QCD fossils in nuclei? a model study

Youngman Kim
Rare Isotope Science Project (RISP),
Institute for Basic Science (IBS)

Rare Isotope Science Project (RISP)

- Goal: To build a heavy ion accelerator complex RAON for rare isotope science researches in Korea
- Project period : 2011.12 2021.12
- Total Budget : ~\$ 1.43 billion

(Facilities ~ \$ 0.46 bill., Bldgs & Utilities ~ \$ 0.97 bill.)

- include initial experimental apparatus

Future Extension

N = 126

Charged Lepton Flavor Violation

RAON

Accelerator complex

ISOL + In-Flight Fragmentation

Origin of Matter

- Nuclear Astrophysics
- Nuclear Matter
- Super Heavy Element Search
- High-precision Mass Measurement

$$Z = 8$$
 $N = 28$ $N = 20$ $N = 8$ $N = 20$

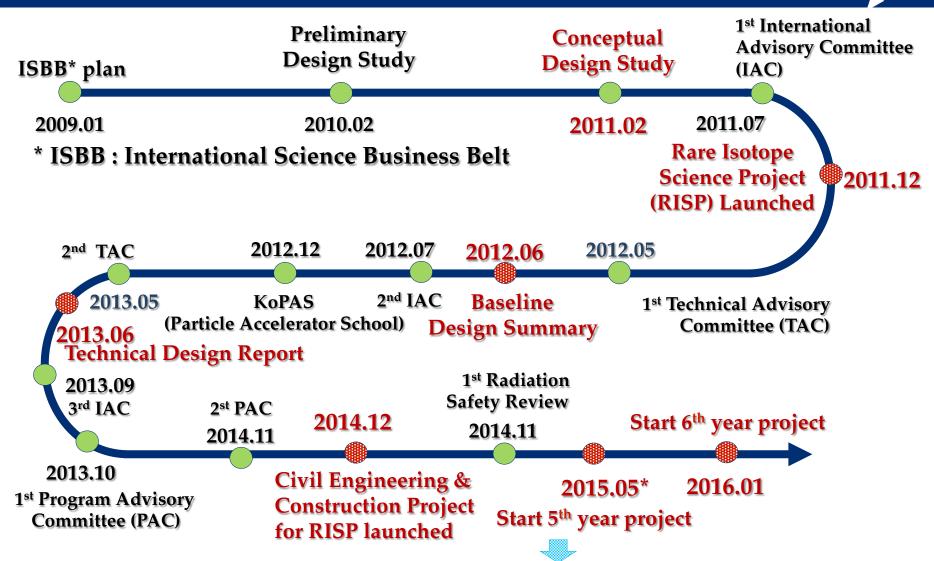
Properties of Exotic Nuclei

- Nuclear Structure
- Electric Dipole Moment and Symmetry
- Nuclear Theory
- Hyperfine Structure Study

Applied Science

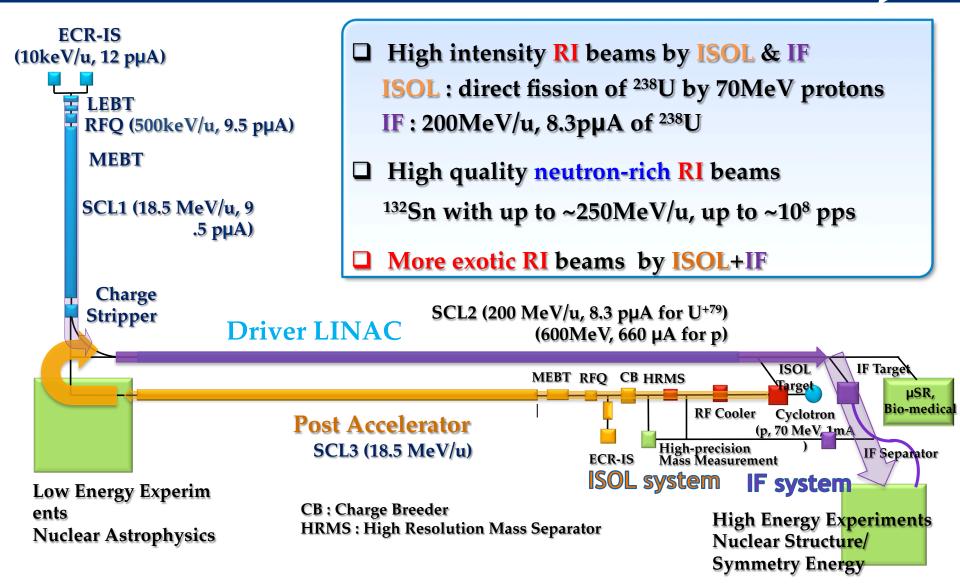
- Bio-Medical Science
- Material Science
- Neutron Science

History of the RISP

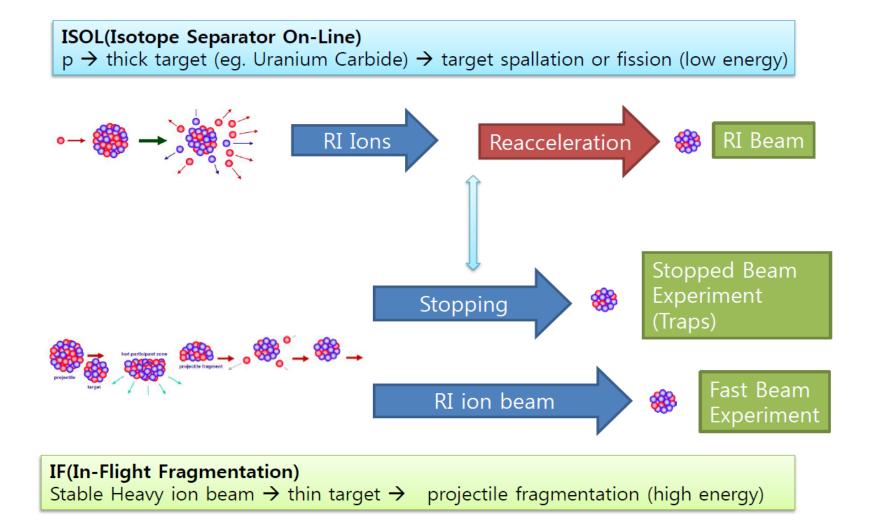


RISP Baseline Schedule(the 3rd) changed to complete RAON by 2021 and schedule & cost for facility construction released

