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Abstract

A new type of basis functions is proposed to describe an (e, 3e) process on
helium. This is done in the framework of the first Born approximation approach
presented in Ref. [1]. The basis functions used to expand the three-body so-
lutions are calculated in terms of the recently introduced quasi-Sturmian (QS)
functions [2]. The QS functions satisfy a non-homogeneous Schrödinger equa-
tion with Coulomb interactions and possess outgoing-wave boundary condition.
By construction, the basis functions look asymptotically like a six-dimensional
spherical wave. The transition amplitude for the (e, 3e) process is obtained di-
rectly from the asymptotic part of the wave function. A fast convergence is
achieved for the calculated wave function. An agreement in the shape of differ-
ential cross sections is obtained with the available experimental data. While the
disagreement in magnitude is found with the experimental data, a reasonable
agreement with other ab initio theories is found.

Keywords: Quasi-Sturmian functions; Coulomb Green’s function; driven equa-

tion

1 Introduction

The Coulomb three-body scattering problem is one of the most fundamental out-
standing problems in theoretical nuclear, atomic and molecular physics. The primary
difficulty in description of three charged particles in the continuum is imposing ap-
propriate asymptotic behaviors of the wave function.

In order to describe the Coulomb three-body continuum we propose a set of two-
particle functions which are calculated by using the recently introduced so-called
quasi-Sturmian (QS) functions [2]. The QS functions satisfy a two-body non-homo-
geneous Schrödinger equation with the Coulomb potential and an outgoing-wave
boundary condition. Specifically, the two-particle basis functions are obtained, by
an analogy with the Green’s function of two non-interacting hydrogenic atomic sys-
tems, as a convolution integral of two one-particle QS functions. The QS functions
have the merit that they are expressed in a closed form, which allows us to find an ap-
propriate integration path that is useful for numerical calculations of such an integral
representation. We name these basis functions Convoluted Quasi Sturmian (CQS).
Note that by construction, the CQS function (unlike a simple product of two one-
particle ones) looks asymptotically (as the hyperradius ρ→ ∞) like a six-dimensional
outgoing spherical wave.

The atomic units are assumed throughout.
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2 Quasi-Sturmian basis functions

2.1 Driven equation

In the approach of Ref. [1] to the (e, 3e) process, the four-body Schrödinger equation is
reduced to the following driven equation for the three-body system (e−, e−,He++) =
(1, 2, 3): [

E − Ĥ
]
Φ(+)

sc (r1, r2) = Ŵfi(r1, r2)Φ
(0)(r1, r2). (1)

E =
k2

1

2 +
k2

2

2 is the energy of the two ejected electrons. The three-body helium
Hamiltonian is given by

Ĥ = −1

2
△r1 −

1

2
△r2 −

2

r1
− 2

r2
+

1

r12
, (2)

Φ(0)(r1, r2) represents the ground state of the helium atom. The perturbation oper-
ator Ŵfi is written as

Ŵfi(r1, r2) =
1

(2π)3
4π

q2
(−2 + eiq·r1 + eiq·r2), (3)

where q = ki − kf is the transferred momentum, ki and kf are the momenta of the
incident and scattered electrons.

2.2 Two-particle quasi Sturmians

Our method of solving the driven equation (1) is to expand the solution in the series

Φ(+)
sc (r1, r2) =

∑

L,ℓ,λ

N−1∑

n,ν=0

CL(ℓλ)
nν |nℓνλ;LM〉Q, (4)

where the basis

|nℓνλ;LM〉Q ≡ Q
ℓλ(+)
nν (E; r1, r2)

r1r2
YLM
ℓλ (r̂1, r̂2), (5)

YLM
ℓλ (r̂1, r̂2) =

∑

mµ

(ℓmλµ |LM ) Yℓm(r̂1) Yλµ(r̂2). (6)

