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Abstract

In this contribution, we present a procedure that aims to reduce the compu-
tational complexity of large-scale shell-model calculations by taking into account
the rejected degrees of freedom in an effective approach. Starting from a gen-
eral large-scale shell-model Hamiltonian, the study of the behavior of its effective
single-particle energies as a function of the number of valence nucleons, allows
to establish a reduced model space made up only by orbitals needed to describe
a certain class of isotopes or isotones. Next, an unitary transformation of the
original Hamiltonian is performed from its model space into the truncated one.
By virtue of this transformation, a new shell-model Hamiltonian is obtained,
which is defined in a smaller model space preserving effectively the role of the
excluded single-particle orbitals. As an application of this procedure, we present
the results obtained for Mo isotopes outside the 88Sr core, starting from shell-
model Hamiltonians derived by way of the many-body perturbation theory from
a realistic nucleon-nucleon potential. We present also a study of the dependence
of shell-model results upon different truncations of the original model spaces, in
order to demonstrate the reliability of this truncation procedure.

Keywords: Nuclear shell model; realistic nucleon-nucleon potentials; effective
interactions

1 Introduction

The nuclear many-body problem is far more computationally complex than other
physical many-body problems because of the nature of the nuclear force. The latter
is responsible for correlations between the constituent particles of the nuclei which are
stronger than the corresponding ones in atomic and molecular systems, giving a hard
life to nuclear microscopic models that take into account single-particle (SP) degrees
of freedom of the nucleons.

Recent advances in computer technology have stimulated the development of ab
initio nuclear structure models which have extended their range of application from
light- to medium-mass nuclei.
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For heavier mass nuclei, the nuclear shell model (SM) is still the most profitable
approach to the description of nuclei in terms of microscopic degrees of freedom of
the valence nucleons with respect to the inert core.

As mentioned before, high-performance computing devices are widely accessible
and the SM calculations with large model spaces and for nuclear systems with many
valence nucleons are becoming more feasible. These large-scale shell-model (LSSM)
calculations are at present a formidable tool to describe the collective properties of
atomic nuclei within a microscopic approach and a sound support of experimental
efforts aimed to improve the knowledge of the chart of the nuclides in the rare-ion-
beam era.

In this regard, it is worth to mention, among many works, the study of the onset
of collectivity at N = 40 [1], the revelation of a novel shape evolution in nickel
isotopes [2], the merging of the islands of inversion at N = 20 and N = 28 [3], the
description of shell evolution leading to the quenching of the N = 82 shell gap near
120Sr [4].

However, there exists always an upper limit to the dimension of matrices that
have to be diagonalized to solve the SM eigenvalue problem, in spite of the progress
in the computer technology. Consequently, most of the LSSM calculations need to
introduce some truncation of the SM basis in order to compute theoretical quantities.

In Ref. [1], in order to study the observed onset of collectivity at N = 40 in the
chromium and iron isotopic chains, a LSSM calculation has been performed employing
a model space spanned by the four fp proton orbitals and five fpgd neutron ones,
with 4 and 6 valence protons and up to 12 valence neutrons. In order to diagonalize
the SM Hamiltonian using the NATHAN code [5], the authors have truncated the
basis including up to= 14p−14h excitations across the Z = 28 and N = 40.

The appearance of the shape coexistence in low-energy states of nickel isotopes
[2] has been investigated in terms of the SM considering both proton and neutron
model spaces spanned by six orbitals 0f7/2, 1p3/2, 1p1/2, 0f5/2, 0g9/2, 1d5/2 outside the
doubly-closed 40Ca core. In the m-scheme the dimension of the basis is ≃ 1024, so
in Ref. [2] it has been resorted to the importance sampling of the SM states per-
formed within the Monte Carlo Shell Model (MCSM) approach to reduce the matrix
dimension to 50 [6].

The N = 20 and N = 28 islands of inversion have been described by the LSSM
calculations within the full sdpf model space [3], but the basis has been restricted so
that only the neutron N = 20 cross-shell excitations have been taken into account.
In such a case, the SM basis has a dimensionality of up to 1010.