RAON Concept

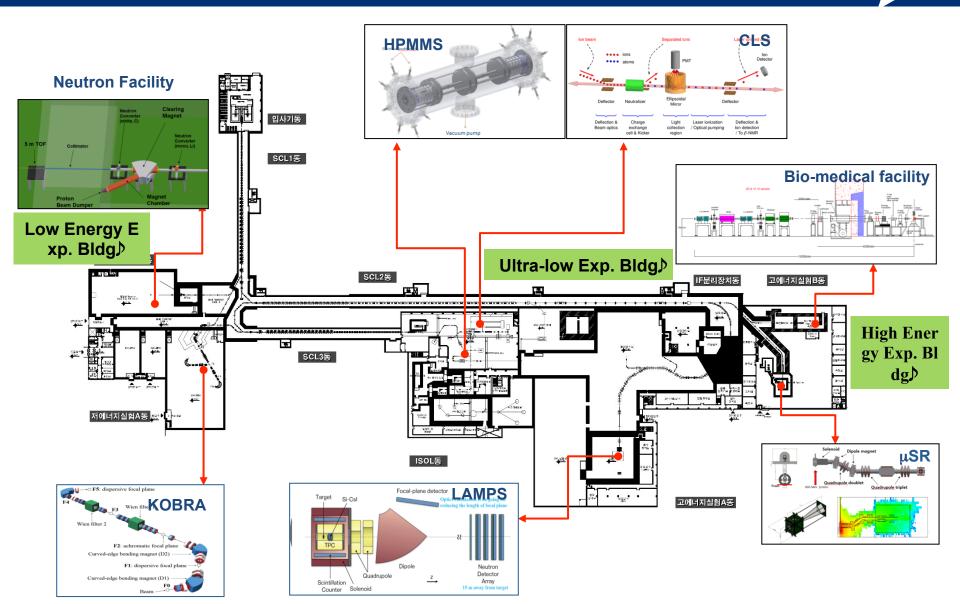


- * ISOL-type facilities: radioactive ions are produced at rest in a thick target either by direct bomb ardment with particles from a driver accelerator or via fission induced both by fast and thermal s econdary neutrons.
- * In-flight (IF) facilities: a high energy ion beam is fragmented in a suitable thin target and the re action products are and then transported to the secondary target.



RAON Site: Sindong in Daejeong

RAON Layout: Experimental system



RAON System Dev. Performance

Total Performance

Prototype: 92.0 % Production: 14.8 %

Injector

기온빔 생성 및 수입 장치 BCR-IS*/LEBT*/RFQ*/MEBT*/로구성 Superconducting Electron Cyclotron

Resonance Ion Source Low Energy Beam Transport Radio Prequency Quadrupole amalestor Medium Energy Beam Transport

Prototype 94.6%

Production 29.5 %

SCL1

초전도 이온원에서 인출된 안정된 중이온 빔을18.5MeV/u 까지 가속 하는 초전도 선형 가속기(QWR) HWR® 초전도 가속관으로 구성) Quarter Wave Resonator

Prototype

98.2%

Half Wave Resonator

Production

6.0%

SCL₂

초전도선형가속기1 또는 초전도선 형가속기3에서 가속된 빔을 200MeV/u 까지 가속하는 초점도선형 가속기(SBR가 최저도가속관으로구성) Single Spoke Resonator

Prototype

94.2%

Production

4.3%

17.7%

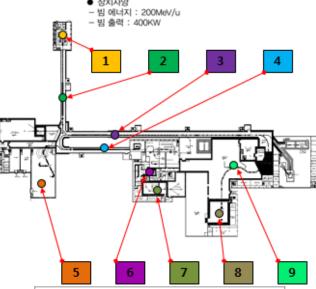
SCL₃

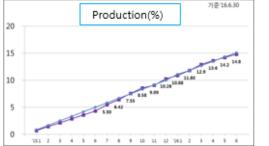
ISOL 시스템으로부터 분리된 동위 원소 빔을 18.5MeV/u 까지 가속하 는 초전도선형가속기(QWRs), HWR® 가속관으로 구성) Quarter Wave Resonator

Half Wave Resonator

Prototype 98.2% Production

Prototype(%) 100 \$4.54 \$3.39 \$5.40 \$5.44 \$7.55 \$8.50 \$9.90 \$0.40 \$1 \$1.4 \$1.7 \$2 80 60 40 20 0 151 2 3 4 5 6 7 8 9 10 11 12 161 2 3 4 5 6 장치사양





Low Energy Hall A: KOBRA

18.5MeV/u 에너지 빔을 이용하는 저에너지 실험 시설(KOBRA® 등) KOrea Broad Acceptance Recoil Spectrometer and Apparatus

Prototype 100%

41.3% Production

ISOL® System

저에너지 회귀등위원소 빔을 생성 하고 분리 공급하는 장치 Display Separate On Line (콘타한 분리 장치)

Prototype

95.8%

Production 32.0%

Cyclotron **

ISOL 시스템에 70MeV 양성자 빔 을 공급하는 원형 가속기

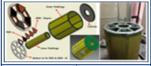
Prototype

도입

Production

20.5%

High Energy Hall A: LAMPS



200MeV/u 빔 또는 IF 시스템에서 분리된 밥을 이용하는 고에너지 실 험시설(LAMPSⁿ⁾ 등)

