NTSE-2016

S-matrix Method for Extrapolation of the Results of No-Core Shell Model Calculations

A. M. Shirokov, V. A. Kulikov, A. I. Mazur, J. P. Vary

Skobeltsyn Institute of Nuclear Physics Lomonosov Moscow State University 2016

- There are extrapolation methods based on the phenomenological properties of the calculations results
- We suggest a new extrapolation method based on HORSE (it uses an analytical properties of the S-matrix)

HORSE formalism

$$\sum_{N'} (H_{NN'}^{L} - \delta_{NN'}E)a_{N'L}(k) = 0 \qquad H_{NN'}^{L} = T_{NN'}^{L} + V_{NN'}^{L}$$
$$T_{N,N+2}^{L} = T_{N+2,N}^{L} \quad \text{and} \quad T_{NN}^{L} \quad -\text{kinetic energy non-zero}$$
$$\text{matrix elements}$$
$$N = 2n + L$$

$$V_{NN'}^L = 0$$
 if $N, N' > N_{full}$

$$T_{N,N-2}^{L}a_{N-2,L}^{asymp}(E) + (T_{N,N}^{L} - E)a_{N,L}^{asymp}(E) + T_{N,N+2}^{L}a_{N+2,L}^{asymp}(E) = 0$$

$$a_{NL}^{asymp}(E) = \cos \delta_L S_{NL}(E) + \sin \delta_L C_{NL}(E)$$

$$C_{NL}^{(\pm)}(E) = C_{NL}(E) \pm S_{NL}(E)$$

HORSE formalism

$$S(E) = \frac{C_{N,L}^{(-)}(E) - G_{NN}T_{N,N+1}^{L}C_{N+1,L}^{(-)}(E)}{C_{N,L}^{(+)}(E) - G_{NN}T_{N,N+1}^{L}C_{N+1,L}^{(+)}(E)}$$

in case of $E = E_{\lambda}$ $S(E_{\lambda}) = \frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})}$ $G_{NN} = -\sum_{\lambda=0}^{N} \frac{\gamma_{\lambda}^{2}}{E_{\lambda} - E}$

$$S(E_{\lambda}) = e^{-2\varphi(\kappa_{\lambda})} \left(\frac{\kappa_{b} + \kappa_{\lambda}}{\kappa_{b} - \kappa_{\lambda}} \right) \left(\frac{\kappa_{f} + \kappa_{\lambda}}{\kappa_{f} - \kappa_{\lambda}} \right) \left(\frac{\kappa_{v} - \kappa_{\lambda}}{\kappa_{v} + \kappa_{\lambda}} \right) \left(\frac{(\kappa_{\lambda} - \gamma) + \kappa}{(\kappa_{\lambda} + \gamma)^{2} + \kappa^{2}} \right)$$

$$S_L(k_0^*) = \frac{1}{S_0^*}, S_L(-k_0^*) = S_0^*, S_L(-k_0) = \frac{1}{S_0}$$

 $E_{\lambda} = E_{\lambda}(N_{\max}, \hbar \Omega)$

HORSE formalism

$$\frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})} = e^{-2\varphi(\kappa_{\lambda})} \left(\frac{\kappa_{b} + \kappa_{\lambda}}{\kappa_{b} - \kappa_{\lambda}}\right) \left(\frac{\kappa_{f} + \kappa_{\lambda}}{\kappa_{f} - \kappa_{\lambda}}\right) \left(\frac{\kappa_{v} - \kappa_{\lambda}}{\kappa_{v} + \kappa_{\lambda}}\right) \left$$

$$\kappa \sim \sqrt{E}$$

 $E_{\lambda} = E_{\lambda}(N_{\max}, \hbar \Omega)$

Extrapolation formulae

$$\frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})} = e^{D\sqrt{|E_{\lambda}|}} \left(\frac{\sqrt{|E_{\infty}|} + \sqrt{|E_{\lambda}|}}{\sqrt{|E_{\infty}|} - \sqrt{|E_{\lambda}|}}\right)$$

1+1 param.

$$\frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})} = e^{D\sqrt{|E_{\lambda}|}} \left(\frac{\sqrt{|E_{\infty}|} + \sqrt{|E_{\lambda}|}}{\sqrt{|E_{\infty}|} - \sqrt{|E_{\lambda}|}}\right) \left(\frac{\sqrt{E_{f}} + \sqrt{|E_{\lambda}|}}{\sqrt{E_{f}} - \sqrt{|E_{\lambda}|}}\right)$$

1+2 param.

$$\frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})} = e^{D\sqrt{|E_{\lambda}|} + F\left(\sqrt{|E_{\lambda}|}\right)^{3}} \left(\frac{\sqrt{|E_{\infty}|} + \sqrt{|E_{\lambda}|}}{\sqrt{|E_{\infty}|} - \sqrt{|E_{\lambda}|}}\right)$$

2+1 param.

$$\Xi = \sqrt{\sum_{i} \frac{(E_i - E_i^{th})^2}{n}}$$

S-matrix formalism

$$S(E_{\lambda}) = \frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})}$$

$$S(E_{\lambda}) = \frac{C_l}{k_{\lambda} - i\kappa_b}$$

-near to the pole

$$\begin{split} S(E_{\lambda}) &= \frac{1}{\sqrt{2}} \left(\frac{D_l^1}{\sqrt{|E_{\lambda}|} - \sqrt{|E_{\infty}^1|}} + \frac{D_l^2}{\sqrt{|E_{\lambda}|} - \sqrt{|E_{\infty}^2|}} + \dots \right) \\ S(E_{\lambda}) &= \frac{1}{\sqrt{2}} \left(\frac{D_l}{\sqrt{|E_{\lambda}|} - \sqrt{|E_{\infty}|}} \right) + B \end{split}$$