In Ref. [4], the authors aim to study the evolution of the neutron N = 82 shell
gap along the isotonic chain by way of the LSSM calculations. They have employed a
model space spanned by proton orbitals 0f5/2, 1p3/2, 1p1/2, 0g9/2, 0g7/2, 1d5/2, and 7
neutron orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2, 1f7/2, 2p3/2, which allow core excita-
tions across both the N = 82 neutron and Z = 50 proton shell gaps. In such a case,
the diagonalization of the SM Hamiltonian could be performed only by truncating
the basis so to allow only one valence-neutron in the 1f7/2, 2p3/2 neutron orbitals.

These examples show how the calculations for nuclei with many valence nucle-
ons — within large model spaces — are very demanding from the computational
point of view, and oblige the researchers in many situations to employ some trunca-
tion of the SM basis.

However, whenever the number of valence particle increases, we should consider
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also an evolution of theoretical effective SP energies (ESPE) of the SM Hamiltonian.
This evolution of the behavior of the ESPE as a function of the number of valence

protons or neutrons may be helpful to locate the relevant degrees of freedom to de-
scribe the spectroscopy of a class of isotopes or isotones, and consequently to provide
a criterion to reduce the degrees of freedom of the model space.

In a recent work [7], we have proposed a method, already employed in Ref. [8],
to perform a very effective truncation of the model space, based on the study of the
ESPE of the SM Hamiltonian H as a function of Zval and/or Nval. Next, a new SM
Hamiltonian H̃ defined in a reduced model space with a smaller number of orbitals,
is built up through an unitary transformation of the “mother Hamiltonian” H .

Here, as an application of this method, we will report some results obtained for
Mo isotopes outside the closed-shell nucleus 88Sr.

The “mother Hamiltonian” H is derived from the CD-Bonn potential [9], whose
high-momentum repulsive components are smoothed out using the Vlow−k approach
[10], utilizing the time-dependent perturbation theory [11]. This will be done within
a large model space that includes seven psdgh proton and five sdgh neutron orbitals.

At the following step, the behavior of the proton and neutron ESPE as a function
of the number of valence neutrons and protons is analyzed. The study of the ESPE
suggests how to reduce the number of proton and neutron orbitals. After this, we
derive — by means of a unitary transformation of the starting SM Hamiltonian —
new effective Hamiltonians defined in the reduced model spaces and tailored to study
specific isotopic chains. Finally, the SM calculations with these effective Hamiltonians
are performed and the theoretical results are compared.

In the following Section, we present some details about the derivation of our shell-
model Hamiltonians and effective charges of the electric quadrupole operators, and
how we derive the new effective Hamiltonians within the truncated model spaces.
In Section 3, we report the results of our calculations for Mo isotopes starting from
different model spaces. Finally, we summarize our results in the final Section.

2 Outline of calculations

The first step in our procedure is the derivation from the CD-Bonn NN potential [9] of
a starting effective SM Hamiltonian in the framework of the many-body perturbation
theory. More explicitly, we first renormalize high-momentum repulsive components
of the bare NN potential using the so-called Vlow−k approach [10], which provides
a smooth potential preserving exactly the on-shell properties of the original NN
potential up to a cutoff momentum Λ = 2.6 fm−1. Next, the SM Hamiltonian is
derived using the well-known Q̂-box plus folded-diagram method, where the Q̂-box
is a collection of irreducible valence-linked Goldstone diagrams which we calculate
through the third order in the Vlow−k [11].

The effective Hamiltonian Heff can be written in an operator form as

Heff = Q̂− Q̂′

∫
Q̂ + Q̂′

∫
Q̂

∫
Q̂− Q̂′

∫
Q̂

∫
Q̂

∫
Q̂ + ... , (1)

where the integral sign represents a generalized folding operation, and Q̂′ is obtained
from Q̂ by removing the terms of the first order in Vlow−k. The folded-diagram series
is summed up to all orders using the Lee–Suzuki iteration method [12].
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The effective Hamiltonian Heff provides both the SP energies and two-body ma-
trix elements of the residual interaction [11], and we can derive consistently, within
the same perturbative approach, the effective operators Ôeff (e. g., electromagnetic
operators, Gamow–Teller transition operator) whose effects we want to study.