Large Acceptance Multi Purpose Spectrometer

Prototype

98.2%

Production 8.5%

System

고에너지 회귀등위원소 빔을 생성 하고 분리 공급하는 장치 In flight Fragmentation (비행과쇄 본리 장치)

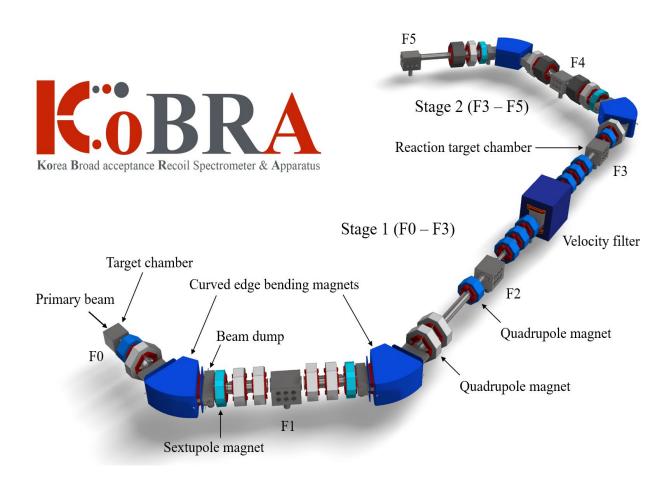
Prototype

72.2%

Production

7.1%

Main facility for nuclear structure and nuclear astrophysics studies with low-energy stable and rare isotope beams



Nuclear Structure

• Study of shell evolution in proton- and neutron-rich nuclei:

Measurements of excitation energy and angular distribution

Determination of nucleon occupancy in single particle orbit

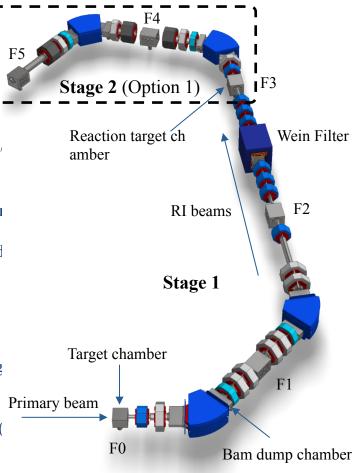
(inelastic scattering, (d,p) reaction, nucleon removal reaction, and son)

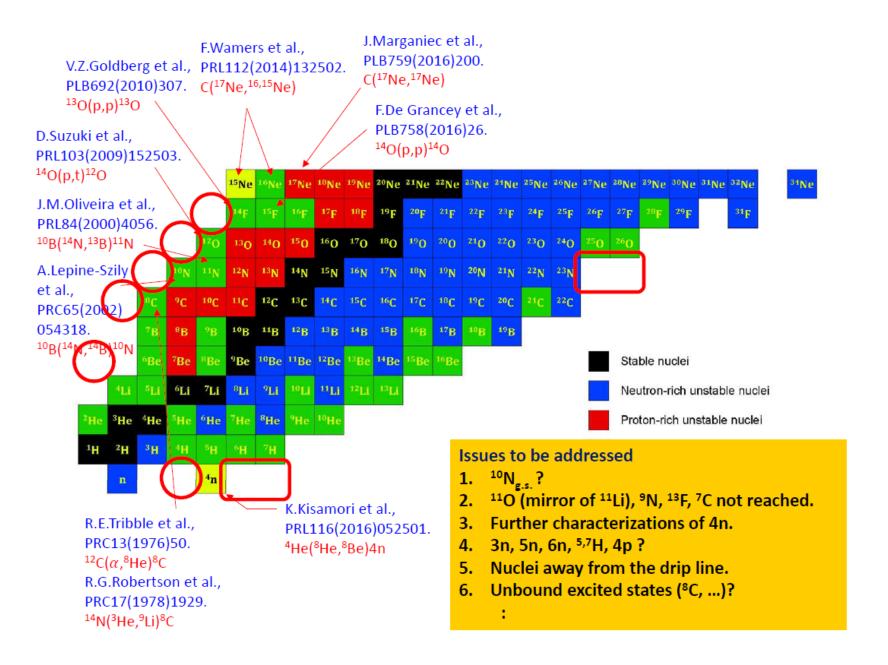
• Study of soft dipole and Pygmy dipole resonances using nuclear pl be, e.g., α, Ca and Pb:

Measurements of excitation energy and angular distribution (Bound ate: Y ray spectroscopy, unbound state: missing mass method)

Nuclear Astrophysics

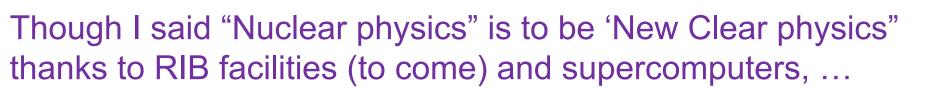
- Direct measurement of charged-particle capture cross section, e.g , for 65 As(p, Y) and 15 O(α , Y) reactions at $< \sim 1$ MeV/nucleon
- Indirect measurement of radiative capture cross section, e.g., for (d,p) reaction at a few MeV/nucleon





RISP Milestones and Schedule





Motivation I

A simple holographic QCD model study has claimed that (a naive) typical scale of QCD changes in nuclei.

A	$1/z_m$
20	$72.8~\mathrm{MeV}$
30	$77.5~\mathrm{MeV}$
50	$79.0~\mathrm{MeV}$
70	$78.5~\mathrm{MeV}$
100	$77.0~\mathrm{MeV}$

$$1/z_m \sim 320 \text{ MeV}$$

Motivation II

Origin of nucleon mass? due to smallness of current quark mass

Can Nuclei do anything for this?

Nucleon mass (in the chiral limit) in the linear sigma model

$$\delta \mathcal{L} = -g_{\pi} \left[(i\bar{\psi}\gamma_{5}\vec{\tau}\psi)\,\vec{\pi} + (\bar{\psi}\psi)\,\sigma \right]$$

$$<\sigma> = \sigma_{0} = f_{\pi}$$

$$<\pi> = 0$$

$$M_{N} = g_{\pi}\sigma_{0} = g_{\pi}f_{\pi}$$

How about QCD trace anomaly in effective models?