Each function Q
ℓλ(+)
nν is assumed to satisfy the radial equation

[
E − ĥℓ1 − ĥλ2

]
Q(ℓλ2)(+)

nν (E; r1, r2) =
ψℓ
n(r1)ψ

λ
ν (r2)

r1r2
, (7)

where

ĥℓi = −1

2

∂2

∂r2i
+

1

2

ℓ(ℓ+ 1)

r2i
− 2

ri
, (8)

ψℓ
n are the Laguerre basis functions (b is a real scale parameter),

ψℓ
n(r) = [(n+ 1)2ℓ+1]

− 1

2 (2br)ℓ+1e−brL2ℓ+1
n (2br), (9)

which are orthogonal with the weight 1
r :

∞∫

0

dr ψℓ
n(r)

1

r
ψℓ
m(r) = δnm. (10)
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Figure 1: C1 is the straight-line path of integration of the convolution integral (11).
The rotated contour C2 penetrates into the region of unphysical energies.
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Figure 2: The deformed contour C3 asymptotically approaches the real energy axis.

In order to obtain the Q
ℓλ(+)
nν with the outgoing-wave boundary condition, we use

the Green’s function Ĝ(ℓλ)(+)(E) [which is the inverse of the operator in the left-hand-
side of Eq. (7)] which can be expressed in the form of the convolution integral [3, 4],

Ĝ(ℓλ)(+)(E) =
1

2πi

∫

C1

dE Ĝℓ(+)(
√
2E) Ĝλ(+)(

√
2(E − E)), (11)

where the path of integration C1 in the complex energy plane E runs slightly above
the branch cut and bound-state poles of Ĝℓ(+) (see Fig. 1). In order to avoid these
singularities we, following the method of Ref. [3], rotate the contour about the point E

2
by an angle ϕ, −π < ϕ < 0. A part of the rotated straight-line contour C2 indicated
by a dashed line in Fig. 1, lies on the unphysical energy sheet, −2π < arg(E) < 0.
Note that Ĝℓ(+) grows exponentially for large |E| in the lower half-plane. In order to
ensure a rapid convergence of the integral in Eq. (11), we deform the contour C2 in
such a way that the resulting path C3 shown in Fig. 2 asymptotically approaches the
real axis.

The one-particle Green’s function operator Ĝℓ(±) kernel satisfies the equation

[
E − ĥℓ

]
Gℓ(±)(

√
2E ; r, r′) = δ(r − r′) (12)

and can be expressed, e. g., in terms of the Whittaker functions [5]:

Gℓ(±)(k; r, r′) = ± 1

ik

Γ(ℓ± iα)

(2ℓ+ 1)!
M∓iα;ℓ+1/2(∓2ikr<)W∓iα;ℓ+1/2(∓2ikr>), (13)

where α = µZ
k = − 2

k . From the formulae above one deduces that Q
ℓλ(+)
nν can be

written as

Q(ℓλ)(+)
nν (E; r1, r2) =

1

2πi

∫

C3

dE Qℓ1(+)
n (

√
2E ; r1)Qλ(+)

ν (
√
2(E − E); r2), (14)
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where the one-particle QS functions Q
ℓj(+)
nj are defined by [2]

Qℓ(±)
n (k; r) =

∞∫

0

dx′Gℓ(±)(k; r, r′)
1

r′
ψℓ
n(r

′). (15)

2.3 Asymptotic behavior

It follows from the asymptotic behavior of the irregular Whittaker function W that

Qℓ(±)
n (k; r) ∼

r→∞
∓2

i

k
Snℓ(k) (−2kr)ℓ+1eπα/2 e±i(kr+σℓ(k)) U(ℓ+1±iα, 2ℓ+2,∓2ikr)

∼
r→∞

− 2

k
Snℓ(k) e

±i(kr−α ln(2kr)−πℓ
2
+σℓ(k)), (16)

where σℓ(k) = argΓ(ℓ + 1 + iα) is the Coulomb phase. Here Snℓ is the sine-like
J-matrix solution [6],

Snℓ(k) =
1

2

[
(n+ 1)(2ℓ+1)

]1/2
(2 sin ξ)ℓ+1 e−πα/2 ω−iα |Γ(ℓ+ 1 + iα)|

(2ℓ+ 1)!