Both Heff and Ôeff are defined in a large model space labelled [Np, Nn], where Np

and Nn are the numbers of proton and neutron orbitals spanning the model space,
respectively. Therefore, for the sake of clarity, we dub the effective Hamiltonian and
the effective operators as HNpNn and ÔNpNn.

As mentioned in the Introduction, in the case of large model spaces, the major
computational difficulties arise when evolving the number of the valence protons Zval

(isotonic chains) and/or of the valence neutrons Nval (isotopic chains) makes the
calculation unfeasible with up-to-date SM codes. It is then mandatory to reduce the
complexity of the SM problem to be solved.

In the following we describe an approach that we have adopted with success in
Refs. [7, 8], which leads to new effective Hamiltonians defined in truncated model
spaces by way of a unitary transformation of HNpNn . The choice of the truncated
model space, [np, nn], is driven by the analysis of the behavior, as a function of Zval

and Nval, of the proton and neutron ESPE of the original Hamiltonian HNpNn so as
to find out what are the most relevant degrees of freedom to describe the physics of
nuclear systems of interest.

Here we describe the derivation of the new SM effective Hamiltonian Hnpnn start-
ing from the “mother Hamiltonian” HNpNn.

The eigenvalue problem for HNpNn can be written in terms of its eigenvalues Ei

and eigenfunctions ψi,
HNpNn |ψi〉 = Ei|ψi〉, (2)

where HNpNn may be expressed as the sum of a SP Hamiltonian H0 and a residual
two-body potential V :

HNpNn = H0 + V. (3)

As it has been mentioned before, the analysis of the behavior of the ESPE in-
duces a possible reduction of the number SP orbitals that span the model space. The
original model space [NpNn] is then split up into two subspaces defined by the pro-
jectors P ≡ Pnpnn and Q ≡ QNp−np,Nn−nn, with the projector P expressed in terms
of the H0 eigenvectors

P =
∑

i=1,d

|i〉〈i|, H0|i〉 = E0
i |i〉. (4)

The P -space effective Hamiltonian Hnpnn is defined by the equation

Hnpnn |φk〉 = (PHoP + V npnn) |φk〉 = Ek|φk〉, (5)

where we require that the eigenfunctions φk are the projections of the eigenfunc-
tions ψk of the “mother Hamiltonian”,

|φk〉 = P |ψk〉.

Formally, we can express Hnpnn as

Hnpnn =

d∑

k=1

Ek|φk〉〈φ̃k|, (6)
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where |φ̃k〉 are the |φk〉 biorthogonal states satisfying |φ̃k〉〈φk′ | = δkk′ and obtained
using the Schmidt biorthonormalization procedure.

The effective residual interaction V npnn can therefore be expressed as

V npnn =

d∑

k=1

Ek|φk〉〈φ̃k| − PH0P. (7)

The knowledge of the eigenvalues and eigenfunctions of HNpNn is therefore essen-
tial to derive explicitly the effective Hamiltonian Hnpnn.

Let us now briefly describe the derivation of the P -space effective operator Ônpnn.
By definition, Ônpnn has to satisfy the following condition

〈Ψk|ÔNpNn |Ψk′〉 = 〈φ̃k|Ônpnn |φk′〉, (8)

where ÔNpNn is the operator defined in the starting large model space. By analogy
with what we have done for the Hamiltonian, we can express Ônpnn formally as

Ônpnn =

d∑

α,β=1

〈Ψα|ÔNpNn |Ψβ〉|φα〉〈φ̃β |. (9)

It can be easily shown that the above expression satisfies Eq. (8). The knowledge of
the 〈Ψk|ÔNpNn |Ψk′〉 matrix elements is therefore essential for the explicit derivation
of the effective operator Ônpnn.

It is worth to point out that when solving the HNpNn eigenvalue problem for
a Aval valence-nucleon system, the corresponding effective Hamiltonian Hnpnn and
effective operator Ônpnn contain 1-body, 2-body, ... , Aval-body contributions. To
our knowledge, however, there are no public SM codes able to handle either these
n-body forces with n ≥ 3 or the effective operator n-body contributions with n ≥ 2.
Therefore, we have applied the above transformation only to the two valence-nucleon
systems, thus obtaining only two-body matrix elements of Hnpnn , while we have taken
into account only the one-body component of Ônpnn.