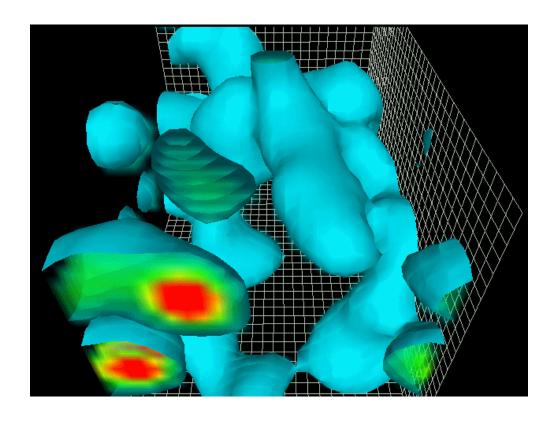
The effective chiral quark Lagrangian supplemented with the QCD conformal anomaly

$$L = \bar{\psi}i(\not D + \not V)\psi + g_A\bar{\psi} \not A\gamma_5\psi - \sqrt{\kappa}\frac{m}{f_\pi}\bar{\psi}\psi\chi + \frac{1}{4}\kappa tr(\partial_\mu U\partial^\mu U^\dagger)\chi^2 + \frac{1}{2}\partial_\mu\chi\partial^\mu\chi - \frac{1}{2}tr(G_{\mu\nu}G^{\mu\nu}) - V(\chi) + \dots$$

where $D_{\mu} = \partial_{\mu} + igG_{\mu}$, $V_{\mu} = \frac{1}{2}i(\xi^{\dagger}\partial_{\mu}\xi + \xi\partial_{\mu}\xi^{\dagger})$ and $A_{\mu} = \frac{1}{2}i(\xi^{\dagger}\partial_{\mu}\xi - \xi\partial_{\mu}\xi^{\dagger})$ with $\xi^{2} = U = \exp(\frac{i2\pi_{i}T_{i}}{f_{\pi}})$. The scale anomaly of QCD appearing at quantum level — is contained in the potential V written as

$$V(\chi) = -\frac{\kappa m_{\chi}^{2}}{8f_{\pi}^{2}} \left[\frac{1}{2} \chi^{4} - \chi^{4} \ln(\frac{\kappa \chi^{2}}{f_{\pi}^{2}}) \right]$$

Motivation III



http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/su3b600s24t36cool30actionEnd.gif

A stable vacuum monopole condensate in QCD

Youngman Kim, ¹ Bum-Hoon Lee, ^{2,3} D.G. Pak, ^{2,3,4} and Takuya Tsukioka ⁵

¹Rare Isotope Science Project, Institute for Basic Science, Daejeon 305-811, Korea

²Asia Pacific Center of Theoretical Physics, Pohang, 790-330, Korea

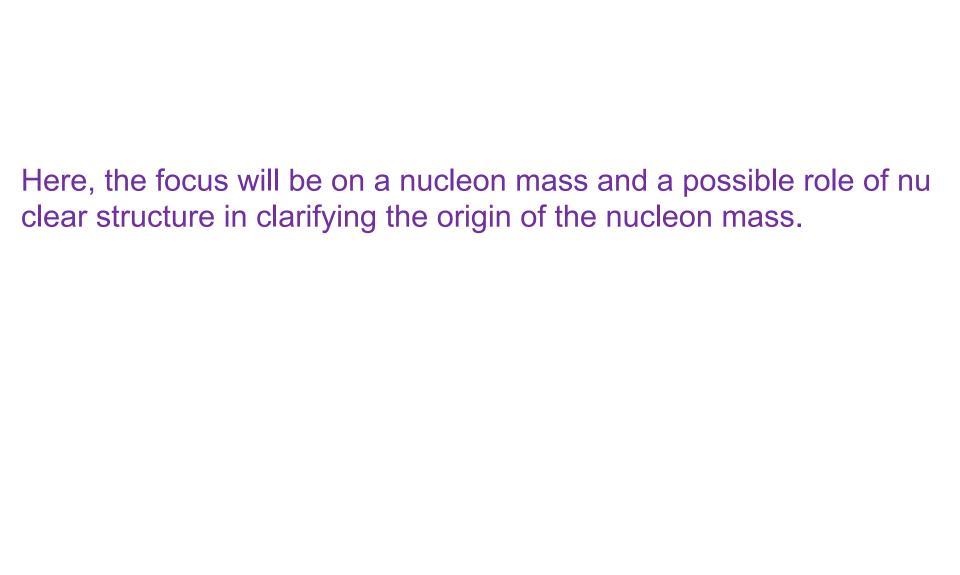
³CQUEST, Sogang University, Seoul 121-742, Korea

⁴Chern Institute of Mathematics, Nankai University, Tianjin 300071, China

⁵School of Education, Bukkyo University, Kyoto 603-8301, Japan

A stationary finite energy density monopole solution in a pure SU(3) quantum chromodynamics (QCD) is proposed. The solution describes a colored Wu-Yang monopole dressed in gluon field. We have proved that such a classical solution corresponds to a stable vacuum monopole condensate in quantum theory. The generation of a mass gap and QCD vacuum structure are discussed.

Nontrivial QCD vacuum does nothing to nuclei? Confinement wash it out? All encrypted in LECs except chiral symmetry?



