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CLUSTERING

STATIC CLUSTERING

Closed channels with

low binding energy,

alpha-cluster channels

first of all are presented

in a nucleus (9Be as an

example).

DYNAMIC CLUSTERING

Open entrance and exit

channels of nuclear reactions

induced by composite particle

collisions are attributes of

these processes (arbitrary

fragments shape a channel).

Both these effects are the subjects.



MOTIVATIONS

1. A lot of nuclear states manifest pronounced

structuring – formation of two or more substructures

(clusters, halo nucleons, etc.). These states shape

specific spectra and demonstrate peculiarities in the

asymptotic behavior. Therefore it is of value to create

methods which give an account of clustering and

incorporate them into the shell-model calculations.

2. Progress of shell-model and related high-quality

studies of nuclear structure generates a need for

accurate approaches involving the results of these

studies in treatment of nuclear reactions and decays.

Thus one needs to combine the results with the

description of certain exit and/or entrance channels.



HOW TO DESCRIBE A CLUSTER CHANNEL  

ACCURATELY? CLUSTERING IN THE RGM

The wave function of the resonating group model

(Wheeler, 1937) is chosen in the form:

where

The A-fermion Schrödinger equation
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Introducing a new wave function:
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one can obtain the Schrödinger-like equation with

Hermitian Hamiltonian.

where the habituated orthonormalization conditions

take place:
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- for states of discrete spectra,

- for continuum states.



ALGEBRAIC VERSION OF RGM 

(Filippov, Vasilevsky, Okhrimenko, 1980)  

In the case that ΨA1 and ΨA2 are oscillator wave functions

with one and the same parameter ħω, the following

expansion of wave function of the relative motion is useful

in the algebraic version of RGM:

where - oscillator wave function of the relative motion,

The wave functions are eigenfunctions of the kernel
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The states related to              are called semi-forbidden.

with the eigenvalues

for forbidden states and 0n  1n  nat

1n 



ORTHOGONALITY CONDITIONS MODEL

The assumption of the original OCM (Saito,1969) is:

The idea of the approximation is that exchange terms

are removed from the matrix elements
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By these means direct (double folding) potential is

built. If the forbidden components in the solution

are removed somehow then

However there is a more elegant way.
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where n<=min(n,n’), n>=max(n,n’) and is the matrix

element of ordinary two-body kinetic energy operator. So

the AV RGM system of equations takes the form:

and A-fermion exchange properties of the kinetic energy

operator are completely determined by normalization

kernel.

PRECISE RGM KINETIC ENERGY OPERATOR

It is known (Horiuchi, 1977) that:
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MEASURE OF CLUSTERING

A long-term concept was that the measure of

clustering is so-called spectroscopic amplitude:

or the cluster form factor (overlap integral, amplitude

of the spectroscopic factor)
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[H.J. Mang Z. Phys. 148, 556 (1957); V.V. Balashov

et al. JETP 37, 1385 (1959); a set of works by SINP

MSU and VSU groups].

or its norm – cluster spectroscopic factor which can 

be expressed as: 
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In the paper [T. Fliessbach and H.J. Mang, Nucl. Phys. A

263, 75 (1976)] the habituated view on the clustering

measures was thrown doubt. The matter is that a certain

matching procedure (point or integral) is required to

deduce the amplitude and the width of a cluster channel.

The values of one and the same sense can solely be

related (matched, compared).

REDEFINITION OF THE CLUSTERING MEASURES. 

“NEW”  CLUSTER CHARACTERISTICS.
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norm, but:
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So the cluster form factor (projection of the shell model 

wave function)

must be related to the same projection of the A-nucleon

cluster channel WF. Not:
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And the channel wave function: 

microscopic solution of A-nucleon problem which

may be RGM, OCM, etc. After the redefinition
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resulting wave function is normalized in the regular

way and satisfy the Schrödinger equation with a

Hermitian Hamiltonian:
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So the solution of the Schroedinger equation with the

Hermitian Hamiltonian must be related to renormalized

cluster form factor. [R. Lovas et al. Phys. Rep. 294,

265 (1998)].