3 Results of SM calculations

As already mentioned in the Introduction, we considered for calculations outside the
88Sr core the model space spanned by seven proton 1p1/2, 0g9/2, 0g7/2, 1d5/2, 1d3/2,
2s1/2, 0h11/2 and five neutron 0g7/2, 1d5/2, 1d3/2, 2s1/2, 0h11/2 orbitals. Hereafter
this model space will be labelled [75]. In accord with notations introduced in the
previous Section, the respective SM effective Hamiltonian is dubbed H75, the su-
perscript referring to the number of proton (seven) and neutron (five) model-space
orbitals. This large model space is able to take explicitly into account the Z = 50
cross-shell excitations of protons jumping from the 1p1/2, 0g9/2 orbitals to the sdgh
ones.

We report in Table 1 the calculated SP energies and in Table 2 the theoretical
proton and neutron effective charges, the latter being close to the usual empirical
values (eemp

p = 1.5e, eemp
n = 0.5−0.8e).

The trouble with the SM Hamiltonian H75 is the computational complexity which
arises when the atomic number Z of the isotopic chain under investigation is evolved.
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Table 1: Theoretical SM SP energy
spacings (in MeV) (see text for details).

nlj
proton

SP energies
neutron

SP energies

1p1/2 0.0
0g9/2 1.5
0g7/2 5.7 1.5
1d5/2 6.4 0.0
1d3/2 8.8 3.4
2s1/2 8.7 2.2
0h11/2 10.2 5.1

Table 2: Proton and neutron effective
charges of the electric quadrupole oper-
ator E2.

nalaja nblbjb 〈a||ep||b〉 〈a||en||b〉
0g9/2 0g9/2 1.53
0g9/2 0g7/2 1.58
0g9/2 1d5/2 1.51
0g7/2 0g9/2 1.77
0g7/2 0g7/2 1.84 1.00
0g7/2 1d5/2 1.84 0.98
0g7/2 1d3/2 1.86 0.98
1d5/2 0g9/2 1.59
1d5/2 0g5/2 1.73 0.92
1d5/2 1d5/2 1.73 0.87
1d5/2 1d3/2 1.71 0.90
1d5/2 2s1/2 1.76 0.73
1d3/2 0g7/2 1.83 0.94
1d3/2 1d5/2 1.79 0.93
1d3/2 1d3/2 1.81 0.92
1d3/2 2s1/2 1.83 0.75
2s1/2 1d5/2 1.73 0.73
2s1/2 1d3/2 1.73 0.73

0h11/2 0h11/2 1.89 0.87

For example, this Hamiltonian cannot be diagonalized for any tin isotope with up-to-
date SM codes.

In order to apply the procedure reported in Section 2, we study the evolution of
both proton and neutron ESPE as a function of Zval which are reported in Figs. 1
and 2.

In Fig. 1, it can be observed that a well-defined separation between the proton
subspaces [1p1/2, 0g9/2, 1d5/2, 0g7/2] and [2s1/2, 1d3/2, 0h11/2] is provided by an almost
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Figure 1: Calculated proton ESPE
of H75 as a function of the number
of valence protons Zval.
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Figure 2: Calculated neutron
ESPE of H75 as a function of the
number of valence protons Zval.

constant energy gap, leading to the conclusion that we can truncate the proton model
space to the lowest four orbitals only.

On the neutron side, Fig. 2 evidences that the filling of the proton 0g9/2 orbital
induces a relevant energy gap at Z = 50 between the [1d5/2, 0g7/2] subspace and
the [2s1/2, 1d3/2, 0h11/2] one. On the above grounds, it looks reasonable to investigate
the neutron model space spanned only by the 1d5/2 and 0g7/2 orbitals.

Following the procedure reported in Section 2, we have derived two new effective
Hamiltonians H45

eff and H42
eff defined within two model spaces [45] and [42] consisting

of the proton 1p1/2, 0g9/2, 1d5/2, 0g7/2 and of the neutron 0g7/2, 1d5/2, 1d3/2, 2s1/2,
0h11/2 and 0g7/2, 1d5/2 orbitals, respectively. To verify the reliability of our truncation
scheme, we consider the Mo isotopes, more precisely 92,94,96Mo, whose Hamiltonians
may be diagonalized within the [7, 5] model space.