Nucleon mass in the chiral limit: two different pictures

$$m_{\pm} = \frac{1}{2} \left(\sqrt{(g_1 + g_2)^2 \sigma_0^2 + 4m_0^2} \pm (g_1 - g_2) \sigma_0 \right)$$

in parity doublet model

$$<\sigma> = \sigma_0 = f_{\pi}$$

 $<\pi> = 0$
 $M_N = g_{\pi}\sigma_0 = g_{\pi}f_{\pi}$

in linear sigma model

Extended Parity doublet model

Introduce two nucleon fields that transform in a mirror way under chiral transformations:

$$SU_L(2) \times SU(2)_R$$

$$\psi_{1R} \to R\psi_{1R}, \quad \psi_{1L} \to L\psi_{1L},$$

$$\psi_{2R} \to L\psi_{2R}, \quad \psi_{2L} \to R\psi_{2L}.$$

$$m_0(\bar{\psi}_2\gamma_5\psi_1 - \bar{\psi}_1\gamma_5\psi_2)$$

$$= m_0(\bar{\psi}_{2L}\psi_{1R} - \bar{\psi}_{2R}\psi_{1L} - \bar{\psi}_{1L}\psi_{2R} + \bar{\psi}_{1R}\psi_{2L})$$
the decay width $\Gamma_{N\pi}$ for $N^*(15\bar{3}5) \to N + \pi$, $m_0 = 270$ MeV

"Linear sigma model with parity doubling," C. E. DeTar and T. Kunihiro, Phys. Rev. D 39, 2805 (1989)

$$\mathcal{L} = \bar{\psi}_1 i \partial \!\!\!/ \psi_1 + \bar{\psi}_2 i \partial \!\!\!/ \psi_2 + m_0 (\bar{\psi}_2 \gamma_5 \psi_1 - \bar{\psi}_1 \gamma_5 \psi_2)$$
$$+ a \bar{\psi}_1 (\sigma + i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \psi_1 + b \bar{\psi}_2 (\sigma - i \gamma_5 \vec{\tau} \cdot \vec{\pi}) \psi_2$$

$$m_{N\pm} = \frac{1}{2} \left(\sqrt{(a+b)^2 \sigma^2 + 4m_0^2} \mp (a-b)\sigma \right)$$

The state N+ is the nucleon N(938). while N- is its parity partner conventionally identified with N(1500).

Cf.
$$\delta \mathcal{L} = -g_{\pi} \left[(i\bar{\psi}\gamma_{5}\vec{\tau}\psi) \,\vec{\pi} + (\bar{\psi}\psi) \,\sigma \right]$$

$$< \sigma > = \sigma_{0} = f_{\pi}$$

$$< \pi > = 0$$

$$M_{N} = g_{\pi}\sigma_{0} = g_{\pi}f_{\pi}$$

Cold, dense nuclear matter in a SU(2) parity doublet model

$$\mathcal{L} = \bar{\psi}_{1}i\partial \psi_{1} + \bar{\psi}_{2}i\partial \psi_{2} + m_{0}(\bar{\psi}_{2}\gamma_{5}\psi_{1} - \bar{\psi}_{1}\gamma_{5}\psi_{2})$$

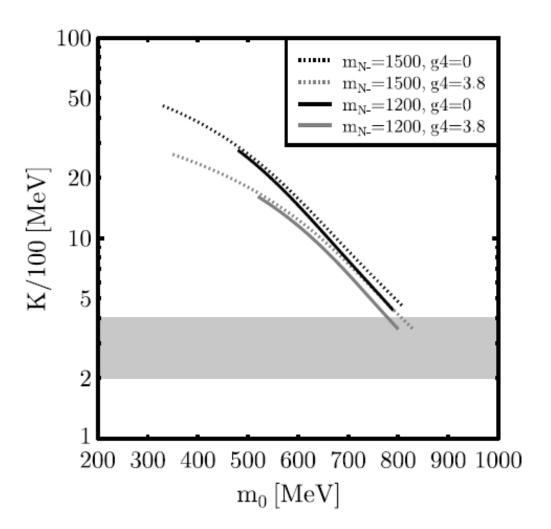
$$+ a\bar{\psi}_{1}(\sigma + i\gamma_{5}\vec{\tau} \cdot \vec{\pi})\psi_{1} + b\bar{\psi}_{2}(\sigma - i\gamma_{5}\vec{\tau} \cdot \vec{\pi})\psi_{2}$$

$$- g_{\omega}\bar{\psi}_{1}\gamma_{\mu}\omega^{\mu}\psi_{1} - g_{\omega}\bar{\psi}_{2}\gamma_{\mu}\omega^{\mu}\psi_{2} + \mathcal{L}_{M},$$

$$\mathcal{L}_{M} = \frac{1}{2}\partial_{\mu}\sigma^{\mu}\partial^{\mu}\sigma_{\mu} + \frac{1}{2}\partial_{\mu}\vec{\pi}^{\mu}\partial^{\mu}\vec{\pi}_{\mu} - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}$$

$$+ \frac{1}{2}m_{\omega}^{2}\omega_{\mu}\omega^{\mu} + g_{4}^{4}(\omega_{\mu}\omega^{\mu})^{2}$$

$$+ \frac{1}{2}\bar{\mu}^{2}(\sigma^{2} + \vec{\pi}^{2}) - \frac{\lambda}{4}(\sigma^{2} + \vec{\pi}^{2})^{2} + \epsilon\sigma,$$



If the N' is identified as the N'(1535), the parity doublet model shows a first order phase transition to a chirally restored phase at large densities, $\rho \approx 10\rho_0$, defining the transition by the degeneracy of the masses of the nucleon and the N'. If the mass of the N' is chosen to be 1.2 GeV, then the critical density of the chiral phase transition is lowered to three times normal nuclear matter density,

D. Zschiesche, L. Tolos, Jurgen Schaffner-Bielich, Robert D. Pisarski, Phys .Rev. C75 (2007) 05520

PHYSICAL REVIEW D 92, 014503 (2015)

Nucleons and parity doubling across the deconfinement transition

Gert Aarts, ¹ Chris Allton, ¹ Simon Hands, ¹ Benjamin Jäger, ¹ Chrisanthi Praki, ¹ and Jon-Ivar Skullerud ²

¹Department of Physics, College of Science, Swansea University, Swansea SA2 8PP, United Kingdom

²Department of Mathematical Physics, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland

(Received 16 February 2015; published 9 July 2015)

It is expected that nucleons and their parity partners become degenerate when chiral symmetry is restored. We investigate this question in the context of the thermal transition from the hadronic phase to the quark-gluon plasma, using lattice QCD simulations with $N_f=2+1$ flavors. We observe a clear sign of parity doubling in the quark-gluon plasma. Besides, we find that the nucleon ground state is, within the uncertainty, largely independent of the temperature, whereas temperature effects are substantial in the negative-parity (N^*) channel, already in the confined phase.

may imply $m_0 \sim m_N$? Or, m_0 increases as T goes up?

