (12). Anyway, the inaccuracies in widths of resonances
at low energies in the present method would not lead to inaccuracies at reproducing
reaction spectra at higher energy. In addition, the widths of resonances in light nuclei
are normally not so narrow. The width about 200 KeV of such a resonance in 4He
was reproduced in Ref. [9] with a reasonable accuracy in the framework of the present
approach; see also Fig. 3 in this respect.

In conclusion, the relevant literature is listed in addition to the references above.
The approach to calculate reactions described in Sec. 2 has been introduced in Ref. [10].
Its presentation here is close to Ref. [7]. The bound-state type, i. e., the sum rule calcu-
lation of the integral transforms of observable responses R(E), i. e., pertaining to the
inclusive perturbation-induced reactions, has been suggested in Ref. [11] in the case of
the Stieltjes transform and in Ref. [12] in the case of the Laplace transform. Inversions
of the transforms were not considered in those works. An alternative approach [13]
in which an observable R(E) is reconstructed from its moments of the type 〈E−n〉,
n = 0, ... , N , has been also developed. The quantity of Eq. (9) represents in this case
the zero moment. The subsequent moments are calculated recursively. Contrary to
the above described method [10] of treatment of general type reactions, i. e., exclu-
sive perturbation- and strong interaction-induced ones, the approach of Ref. [13] is
applicable only to the inclusive perturbation-induced reactions. The described way
to calculate Φ(σ) involving Eq. (13) was suggested in Ref. [7] (although at too restric-
tive conditions imposed on Q and Q′). The Lorentz transform has been introduced in
the present context in Ref. [14]. Its evaluation in the form listed above was given in
Ref. [7]. In Ref. [15] an efficient algorithm to calculate Φ(σ) by solving Eq. (15) with
the help of an expansion in a series of basis functions, has been developed. In the
review papers [7] and [16] the transform inversion in the framework of a conventional
approach is considered. In Ref. [16] earlier applications performed with the help of
the Lorentz transform are reviewed as well. Among later applications, advances in
studies of heavier nuclei [17, 18] are to be mentioned.
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