Sometimes the results are drastic.

As a consequence:
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CLUSTER-NUCLEON CONFIGURATION 

INTERACTION MODEL AND DESCRIPTION OF 

EXPERIMENTAL DATA

[A. Volya, Yu.M. T. Phys. Rev. C  91, 044319 ((2015)].

α-clustering in the ground states of (s-d)-shell nuclei
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SHELL-MODEL FORMALISM FOR AVRGM

A basis wave function of AVRGM multiplied by zero

oscillations of the center of mass can be written in

the form:
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Here the first multiplier is Talmi-Moshinsky

coefficient. Each of the products related to one and

the same fragment is expressible in terms of so-

called cluster coefficients:
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This coefficient determine the weight of the respective

cluster internal motion wave function multiplied by the

oscillator wave function of the center of mass motion in

a certain shell-model configurations. For the lowest sX

configurations of the lightest (X≤4) clusters a simple

formula is known (Smirnov, Tchuvil’sky, 1977):
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where αi is the multiplicity of one and the same ni in

the shell-model configuration.

There are a number of approaches suitable in the

cases that the CC of lowest configurations of heavier

fragments are calculated.



The methods workable for accurately calculated

fragment wave functions also exist. A sufficiently

versatile formalism of such a type is based on the

boson (oscillator quanta) secondary quantization

representation
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is the creation operator of the center-of-mass

oscillator quantum expressed in terms of one-

nucleon oscillator quantum creation operators.



The functions which have just been built are non-

normalized and non-orthogonal in the general case.

So the next step in construction of the desired basis

is their orthonormalization i. e. search for the

eigenvalues and the eigenfunctions of the norm

kernel of RGM. They can be found by diagonalization

of the norm kernel matrix:
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which is easily calculated being expressed in the just

presented shell-model form. The eigenfunctions and

the eigenvalues resulted in the diagonalization

procedure take the following forms
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Owing to shell-model expansion the kernels of the

kinetic and potential energy are calculated by use of

ordinary shell-model procedures.

So shell-model formalism for AVRGM calculation is

built.

This approach has some merits and disadvantages

compared to conventional AVRGM:

A disadvantage is that the basis of the relative motion

oscillator wave functions is rather short because the

computation of the cluster coefficients for larger values

of n presents a severe problem.

The advantages of the approach are:

1. More or less standard, applicable for arbitrary light

fragment pair, procedures may be explored.

2. The method remains workable for accurately

calculated fragment wave functions (superpositions of

shell-model configurations).



3. Multi-channel AVRGM (channels are characterized

by different wave functions of the cluster internal

motion) may be constructed as well.

4. A high-quality nuclear reaction theory (“A Unified

Theory of the Nucleus”; K. Wildermuth, Y.C. Tang)

becomes available in the algebraic approach. Indeed,

a hybrid set of cluster channels varying by the

internal wave function of fragments may be involved

in the basis of A1+A2-nucleon problem together with

the number of ordinary SM solutions of the same

problem. Diagonalization of a realistic Hamiltonian on

this basis result in the wave functions
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HOW TO COME TO THE FAR-DISTANT 

ASYMPTOTICS? 

So for the realistic cluster wave functions the basis

of the functions (accessible for the calculations is

substantially shorter compared to the basis of the

canonical AVRGM. For narrow resonances it may

be that the basis is not large enough to achieve the

asymptotic area.

In that case one could invoke the following

approach. In some distance the inter-cluster

interaction is degenerated to a two-body potential

Vcl (matrix elements of the exchange terms of the

antisymmetrizer are annihilated).
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Hamiltonian

matrix

<n|H|n’>

In the “A-nucleon” interaction region n ≤ n0 the matrix

elements of this Hamiltonian are easily removable in

algebraic approach. For this purpose the rows and

columns <n|H|n’> nforb<n,n’≤n0 should be removed from

the Hamiltonian matrix and the solutions of the A-nucleon

problem should be taken into account. The matrix takes

the form:

Forbidden states are

considered to removed

and all other states

related to n>n0 are

considered to be

allowed.