Parity doublet model with HLS

Motivation:

- Lower m_0 ?
- Non-zero isospin density (chemical potential)
- Lower T_c for (chiral) transitions?
- Any sensitive observables to m₀ from nuclear structure or HIC?

Hidden Local Symmetry

A way to introduce vector mesons in chiral Lagrangian

Non-linear sigma model

HLS

$$\mathrm{SU}(N_f)_\mathrm{L} \times \mathrm{SU}(N_f)_\mathrm{R}/\mathrm{SU}(N_f)_\mathrm{V}$$
 $G_\mathrm{global} \times H_\mathrm{local} \ H = \mathrm{SU}(N_f)_\mathrm{V}$ $U = \mathrm{e}^{2\mathrm{i}\pi/F_\pi}, \quad \pi = \pi_a T_a$ $U = \xi_\mathrm{L}^\dagger \xi_\mathrm{R} \quad \xi_\mathrm{L,R} = \mathrm{e}^{\mathrm{i}\sigma/F_\sigma} \mathrm{e}^{\mp i\pi/F_\pi}$

$$U \to g_{\rm L} \, U \, g_{\rm R}^{\dagger} \ .$$
 $\xi_{\rm L,R}(x) \to \xi_{\rm L,R}'(x) = h(x) \cdot \xi_{\rm L,R}(x) \cdot g_{\rm L,R}^{\dagger}$

$$h(x) \in H_{local}, \quad g_{L,R} \in G_{global}$$

gauge equivalent to the non-linear sigma model corresponding to the coset space G/H

(HLS has to assume that the kinetic term of the HLS gauge boson is to be generat ed dynamically)

M. Harada and K. Yamawaki, Physics Reports 381 (2003) 1

Parity doublet model with HLS

$$\mathcal{L}_{N} = \bar{\psi}_{1r} i \gamma^{\mu} D_{\mu} \psi_{1r} + \bar{\psi}_{1l} i \gamma^{\mu} D_{\mu} \psi_{1l}$$

$$+ \bar{\psi}_{2r} i \gamma^{\mu} D_{\mu} \psi_{2r} + \bar{\psi}_{2l} i \gamma^{\mu} D_{\mu} \psi_{2l}$$

$$- m_{0} [\bar{\psi}_{1l} \psi_{2r} - \bar{\psi}_{1r} \psi_{2l} - \bar{\psi}_{2l} \psi_{1r} + \bar{\psi}_{2r} \psi_{1l}]$$

$$- g_{1} [\bar{\psi}_{1r} M^{\dagger} \psi_{1l} + \bar{\psi}_{1l} M \psi_{1r}]$$

$$- g_{2} [\bar{\psi}_{2r} M \psi_{2l} + \bar{\psi}_{2l} M^{\dagger} \psi_{2r}],$$

$$M = \sigma + i\vec{\pi} \cdot \vec{\tau}, \quad M \to g_L M g_R^{\dagger}$$

HLS

$$M = \xi_L \sigma \xi_R = \sigma \xi_L^{\dagger} \xi_R = \sigma U, \quad \xi_{L,R} \to h_{\omega} h_{\rho} \xi_{L,R} g_{L,R}^{\dagger},$$

$$\omega_{\mu} \to h_{\omega} \omega_{\mu} h_{\omega}^{\dagger} + \frac{i}{g_{\omega}} \partial_{\mu} h_{\omega} h_{\omega}^{\dagger},$$

$$\rho_{\mu} \to h_{\rho} \rho_{\mu} h_{\rho}^{\dagger} + \frac{i}{g_{\rho}} \partial_{\mu} h_{\rho} h_{\rho}^{\dagger},$$

$$\mathcal{L}_{M} = \frac{1}{2} \partial_{\mu} \sigma \partial^{\mu} \sigma + \sigma^{2} \operatorname{tr} \left[\hat{\alpha}_{\perp \mu} \hat{\alpha}_{\perp}^{\mu} \right] - V_{\sigma} - V_{SB}$$

$$+ \frac{m_{\rho}^{2}}{g_{\rho}^{2}} \operatorname{tr} \left[\hat{\alpha}_{\parallel \mu} \hat{\alpha}_{\parallel}^{\mu} \right] + \left(\frac{m_{\omega}^{2}}{2g_{\omega}^{2}} - \frac{m_{\rho}^{2}}{2g_{\rho}^{2}} \right) \operatorname{tr} \left[\hat{\alpha}_{\parallel \mu} \right] \operatorname{tr} \left[\hat{\alpha}_{\parallel}^{\mu} \right]$$

$$- \frac{1}{2g_{\rho}^{2}} \operatorname{tr} \left[\rho_{\mu\nu} \rho^{\mu\nu} \right] - \left(\frac{1}{2g_{\omega}^{2}} - \frac{1}{2g_{\rho}^{2}} \right) \operatorname{tr} \left[\omega_{\mu\nu} \right] \operatorname{tr} \left[\omega^{\mu\nu} \right]$$

$$\hat{\alpha}_{\perp}^{\mu} \equiv \frac{1}{2i} \left[D^{\mu} \xi_{R} \cdot \xi_{R}^{\dagger} - D^{\mu} \xi_{L} \cdot \xi_{L}^{\dagger} \right]$$

$$\hat{\alpha}_{\parallel}^{\mu} \equiv \frac{1}{2i} \left[D^{\mu} \xi_{R} \cdot \xi_{R}^{\dagger} + D^{\mu} \xi_{L} \cdot \xi_{L}^{\dagger} \right]$$

$$D^{\mu}\xi_{L} = \partial^{\mu}\xi_{L} + ig_{\rho}\rho^{\mu}\xi_{L} + ig_{\omega}\omega^{\mu}\xi_{L} + i\xi_{L}\mathcal{L}^{\mu}$$
$$D^{\mu}\xi_{R} = \partial^{\mu}\xi_{R} + ig_{\rho}\rho^{\mu}\xi_{R} + ig_{\omega}\omega^{\mu}\xi_{R} + i\xi_{R}\mathcal{R}^{\mu}$$