Extrapolation formulae

$$\frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})} = \frac{1}{\sqrt{2}} \left(\frac{D_{l}}{\sqrt{|E_{\lambda}|} - \sqrt{|E_{\infty}|}} \right) + B$$

S. A. Coon, Proceedings of the International Workshop on Nuclear Theory in the Supercomputing Era NTSE-2012, Khabarovsk, Russia, June 18–22, 2012. A. M. Shirokov and A. I. Mazur, Editors. Pacific National University, Khabarovsk, Russia, 2013, pp. 171–189. S. A. Coon *et al.* Phys. Rev. C. **86**, 054002 (2012)

$$E_{\lambda} = E_{\infty} + Ae^{-b/\sqrt{s}}, \quad s = \frac{\hbar\Omega}{N_{\max} + L + \frac{7}{2}}$$
 - scaling parameter

 $\Lambda = \sqrt{\hbar\Omega(N_{\rm max} + L + 3/2)mc^2}$

Model problem

• We are testing the method in case of Woods-Saxon potential:

$$V = \frac{V_0}{1 + \exp[(r - R_0) / a_0]} + (\mathbf{l} \cdot \mathbf{s}) \frac{1}{r} \frac{d}{dr} \frac{V_{ls}}{1 + \exp[(r - R_1) / a_1]}$$

Points selection $\Lambda_0 = 250 MeV/c$

 $E_{\lambda} = E_{\infty} + Ae^{-b/\sqrt{s}}$

	E_{∞} (MeV)	rms (MeV)		D (MeV) ^{-1/2}	F (MeV) ^{-3/2}	E _f (MeV)				
Energy	-7.012									
1+1 param	-6.96	0.06		0.73						
1+2 param	-7.010	0.008		0.18		15.7				
2+1 param	-7.002	0.012		0.68	0.01					
3 param (S.Coon)	-7.025	0.11								
N _{max} 6-10 prediction										
		6-10	full							
1+1 param	-7.002	0.1	0.16	0.69						
1+2 param	-7.013	0.005	0.008	0.18		15.6				
2+1 param	-6.997	0.009	0.01	0.68	0.01					
3 param (S.Coon)	-6.98	0.008	0.01							

Results for excited state

$\frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})} = e^{D\sqrt{ E_{\lambda} }} \left(\frac{\sqrt{ E_{\infty} } + \sqrt{ E_{\lambda} }}{\sqrt{ E_{\infty} } - \sqrt{ E_{\lambda} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\lambda} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\lambda} }}\right) \left(\frac{\sqrt{36} + \sqrt{ E_{\lambda} }}{\sqrt{36} - \sqrt{ E_{\lambda} }}\right) = e^{D\sqrt{ E_{\lambda} }} \left(\frac{\sqrt{ E_{\infty} } - \sqrt{ E_{\lambda} }}{\sqrt{ E_{\infty} } - \sqrt{ E_{\lambda} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\lambda} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\lambda} }}\right) \left(\frac{\sqrt{36} - \sqrt{ E_{\lambda} }}{\sqrt{36} - \sqrt{ E_{\lambda} }}\right) = e^{D\sqrt{ E_{\lambda} }} \left(\frac{\sqrt{ E_{\infty} } - \sqrt{ E_{\lambda} }}{\sqrt{ E_{\infty} } - \sqrt{ E_{\lambda} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\lambda} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\lambda} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\lambda} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\lambda} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\nu} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\nu} }}\right) \left(\frac{ E_{\nu} } - \sqrt{ E_{\nu} }\right) \left($									
1+1 param	-35.761	0.01	0.92						
1+2 param	-35.758	0.01	1.13		20.1				
2+1 param	-35.757	0.01	0.62	0.01					
$\frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})} = e^{D\sqrt{ E_{\lambda} }} \left(\frac{\sqrt{ E_{\infty} } + \sqrt{ E_{\lambda} }}{\sqrt{ E_{\infty} } - \sqrt{ E_{\lambda} }}\right) \left(\frac{\sqrt{ E_{\nu} } - \sqrt{ E_{\lambda} }}{\sqrt{ E_{\nu} } + \sqrt{ E_{\lambda} }}\right) \left(\frac{\sqrt{3.3} + \sqrt{ E_{\lambda} }}{\sqrt{3.3} - \sqrt{ E_{\lambda} }}\right)$									
exc.st.	-3.6								
1+1 param	-3.08	0.14	1.1						
1+2 param	-2.98	0.17	1.92		33				
2+1 param	-3.25	0.06	1.1	0.05					
S.Coon	-3.22	0.04							

Conclusions

- We suggest a new method for extrapolations of calculations in oscillator basis.
- It provides adequate binding energies

$$\frac{C_{N,L}^{(-)}(E_{\lambda})}{C_{N,L}^{(+)}(E_{\lambda})} = e^{D\sqrt{|E_{\lambda}|} + F\left(\sqrt{|E_{\lambda}|}\right)^{3}} \left(\frac{\sqrt{|E_{\infty}|} + \sqrt{|E_{\lambda}|}}{\sqrt{|E_{\infty}|} - \sqrt{|E_{\lambda}|}}\right)$$

Thank you for attention!