× (−ω)n 2F1

(
−n, ℓ+ 1 + iα; 2ℓ+ 2; 1− ω−2

)
, (17)

where

ω ≡ eiξ =
b+ ik

b− ik
, sin ξ =

2bk

b2 + k2
, (18)

U(a, b, z) is the Kummer function. Recall that Snℓ are formally defined as the coeffi-
cients of the expansion

ΨC
ℓ (k, r) =

∞∑

n=0

Snℓ(k)ψ
ℓ
n(r) (19)

of the regular Coulomb solution ΨC
ℓ [7]

ΨC
ℓ (k, r) =

1

2
(2kr)ℓ+1 e−πα/2 eikr

|Γ(ℓ + 1 + iα)|
(2ℓ+ 1)!

1F1(ℓ+ 1+ iα; 2ℓ+ 2;−2ikr), (20)

i. e.,

Snℓ(k) =

∞∫

0

dr
1

r
ψℓ
n(r)Ψ

C
ℓ (k, r). (21)

The asymptotic behavior of the QS function (14) for r1 → ∞ and r2 → ∞ simultane-
ously (in the constant ratio tan(φ) = r2/r1, where φ is the hyperangle) is obtained by

replacing Q
ℓ(+)
n and Q

λ(+)
ν by their asymptotic approximation (16) and making use of

the stationary phase method to evaluate the resulting integral along the contour C1:

Q(ℓλ)(+)
nν (E; r1, r2) ∼

ρ→∞

1

E

√
2

π
(2E)3/4e

iπ
4 Snℓ(p1)Snλ(p2)

1√
ρ

× exp

{
i

[√
2Eρ− α1 ln(2p1r1)− α2 ln(2p2r2) + σℓ(p1) + σλ(p2)−

π(ℓ+ λ)

2

]}
,

(22)

where ρ =
√
r21 + r22 is the hyperradius, p1 = cos(φ)

√
2E, p2 = sin(φ)

√
2E, α1 = − 2

p1
,

α2 = − 2
p2

. Notice that on the left part of the contour C3 where k ∼ i|k| and |k| → ∞,

the function Q
ℓ(+)
n behaves like e−br for large r (rather than eikr). Thus, for larger

scale parameter b, the QS function (14) reaches its asymptotic form of Eq. (22) faster.
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Finally, by inserting Eq. (22) into the Eq. (4), we find the following asymptotic
expression:

Φ(+)
sc (r1, r2) ≈

2

E sin(2φ)

√
2

π
(2E)3/4e

iπ
4

exp
{
i
[√

2Eρ− α1 ln(2p1r1)− α2 ln(2p2r2)
]}

ρ5/2

×
∑

ℓλL

Yℓλ
LM (r̂1, r̂2) exp

{
i

[
σℓ(p1) + σλ(p2)−

π(ℓ + λ)

2

]}

×
N−1∑

n,ν=0

CL(ℓλ)
nν Snℓ(p1)Sνλ(p2). (23)

2.4 Transition amplitude

On the other hand, the asymptotic limit of the Green’s function of the three-body
Coulomb system (e−, e−,He++) (for ρ→ ∞ while ρ′ is finite) reads [1, 8]

G(+)(E; r1, r2; r
′
1, r

′
2) ≈

(2E)3/4e
iπ
4

(2π)5/2

exp
{
i
[√

2Eρ+W0(r1, r2)
]}

ρ5/2
Ψ

(−)∗
k′

1
,k′

2

(r′1, r
′
2),

(24)
where the Coulomb phase W0 is given by

W0(r1, r2) = − ρ√
2E

(
− 2

r1
− 2

r2
+

1

r12

)
ln 2

√
2Eρ, (25)

k′
1 = p1r̂1, k

′
2 = p2r̂2. Therefore, from Eq. (1) we obtain that in this region [1]