Y. Motohiro, YK, M. Harada, PRC 92, 025201 (2015)

$$V_{\sigma} = -\frac{1}{2}\bar{\mu}^2\sigma^2 + \frac{1}{4}\lambda\sigma^4 - \frac{1}{6}\lambda_6\sigma^6,$$

$$V_{\text{SB}} = -\frac{1}{4}\bar{m}\epsilon\sigma \operatorname{tr}[U + U^{\dagger}].$$

Inputs to fix the model parameters

m_{+}	m_{-}	m_{ω}	$m_{ ho}$	f_{π}	m_{π}
939	1535	783	776	93	140

$\rho_0(\mu_B^*)[\text{fm}^{-3}]$	$E/A(\mu_B^*) - m_+[\text{MeV}]$	$K[{ m MeV}]$	$E_{sym}[\mathrm{MeV}]$
0.16	-16	240	31

Symmetry energy

$$\mathcal{E}(\rho, \alpha) = \mathcal{E}(\rho, \alpha = 0) + S(\rho)\alpha^2 + \cdots$$
 $\alpha = (N - Z)/A$

$$S(\rho) \equiv \frac{1}{2} \left(\frac{\partial^2 \mathcal{E}(\rho, \alpha)}{\partial \alpha^2} \right)_{\alpha = 0} \approx \mathcal{E}(\rho, \alpha = 1) - \mathcal{E}(\rho, \alpha = 0)$$

$$S(\rho) = J + Lx + \frac{1}{2}K_{\text{sym}}x^2 + \cdots \qquad x = (\rho - \rho_0)/3\rho_0 \qquad L \equiv 3\rho_0 \left(\frac{\partial S}{\partial \rho}\right)\Big|_{\rho_0}$$

Favors N=Z, one may say it is energy cost to convert all the protons in (symmetric) nuclear matter to neutrons at a fixed density

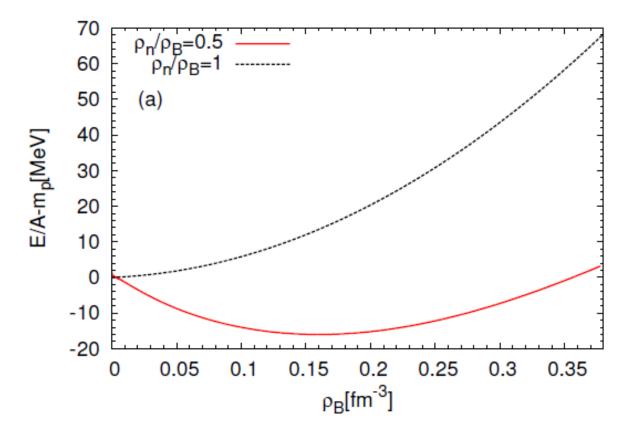
$$m = Zm_p + Nm_n - \frac{E_B}{c^2}$$

$$E_{\rm B} = a_{\rm v}A - a_a(N-Z)^2/A - a_cZ^2/A^{1/3} - a_sA^{2/3} \pm a_\delta/A^{3/4}$$

Liquid-drop model

TABLE I: Determined model parameters for given m_0 . Here $m_{\omega}=783$ MeV, $m_{\rho}=776$ MeV and $\bar{m}\epsilon=m_{\pi}^2f_{\pi}$.

$m_0[{ m MeV}]$	500	600	700	800	900
g_1	15.4	14.8	14.2	13.3	12.3
g_2	8.96	8.43	7.76	6.94	5.92
$g_{\omega NN}$	11.4	9.12	7.31	5.67	3.54
$g_{ ho NN}$	8.05	6.97	7.46	7.75	8.75
$\bar{\mu}[{ m MeV}]$	435	434	402	316	109
λ	40.5	39.4	34.5	22.5	4.26
λ_6	16.3	15.4	13.5	8.66	0.607



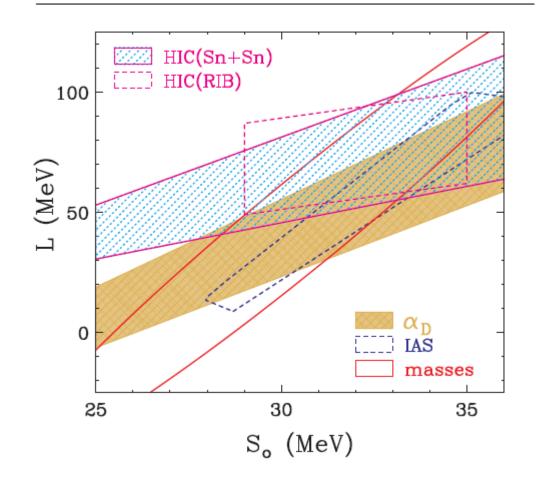
Density dependence of the binding energy

slope parameter

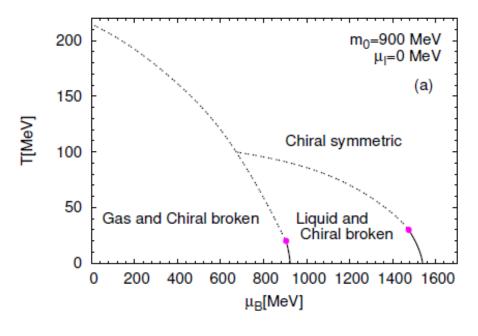
$m_0[{ m MeV}]$	$L[{ m MeV}]$
900	75
800	74
700	78
600	78
500	75