 
0 0

2 2

'
, '

/ 2 ( ) ( );

'
mn mn

ij ij sep ij

cl

n n
sep cl

kk
k k k k k

d dr E V r V r

V kl H k l E kl kl

 

 

  

   

However for cases in which the asymptotics appears in far

distant areas too large basis is required. In that cases it is

preferable to solve the problem by the methods of infinite

mathematics introducing into a habituated Schrödinger

equation a number of additional separable terms:

Matrix elements of Vsep, on the one hand, cancel with the

unneeded initial two-body cluster Hamiltonian matrix

elements and, on the other hand add proper matrix

elements from. “A-nucleon” interaction region.
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POTENTIAL OF THE GENERAL TYPE 

CONSIDERING THE FORBIDDEN AND THE SEMI-

FORBIDEN STATES
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The solution of the Schrödinger equation with potential Vsep

may be written in the form:
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with the additional condition:
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HIBRID METHOD FOR STUDY OF NARROW 

RESONANCE STATES

To solve this problem a combination of the algebraic

approach with the methods of infinite mathematics is

used.

Let us introduce the linearly independent solutions χ1,2(r)

of the equation with local potential Vcl:



( )r 0r 

( )lG r .r 
We consider the solution to be regular at 

and  behaving as in the limit

 1,2C r

 

 
1

2

0
.

0 0

C

C

 




Functions satisfy the conditions:

So let us choose to be regular in the vicinity of zero: 1 0 
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This procedure results in the relationship:



In other words the proper solution satisfies the following 

homogeneous integral equation:
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which may have a solution only for the unique values of

energy.
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Substituting all these conditions into the equation one

can obtain:



CONCLUSIONS

1. Algebraic methods for the description of the clustering

phenomena are well-compatible with shell-model approaches.

2. The combined SM-RGM techniques are promising for the

theoretical studies of clustered bound states, resonant states,

cluster transfer and knock-our reactions.

3. There are methods allowing to change from the algebraic

description of nuclear decay and reaction channels to their

description in terms of continuous mathematics. By doing so a

connection of the results obtained by SM, AVRGM,

SM+AVRGM methods and far-distant asymptotics may be

established.

4. The discussed schemes can be applied not only for high-

quality models but for various approximations of them as well.

That makes the area of application of them much more

extensive.
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ALGEBRAIC APPROACH TO THE PROBLEMS OF 

DISCRETE AND CONTINUOUS SPECTRA

In the algebraic versions of canonic two-body

problem, OCM, or RGM the expansion coefficients

Cnl satisfy the infinite set of linear equations

 ' '
0

0, ' 0,1...n lm nlm n n nl
n

H E C n  




  

which is follows from the respective Schrödinger

equation.

For an ordinary bound state the eigenvalue problem

' 'det 0, nn nlm n lmH H H  


is solved on the truncated basis n≤ Nmax. Here

truncation means boundary condition Cnl=0, n>Nmax

in the n-space.



For states of continuous spectra (including near-barrier

resonances) the so-called J-matrix method is applied

(Yamani, Fishman, 1975).

   
1

( )

0 0 0 0
0

,

.......................................................................................................,

...........................................

N
as

lm nlm n nl lm nlm n nl
n n N

H E C H E C     
 

 

    

   
1

( )

0

............................................................,

.
N

as

Nlm nlm Nn nl Nlm nlm Nn nl
n n N

H E C H E C     
 

 

    

where:
( ) ( ) 2( ) ( ) ,
as as

nlnlC f d     
the asymptotic function takes the form

( ) 1( ) ~ [( 1) ]as l ik ikf e Se     

and the matrix of the Hamiltonian turns out to be degenerated 

to the three-diagonal matrix elements of the kinetic energy. 