Φ(+)
sc (r1, r2) ≈

(2E)3/4e
iπ
4

(2π)5/2

exp
{
i
[√

2Eρ+W0(r1, r2)
]}

ρ5/2
Tk′

1
,k′

2
, (26)

where the transition amplitude

Tk′

1
,k′

2
=
〈
Ψ

(−)
k′

1
,k′

2

∣∣∣ Ŵfi

∣∣∣Φ(0)
〉
. (27)

Then, comparing two asymptotic expressions (23) and (26), we find

Tk′

1
,k′

2
=

(4π)2

E sin(2φ)
exp {−i [W0(r1, r2) + α1 ln(2p1r1) + α2 ln(2p2r2)]}

×
∑

ℓλL

([
N−1∑

n,ν=0

CL(ℓλ)
nν Snℓ(p1)Sνλ(p2)

]

× exp

{
i

[
σℓ(p1) + σλ(p2)−

π(ℓ+ λ)

2

]}
YLM
ℓλ (r̂1, r̂2)

)
. (28)

Obviously, the differential cross section is expressed in terms of the ‘reduced’
transition amplitude:

d5σ

dΩ1dΩ2dΩfdE1dE2
=

1

(2π)2
kfk1k2
ki

∣∣Tk′

1
,k′

2

∣∣2. (29)

3 Solving driven equation

The QS approach is based on the assumption that the asymptotic behavior of the
basis Sturmian functions is correct. Hence there remains a problem of finding the
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wave function in the finite ‘inner’ spatial region. This calculation can be performed
in the context of a set of square integrable basis functions. In this case, the left-
hand-side of Eq. (1) decreases sufficiently fast to zero as ρ → ∞ and therefore can
be approximated by a finite linear combination of L2 basis functions. In this work,
we have tried to apply the method for obtaining the solution of the equation (1) by
expanding it into a set of the pure CQS functions (14).

Inserting Eq. (4) into Eq. (1) and having in mind Eq. (7), yields

∑

L,ℓ′,λ′

N−1∑

n′,ν′=0

C
L(ℓ′λ′)
n′ν′

[
| ˜n′ℓ′ν′λ′;LM 〉L + V̂ C

3 |n′ℓ′ν′λ′;LM〉Q
]
= Ŵfi

∣∣∣Φ(0)
〉
, (30)

where

| ˜nℓνλ;LM 〉L ≡ ψℓ
n(r1)ψ

λ
ν (r2)

r21r
2
2

Yℓλ
LM (r̂1, r̂2). (31)

The method of obtaining the expansion coefficients C
L(ℓλ)
nν is to multiply Eq. (30) by

|nℓνλ;LM〉L ≡ ψℓ
n(r1)ψ

λ
ν (r2)

r1r2
Yℓλ
LM (r̂1, r̂2), (32)

(see, e. g., Refs. [9–11]), integrate over r1 and r2, and utilize the orthogonality con-
dition

L 〈nℓνλ;LM | ˜n′ℓ′ν′λ′;LM 〉L = δn,n′ δν,ν′ δℓ,ℓ′ δλ,λ′ . (33)

As a result, we obtain the following matrix equation:

∑

L,ℓ′,λ′

N−1∑

n′,ν′=0

[
δn,n′ δν,ν′ δℓ,ℓ′ δλ,λ′ − U

L(ℓλ)(ℓ′λ′)
nν,n′ν′

]
C

L(ℓ′λ′)
n′ν′ = RL(ℓλ)

nν . (34)

Here R
L(ℓλ)
nν is the projection of the right-hand-side of Eq. (30):

RL(ℓλ)
nν = L〈nℓνλ;LM |Ŵfi

∣∣∣Φ(0)
〉
. (35)