In Fig. 3 we compare the absolute energies of yrast J = 0+, 2+, 4+ states in
92,94,96Mo obtained by means of the above mentioned effective SM Hamiltonians. It
can be noted that both H45

eff and H42
eff are able to reproduce quite well the absolute

energies of the “mother Hamiltonian” H75.

It should be also pointed out that, for 96Mo, H42
eff reproduces nicely the 2+ exci-

tation energy but underestimates the collectivity predicted by the “mother Hamilto-
nian”. In fact, the R4/2 ratio between the calculated excitation energies of the 4+

versus 2+ states equal to 2.0 with H75 and H45
eff , drops to 1.6 when evaluated with H42

eff .

As a matter of fact, from the inspection of Fig. 2, we should not expect the H42
eff results

to be in a good agreement with those from H75 since there is no a clear separation of
the model space P from its complement Q for Zval = 4 (Mo isotopes).

The above results evidence the adequacy of our truncation scheme when it is
grounded on a neat separation of the model space P from its complement Q as
depicted by the ESPE behavior (see Figs. 1 and 2).

As regards the calculation of the E2 transition rates using the effective charges de-
rived consistently from the theory, we obtain, for 92Mo, B(E2; 2+1 → 0+1 ) = 148 e2fm4

with H75
eff and 160 e2fm4 with H45,42

eff . For 94Mo, the calculated result with H75
eff is

B(E2; 2+1 → 0+1 ) = 381 e2fm4, 323 e2fm4 with H45
eff , and 231 e2fm4 with H42

eff . Finally,

in the case of 96Mo, B(E2; 2+1 → 0+1 ) = 487 e2fm4 with H75
eff , 451 e2fm4 with H45

eff , and

244 e2fm4 with H42
eff . It is evident that a faster degradation of the original E2 transi-

tion rate reproduction occurs when employing the [4, 2] model space as compared to
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that calculated within the [7, 5] model space.
As pointed out at the end of Section 2, in order to preserve exactly also the

calculated transition rates for the two-valence nucleon systems when dealing with the
effective Hamiltonians Hpn, the effective E2 operator should be further renormalized
to take into account the neglected degrees of freedom. In this way, one would obtain
an effective two-body E2 operator to be employed to calculate the electric quadrupole
properties of the systems with a number of valence nucleons larger than two. As a
consequence, the eventual observed discrepancy between the E2 properties calculated
with H75 and those with the effective Hamiltonians H42

eff is a signature of the fact
that the corresponding H75 wave functions have relevant components outside the
truncated [42] model space.

4 Summary

In this paper we have reported on a double-step approach to simplify the computa-
tional problem of large-scale SM calculations. The method is based on the study of the
ESPE of the large-scale Hamiltonian to identify the most relevant degrees of freedom
to be taken into account in the construction of a truncated SM Hamiltonian. To this
end, a unitary transformation is employed to derive new effective SM Hamiltonians
defined within a reduced set of SP orbitals, accordingly to the ESPE analysis.

This procedure has been applied to a realistic SM Hamiltonian within a model
space designed to describe the Z = 50 cross-shell excitations for nuclei outside 88Sr
by employing seven proton and five neutron orbitals. The behavior of the proton
and neutron ESPE allows to identify two truncated model spaces made up by four
proton orbitals and five or two neutron ones, and we have transformed our original
Hamiltonian in these subsets.

As a test case, we have performed the calculations for Mo isotopes to check the
reliability of our procedure. The results obtained with the effectively truncated Hamil-
tonians testifies the ability to reproduce the eigenvalues and electromagnetic transition
rates of the original SM Hamiltonian when the ESPE provide a neat separation in
energy between the new model subspaces and their complement.

We are confident that this double-step approach may provide a reliable truncation
procedure in any large-scale SM calculation and a theoretical tool that may be ap-
plied in other regions where large model spaces lead to critical situations due to the
computational complexity, especially when increasing the number of valence nucleons.
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