EXAMPLES

ASYMPTOTIC NORMALIZATION COEFFICIENT FOR 

LOOSELY-BOUND STATE OF 17F NUCLEUS

Asymptotic normalization coefficient Dl is the factor,

determining the amplitude of asymptotics of the wave

function. The closed channel 16O + p, Ep= -104.94 keV is

studied. The asymptotic is expressed through the Wittaker

function:
2 2

1 2, 1/ 2( ) (2 ) / ; / .ll lDW k Z Z e k         

The coefficients Cnl obtained in an ordinary variational

calculation are compared with the asymptotic ones at

 
1/ 4( )

0 , 1/ 24/(2 3) (2 ) ,as
n n l n lC C r n W k D    

where

n

0 02 3; /n Nr n r      

the turning point of the oscillator wave function ( ).nl 



  
1

0 0

2 2

0

( ) 1 exp / ( ),

;(4 / )(3 / ),
( )

8 / ,

3.29 ; 0.65 ; 3.48

c

ce c c
c

ce

c

V V R a V

Rc R R
V

Rc

R fm a fm R fm


         

   
  

  

  





The following potential is used:

1 ( 1) (17 1) /16 ,n n
n n    

n 0 2 4 6

εn 0 1.128906 1.001022 1.000006

The eigenvalues of the overlap kernel are:



Alternative V0, MeV Dl, fm-1/2

TBM 49.24 83.33

OCM1 47.61 94.18

OCM2 53.57 92.40

The following values of Dl are obtained in the two-body

model, OCM with the local potential renormalized by

the overlap kernel and OCM without such a

renormalization:



ALPHA-DECAY OF 8Be 91.8 keV 0+ RESONANCE 

Various versions of two-body, OCM and RGM dynamics of

the α-α system bringing the proper resonance energy after

fitting of the depth of the potential well were analyzed:

1. Two-body model with forbidden eigenstates of Hamiltinian.

Buck potential (no fitting).
2

0

2

0

( ) exp( )

122.6 ; 0.22

coulV V b V

V MeV b fm

 



  

 

E=91.10 keV; Γ=5.5 eV. Experiment - E=91.84 keV; Γ=6.8 eV. 

2. The same two-body model with oscillator forbidden states. 
2

0 116.9 ; 0.22V MeV b fm 

E=91.84 keV; Γ=5.8 eV.



3. RGM. Hasegava-Nagata NN-potential (no fitting).

E=91.84 keV; Γ=4.9 eV.

4. RGM. Gaussian NN-potential.
2

0

2

0

( ) exp( )

77.27 ; 0.943

NN NN coulV r V a V

V MeV a fm





  

 

result in the same width of alpha-alpha folding potential

as in the case 1.

E=91.85 keV; Γ=3.9 eV.

The depth of the folding potential here is V0 = 139.4

MeV i. e. the exchange terms are repulsive.

5. OCM with RGM-projected kinetic energy operator.

2

0 136.1 ; 0.22V MeV b fm 

E=91.84 keV; Γ=4.7 eV.



WIDTH OF THE LOWEST 16O+16O RESONANCE STATE

Three alternatives: the OCM with the forbidden states

being eigenstates of the two-body Hamiltonian – I, the

OCM with the forbidden states being eigenstates of the

overlap kernel – II, and the OCM with the forbidden states

of such a type and the semi-forbidden states – III; and

three sets of the parameters of the local potential

with different number of the bound states n0 = 12, 13, 14

from (Y.Kondo. In: Proc. of Int. Conf. “Microscopic Cluster

Models of Light Nuclei and Related Topics” Yukawa Inst.

Theor. Phys., 1992, p.191) are considered. For the

alternatives II and III the depth V0 of local potential Vcl

was varied to reproduce the resonance energy of the

alternative I).