Due to the definition

|nℓνλ;LM〉Q ≡ Ĝ(ℓλ)(+)
∣∣∣ ˜nℓνλ;LM

〉

L
, (36)

the matrix element

U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ = L〈nℓνλ;LM | 1

r12
|n′ℓ′ν′λ′;LM〉Q (37)

can be written as

U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ = L〈nℓνλ;LM | 1

r12
Ĝ(ℓ′λ′)(+)

∣∣∣ ˜n′ℓ′ν′λ′;LM
〉

L
. (38)

Then using the Laguerre basis (32) completeness, we obtain

U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ =

∑

n′′,ν′′=0

L〈nℓνλ;LM | 1

r12
|n′′ℓ′ν′′λ′;LM〉L

× L

〈
˜n′′ℓ′ν′′λ′;LM

∣∣∣Ĝ(ℓ′λ′)(+)
∣∣∣ ˜n′ℓ′ν′λ′;LM

〉

L
. (39)

In order to calculate the matrix elements of the Green’s function in the basis of
functions (31)

G
(ℓλ)(+)
nν,n′ν′ = L

〈
˜nℓνλ;LM

∣∣∣Ĝ(ℓλ)(+)
∣∣∣ ˜n′ℓν′λ;LM

〉

L
, (40)
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we use the convolution integral [9–11]

G
(ℓλ)(+)
nν,n′ν′ =

1

2πi

∫

C3

dE Gℓ(+)
nn′ (

√
2E)Gλ(+)

νν′ (
√

2(E − E)). (41)

The matrix elements of the one-particle Green’s function Gℓ(+) (13)

Gℓ(+)
nm (k) =

∞∫

0

∞∫

0

drdr′
1

r
ψℓ
n(r)G

ℓ(+)(k; r, r′)
1

r′
ψℓ
m(r′) (42)

are expressed in terms of the two independent J-matrix solutions [12]:

Gℓ(+)
nm (k) = − 2

k
Sn<ℓ(k)C

(+)
n>ℓ(k), (43)

C
(+)
nℓ (k) = −

√
n!(n+ 2ℓ+ 1)

eπα/2 ωiα

(2 sin ξ)ℓ

× Γ(ℓ + 1 + iα)

|Γ(ℓ + 1 + iα)|
(−ω)n+1

Γ(n+ ℓ+ 2 + iα)
2F1

(
−ℓ+ iα, n+ 1;n+ ℓ+ 2+ iα;ω2

)
. (44)

Our numerical calculations showed that the values of the convolution integrals (41)
along the contour C3 are equal to those on the straight-line path C2. Note that the
integrand in Eq. (41) does not have exponentially divergent factors unlike that of
Eq. (11).

We approximate U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ by a finite sum

U
L(ℓλ)(ℓ′λ′)
nν,n′ν′ =

N−1∑

n′′ν′′=0

V
L(ℓλ)(ℓ′λ′)
nν,n′′ν′′ G

(ℓ′λ′)(+)
n′′ν′′,n′ν′ . (45)

Here V
L(ℓλ)(ℓ′λ′)
nν,n′ν′ are the matrix elements of 1

r12
in the basis (32):

V
L(ℓλ)(ℓ′λ′)
nν,n′ν′ = L〈nℓνλ;LM | 1

r12
|n′ℓ′ν′λ′;LM〉L. (46)

In our calculations we take N in Eq. (45) to be equal to the number of QS functions
(for each of the coordinates r1 and r2). In order to examine the applicability of the
QS approach, in conjunction with the approximation (45), we study the convergence
of the cross section with increasing N .

4 Results and discussion

We have applied the method outlined above to the problem of electron-impact double
ionization of He. The corresponding fully resolved fivefold differential cross sections
(FDCS) measurements have been performed by the Orsay group [13]. The geometry
of the (e, 3e) process is coplanar with an incident energy E0 = 5599 eV and a small
momentum transfer q = 0.24 a. u. For a fixed value of one of the ejected electron
angles, say, θ1, the FDCS is measured as function of the other angle θ2.

