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1. GENERAL SCHEME

The conventional approach is to construct the con-

tinuum spectrum states (Ψγ). The specification of open

reaction channels is required to get Ψγ. Appropriate at

low energies. Impractical at higher energies and larger

number of particles.

The approach presented below: reaction channels

emerge at the kinematics level only, when a dynam-

ics calculation is already done. Instead of Ψγ, quanti-

ties to be extracted from a dynamics calculation are

response–like functions

R(E) =
∑
n

〈Q′|Ψn〉〈Ψn|Q〉δ(E−En)+
∑∫

dγ〈Q′|Ψγ〉〈Ψγ|Q〉δ(E−Eγ),

HΨn = EnΨn, 〈Ψn|Ψn′〉 = δnn′, HΨγ = EγΨγ, 〈Ψγ|Ψγ′〉 = δ(γ−γ′).

Let us express reaction observables in terms of quan-

tities having the above structure. Consider strong–



interaction induced reactions, α→ β:

Tβα = TBornβα + 〈φ̄β(E)|(E −H + iε)−1|φ̄α(E)〉,

φ̄α,β(E) = (H − E)Aφα,β(E) = A(H − E)φα,β(E) = AV res
α,β φα,β,

(A2 = A), TBornβα = 〈φβ|φ̄α〉 = 〈φ̄β|φα〉.

The Coulomb interaction is disregarded here.

The non–Born contribution may be presented as∫
dE ′Rβα(E ′)(E − E ′ + iε)−1

where Rβα(E ′) is just of the same structure as R(E) above

with E → E ′, Q→ φ̄α(E), Q′ → φ̄β(E).

(Exclusive) reactions induced by a perturbation,

〈Ψ−β |O|Ψ0〉 = 〈φβ|O|Ψ0〉 + 〈φ̄β|(E −H + iε)−1|OΨ0〉.

The second contribution is expressed in terms of a

response–like function of the same structure as above

with φ̄α → OΨ0.

Thus the question is how the response–like functions

may be obtained. An easy task is the sum–rule calcu-

lation. Since∑
n

|Ψn〉〈Ψn| +
∑∫

dγ|Ψγ〉〈Ψγ| = I,



one has ∫
dER(E) = 〈Q′|Q〉.

(recall)

R(E) =
∑
n

〈Q′|Ψn〉〈Ψn|Q〉δ(E−En)+
∑∫

dγ〈Q′|Ψγ〉〈Ψγ|Q〉δ(E−Eγ).

”Generalized sum rules” depending on a parameter:∫
dE K(σ,E)R(E) =

∑
n

〈Q′|K(σ,H)|Ψn〉〈Ψn|Q〉δ(E − En)

+
∑∫

dγ〈Q′|K(σ,H)|Ψγ〉〈Ψγ|Q〉δ(E − Eγ) = 〈Q′|K(σ,H)|Q〉 ≡ Φ(σ).

Thus, the integral equation (with the inclusion of dis-

crete contributions) of the form

Φ(σ) =

∫
dE K(σ,E)R(E)

is employed to determine R(E). A general approach to

its solution:

R(E)→ Rtrial(E, {c}),
∫
dE K(σ,E)Rtrial(E, {c}) = Φtrial(σ, {c})∫

dσ w(σ)[Φ(σ)− Φtrial(σ, {c})]2 = min{c}.

The Rn discrete contributions may be either included to

the {c} set or calculated separately.



2. CALCULATING THE TRANSFORMS. SPECIFIC KERNELS

Now consider the calculation of the input

〈Q′|K(σ,H)|Q〉 to the integral equation. If one is able

to diagonalize the Hamiltonian in a sufficiently big

subspace {ϕn} of localized functions, 〈ϕn|H|ϕn′〉 = δnn′,

then

〈Q′|K(σ,H)|Q〉 '
∑
n

〈Q′|ϕn〉K(σ,En)〈ϕn|Q〉.

Ways to proceed for some particular kernels without

the diagonalization of the Hamiltonian. Consider the

Stieltjes transform, K(σ,E) = (σ + E)−1. One has

〈Q′|K(σ,H)|Q〉 = 〈Q′|(σ + H)−1|Q〉 = 〈Q′|Ψ̃(σ)〉,

(H + σ)Ψ̃ = Q.

This is the dynamics problem to be solved. Ψ̃ is localized

(σ > −|E0|). In the case of strong–interaction induced re-

actions the Coulomb interaction in the entrance channel

may be accounted for.

The ”Lorentz transform”: K(σ,E) = [(σ − E)2 + Γ2]−1.

Writing

1

(σ − E)2 + Γ2
=

1

2iΓ

[
1

(σ − E)− iΓ
− 1

(σ − E) + iΓ

]



the transform is calculated in terms of two Stieltjes–

type transforms,

〈Q′|K(σ,H)|Q〉 =
1

2iΓ
〈Q′|(Ψ̃+ − Ψ̃−)〉,

(H − σ ± iΓ)Ψ̃± = Q.

The Laplace transform: K(σ,E) = e−σE. The input

〈Q′|e−σH|Q〉 may be calculated with the GFMC method.

3. INVERSION OF THE TRANSFORMS

Let us omit the discrete contributions to R(E) for the

presentation simplicity. Then one has the integral equa-

tion of the first kind

Φ(σ) =

∫ ∞
Ethr

dE K(σ,E)R(E)

to determine R(E). At a given Φ the solution is unique

but small variations of Φ may cause large variations of

R of a high frequency. Small variations of Φ may also

lead to narrow peaks in R with large amplitudes pro-

vided that contributions of the peaks to the integral

are negligible. (So called ”ill–posed problem”.)

A conventional way to perform the inversion that was



employed in actual calculations:

R(E) '
nmax∑
n=1

cnχn(E).

The cn coefficients are determined by fitting to Φ(σ)

as discussed above. The basis functions represent the

threshold behavior of R(E) when known. The nmax

value should be sufficiently large to represent the true

R(E) properly and sufficiently small to prevent the

appearance of false oscillations or narrow peaks in

R(E). Whether these two conditions are compatible

depends on the accuracy in Φ(σ). The ”convergence”

criterion: results should be stable in some range of nmax.

A new way to perform the inversion (under study).

At a given Φ, the accuracy in R may be improved when

an additional information on R is incorporated in the

inversion algorithm. The number of narrow maxima

and minima of R, as taken from experiment or a rea-

sonable guess, may be adopted as such an information.

The equation is solved at the condition imposed that R

possesses a given number of maxima and minima. This



removes false high–frequency oscillations. The integral

equation is rewritten in the form of such an equation for

the derivative of R which derivative thus should possess

a given number of zeros. The most general expression

for such a derivative is written. It includes an expansion

like exp
∑∞

n=1 cnψn(E). A set of the cn parameters retained

along with a finite number of other parameters enter-

ing this expression is fitted to Φ(σ). It has been proven

that, when the number of maxima and minima is taken

to be correct, small variations of Φ cannot lead to large

variations of R (which is a well–posed problem) at least

beyond close proximities of maxima and minima of R.
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No studies for strong–interaction induced reactions.

5. ACCURACY TESTS PERFORMED

In particular, a benchmark study of the three–nucleon

photodisintegration.



A test of the method:

Comparison of the calculated cross section for photodisintegration of

3H (NPA, 2001) with the subsequent Bohum–Krakow group Faddeev

calculation (NPA, 2002). The AV18 NN interaction.
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