      
2

0 / 1 exp /cl CoulV r V r V r R a     



Alternative I II III

V0, MeV 399.2 225.6 422.8

Eres, MeV 2.103 2.103 2.102

Γ, MeV 0.59·10-27 0.53·10-28 0.64·10-35

n0 = 12

n0 = 13 

Alternative I II III

V0, MeV 668.0 631.0 679.7

Eres, MeV 2.981 2.981 2.981

Γ, MeV 1.9·10-19 1.6·10-19 4.1·10-27



n0 = 14

Alternative I II III

V0, MeV 998.3 993.5 1124.8

Eres, MeV 6.233 6.233 6.232

Γ, MeV 3.2·10-6 3.2·10-6 3.1·10-12



OUTLOOK OF THE APPROACH FOR THE THEORY 

OF ALPHA- AND CLUSTER DECAY

Introduction of the new version of the cluster form-

factor (Fliessbasch, Mang, 1976):

1 2

1/ 2
( )

ˆˆ( ) | { ( ')}new A A AN A
       

in contrast to the traditional one (Mang, 1957):

1 2( )
ˆ( ) | { ( ')}tr A A AA       

result in a significant increasing of alpha- and cluster

decay widths. In combination with the enhancement

of the processes caused by a configuration mixing

(superfluid, etc.) the overestimated widths are widely

met. What is the matter? The presented above effect

of suppression is not taken into account.



ONE-FERMION + COMPOSITE SYSTEM PROBLEM

The eigenvalues of the overlap kernel for 16O+N pair are:

n 0 2 4 6

εn 0 1.050625 1.000064 1.000000

n 0 2 4 6

εn 0 1.128906 1.001022 1.000006

The eigenvalues of the overlap kernel for 40Ca+N pair are:

These examples are related to the sharp Fermi surface. 

The origin of the superallowed terms is the recoil effect.



For a heavy core the effect is inessential. However this

property make it possible to solve a more general problem,

namely the fermion system with diffuse Fermi surface.

Consider the core (A1-fermion) Hamiltonian:

. . .
ˆ ˆ ˆ .s c corrH H H 

In the secondary quantization representation its lower

eigenfunction has the form:

1 0
ˆ ,A s s

s

v a  

Where Ψ0 is the vacuum wave function of the

Hamiltonian Hs.c. In that case the one- fermion wave

functions of this Hamiltonian are the eigenfunctions of the

overlap kernel of the A1+F system with the eigenvalues:

1 .s sv  

So all presented equations are valid for the discussed

problem and may be used to describe proton decay

and also in neutron and atomic physics.



CONCLUSIONS

1. Properties of the interaction of composite particles are

essentially different from the ones of the elementary

particles.

2. The main origin of the differences is the exchange

effects.

3. Algebraic approaches are convenient tools for taking

these effects into account.

4. Developed methods of description of the composite

particles interaction are applicable to the calculations of:

a) near-threshold bound cluster-nucleus states,

b) phase shifts and cross-section of composite particle

interaction including calculations in the optical model,

c) resonance states of various cluster-cluster pairs,

d) amplitudes of entrance and exit channels of various

reactions.



5. It is required that both clusters should be SU(3)-

scalars and one of them should be SU(4)-scalar.

Otherwise a channel coupling appears due to

antisymmetrization.

6. Interaction of a fermion (nucleon, electron etc.) with a

heavy system is an exclusion. Such a system may be

treated being non-scalar, possess a non-oscillator WF

and diffuse Fermi surface.

7. The effect of the semi-forbidden states is drastic when

the widths of narrow resonances in interaction of a

heavy nucleus with the alpha-particle or the interaction

of two heavy clusters are calculated.



PREFACE. CRITERIA OF PROMISING 

BRANCHES OF THEORETICAL 

NUCLEAR PHYSICS

1. Description of a promising experiments.

2. High-quality justification of previous theoretical

results.

3. Development of methods workable beyond the

nuclear physics area.
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PROBLEM OF STRUCTURING

How to state the problem of substructures (clusters) in two-

(or few-) cluster system taking into account indistingvishibility

of identical fermions and the strong nuclear interaction?