The energies of the two ejected electrons are E1 = E2 = 10 eV, so that E =
0.737 a. u. Hence for φ = π

4 we have p1 = p2 = k1 = k2 = 0.859. As for the
scale parameter b, note that the sine-like J-matrix solution (17) depends on the wave
number k through its dependence on ω [see Eq. (18)]. Thus, it seems intuitively
obvious that the parameter b must be chosen in such a way that the value of ω is
far from its limits ω0 = ±1. In other words, b should be comparable to k1,2. In our
calculations we set b = 0.78.
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Figure 3: The real parts of the first three QS functions.

Note that the asymptotic behavior (22) of the two-particle QS functions (14)
depends upon the indices n and ν. It follows from Eq. (17) that this dependence can
be eliminated by dividing Eq. (14) by Aℓ

n(p1)A
λ
ν (p2), where

Aℓ
n(k) = [(n+ 1)2ℓ+1]

1/2(−ω)n 2F1

(
−n, ℓ+ 1 + iα; 2ℓ+ 2; 1− ω−2

)
. (47)

The same result can be obtained using modified one-particle QS functions

Q̃ℓ(+)
n (k; r) =

Q
ℓ(+)
n (k; r)

Aℓ
n(k)

(48)

in the integral in Eq. (14). To illustrate the use of the convolution integral represen-
tation (14), we present in Figs. 3 and 4 a few modified CQS functions

Q̃(ℓλ)(+)
nν (E; r1, r2) =

1

2πi

∫

C3

dE Q̃ℓ(+)
n (

√
2E; r1) Q̃λ(+)

ν (
√
2(E − E); r2) (49)

for ℓ = λ = 0 on the diagonal r1 = r2 = ρ/
√
2. The energy E on the contour C3 is

parametrized in the form

E = t+ i
E
2 − t

1 + t2
, (50)

0 5 10 15

-0,1

0,0

0,1

0,2

(a. u.)

  n = 0,  = 0
  n = 1,  = 1
  n = 2,  = 2

Im
 Q

(0
0)

(+
)

n
(a

. u
.)

~

Figure 4: The same as Fig. 3 but for the imaginary parts.
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Figure 5: Convergence of FDCS for the He(e, 3e)He++ reaction with increasing N
and comparison with experimental data [13].

where t runs from ∞ to −∞.
To find the helium ground-state function Φ(0), we diagonalize the matrix of the

Hamiltonian (2) in the basis

|nνℓ〉 ≡ χℓ
n(r1)χ

ℓ
ν(r2)

r1r2
Yℓℓ
00(r̂1, r̂2), (51)

where
χℓ
n(r) =

√
2b0 [(n+ 1)2ℓ+2]

− 1

2 (2b0r)
ℓ+1e−b0rL2ℓ+2

n (2b0r). (52)

In doing this, we limit ourselves to ℓmax = 5 and nmax = νmax = 20. Choosing the
basis parameter b0 = 1.688, we obtain E0 = −2.903542 a. u. for the ground state
energy.

We restrict ourselves to the maximal value of the total angular momentum Lmax =
2 and set the maximal angular momentum quantum numbers ℓ and λ to be 3 in the
expansion (4). We examine the differential cross section convergence with increasing

number N of the one-particle QS functions Q
ℓ(+)
n and Q

λ(+)
ν , n, ν = 0, . . . , N − 1

[see Eq. (15)] employed in the basis. A very good convergence of our numerical
procedure is displayed in Fig. 5 where the FDCS (29) for θ1 = 27◦ calculated with
different N are plotted. This result is surprising keeping in mind the aforementioned
shortcoming of the CQS basis functions (14) asymptotic behavior, which results in
noncompactness of Eq. (1). In Fig. 5 we show results for FDCS (29) in comparison
with the experimental data [13]. The results are in agreement in shape, but not in
magnitude, with the experiment.
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