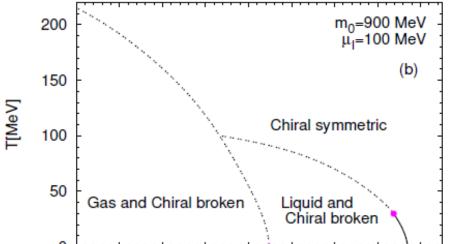
$$S_0=31 \text{ MeV}$$

J. Phys. G: Nucl. Part. Phys. 41 (2014) 093001



Phase diagrams for $m_0 = 900 \text{ MeV}$





800

 $\mu_{R}[MeV]$

1000 1200 1400 1600

200

0

400

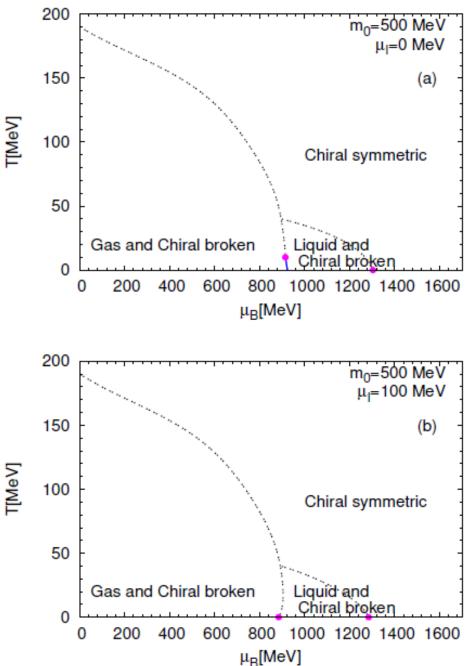
600

solid: first-order, dashed: crossover

point: critical point (second order)

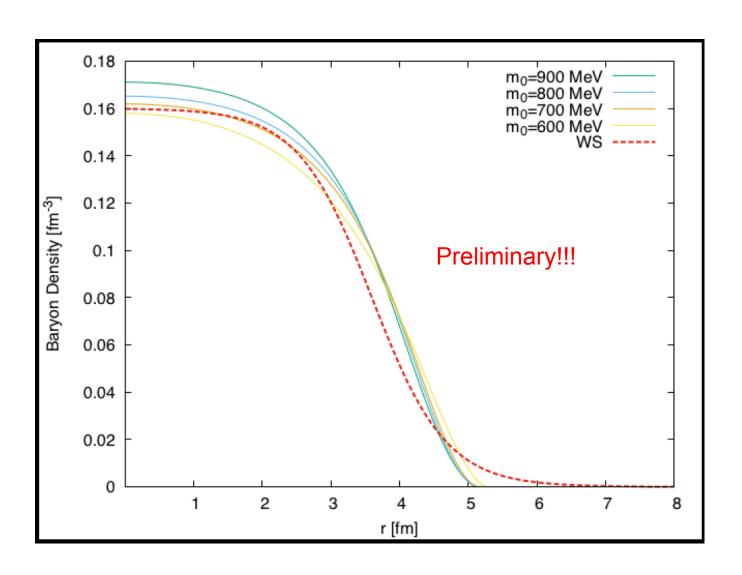
LGT: 1st→ 2nd
Critical chemical potential drops a bit

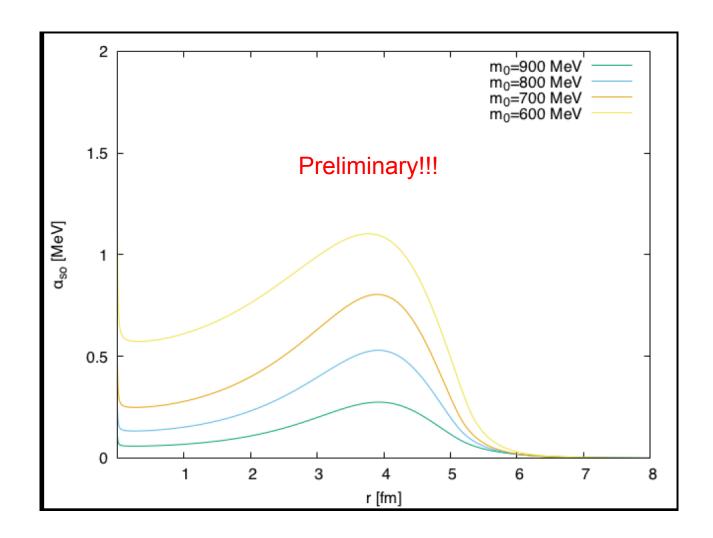
Phase diagrams for $m_0 = 500 \text{ MeV}$



smaller m₀ favors smaller critical density for chiral phase transition both in symmetric and asymmetric dense matter

Nuclei in RTF





$$V_{\rm so}(r) = \frac{1}{2m_+^2 r} \left(g_\omega \frac{d\omega_0}{dr} - \frac{dm_+}{dr} \right) \boldsymbol{s} \cdot \boldsymbol{L} \equiv -\alpha(r) \boldsymbol{s} \cdot \boldsymbol{L}$$

Summary

- RAON will be available from 2020
- Parity doublet model might be a framework to say somet hing about the remnants of QCD in nuclei
- Eventually, we need to have model-independent method for new clear physics!

Remarks:

Nuclei in a chiral SU(3) model, P. Papazoglou, et al, Phys. Rev. C59 (1999)

Finite nuclei in relativistic models with a light chiral scalar meson, R.J. Furnstahl, et al. Phys. Rev. C47 (1993) 2338

Relativistic chiral mean field model for finite nuclei, H. Toki, et al, PPNP 59 (2007) 209