STRUCTURING OF MOLECULES

Two types of particles (e, N) Coulomb nr + l degeneracy

Spontaneous symmetry break up Adiabaticity

Distances Angles

Conserving of substructures

World around us

…………..



ALGEBRAIC VERSION OF THE ORTHOGONALITY 

CONDITIONS MODEL

The sole other term of AV RGM equation containing

fermion exchange operators is potential energy kernel

Vρ. It is just the term which makes RGM a non-universal

and overcomlicated model The idea is to consider it

phenomenologically via approximating by a local

potential. Due to the algebraic original form of the kinetic

energy term the approach in which the equation

 ˆ ˆ( ) ( ) 0T V E
     

is solved is called AV OCM independently of solution

methods which may be algebraic ones or methods of

the infinite mathematics. In the oscillator basis the

renormalized kinetic energy operator remains three-

diagonal form of initial one.



then the width Γ can be extracted from the relation

(Kadmensky, Furman, 1985):

   ,
2

l

res

k
R G kR

E
 




For this type of the resonances the amplitude of the WF in

the exterior region is many orders of magnitude smaller

than in the interior region therefore in algebraic

calculations of the resonant eigenvector χoscill one can

approximately put Cnl=0, n>Nmax for them.

The problem of AV OCM is that calculated by this way

function correctly describes the interior region does not

tend to Gl (η,kr) and hence not applicable to calculation of

the width. To improve the behavior of WF in the exterior

region it is necessary to increase significantly Nmax, which

caused huge numerical difficulties. Thus a delicate

problem appears.



RESONANCE STATES IN THE AV OCM

Boundary condition for the resonant state:

     , , ,res l lr G kr iF kr as r    

Fl , Gl – regular and irregular Coulomb wave functions.

Under Coulomb barrier Gl (η,kr) – increases, Fl (η,kr) –

decreases, as r→0.

Thus for a narrow resonance, in which these tendencies

are very strong, Eres can be determined by matching of

χ0(r) and Gl(η,kr) under barrier, at the point, where the

nuclear part of interaction can be neglected (χ0 – regular at

r=0 solution) and Fl (η,kr) << Gl (η,kr). This approach is

rather suitable for local potentials. Width can be calculated

as follows. Let the function of resonant state to be

normalized to unity in the interior region wide enough for

the function turns out to be negligibly small at R:
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where nmax determines the limitation of the truncated

basis. The simple form of the first term appears due to

the property of completeness of the oscillator basis

allowing one to express the sum over n’ explicitly.

It is convenient to rewrite the integral equation to the

algebraic form. Multiplying it by <fn| and <fn|Vcl from

the left one can obtain the set of homogeneous

algebraic equations for the unknown coefficients

<fn|Vcl|χ> and < fn| χ >. The condition of solvability

(zeroing of the determinant) yields Eres, after that the

coefficients < fn| χ > are calculated. This procedure

determines the function χ(r) and the width of the

resonance Γ.



However such a type of numerical calculations of the

widths turns out to be unstable at least for very narrow

resonances of systems possessing a number of semi-

forbidden states with the eigenvalues of the overlap

kernel εn strongly different from 1. In particular, very

high accuracy (ten digits for 2 MeV resonance in

16O+16O system) of the value Eres is required to

calculate the width reliably.

The way to circumvent this difficulty is the following

Consider the mentioned above function obtained by

direct algebraic approach:

   
max

0 1

n

oscill n n
n n

r C f r
 

 



where

 
0 max1,...,n nC C

is the eigenvector corresponding to the resonance

eigenvalue Eres. The function χoscill reproduces

precisely the interior behavior of the wave function. It

is just one needs to calculate the values < fn|Vcl| χ >

and < fn| χ >, due to decreasing of Vcl(r) and fn(r) (n ≤

γ0) as r – increasing. Thus, substituting χoscill in the

right side of the basic equation one can obtain the

solution for all the values of r, including the

asymptotic region.

Numerical calculations by means of the proposed

method are significantly more stable.


