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Abstract

Relativistic properties of a three-nucleon system are investigated using the
Bethe–Salpeter approach. A system of integral Faddeev-type equations for the
three-particle system amplitudes is obtained. The nucleon-nucleon interaction is
chosen to be in a separable form. The Gauss quadrature method for solving the
integral system of equations is considered. The binding energy and the partial-
wave amplitudes (1S0 and 3

S1) of the triton are found by solving the system of
the integral equations.
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Introduction

Three-body calculations in nuclear physics are very interesting for describing three-
nucleon bound states (3He, T), processes of elastic, inelastic and deep inelastic scat-
tering of leptons by light nuclei and also the hadron-deuteron reactions (for example,
pd → pd, pd → ppn). The study of the 3He and T nuclei is also interesting because it
allows us to investigate a further (in addition to the deuteron) evolution of a bound
nucleon thereby contributing to the explanation of the so-called EMC-effect.

Faddeev equations are used in quantum mechanics to describe three-particle sys-
tems. The main feature of Faddeev equations is that all three particles interact
through a pair potential. We are interested in reactions at high momentum transfer
where the relativistic methods should be used. One of such methods is the Bethe–
Salpeter (BS) approach. The relativistic analog of the Faddeev equations can be
considered in the BS formalism.

In this paper, all nucleons have equal masses. The scalar propagators instead of
the spinor ones are used also for simplicity. The spin and isospin structure of the
nucleons is taken into account by using the so-called recoupling-coefficient matrix.
The work mainly follows the ideas of Ref. [1].

The paper is organized as follows. A two-particle problem is considered in Section 1
and Section 2 is devoted to three-particle equations. In Section 3 we present the
calculations and results. The summary is given in Section 4.

1 Two-particle case

Since the formalism of the Faddeev equations is based on properties of the pair
nucleon-nucleon interaction, here only some conclusions from the two-body problem
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Table 1: Parameters λ and β for the 1S0 and 3S1 partial-wave states.

1S0
3S1

λ (GeV4) −1.12087 −3.15480
β (GeV) 0.287614 0.279731

are given.
The Bethe–Salpeter equation for a relativistic two-particle system is written in

the following form:

T (p, p′; s) = V (p, p′) +
i

4π3

∫

d4k V (p, k)G(k; s)T (k, p′; s), (1)

where T (p, p′; s) is the two-particle T matrix and V (p, p′) is the kernel (potential)
of the nucleon-nucleon interaction. The free two-particle Green’s function G(k; s) is
expressed, for simplicity, thought the scalar propagator of the nucleons:

G−1(k; s) =
[

(P/2 + k)2 −m2
N + iǫ

][

(P/2− k)2 −m2
N + iǫ

]

. (2)

To solve Eq. (1), the separable ansatz for the nucleon-nucleon potential V (p, p′) is
used (rank-one):

V (p0, p, p
′
0, p

′) = λ g(p0, p) g(p
′
0, p

′). (3)

In this case the two-particle T matrix has the following simple form:

T (p0, p, p
′
0, p

′; s) = τ(s) g(p0, p) g(p
′
0, p

′), (4)

where

τ(s) =

[

λ−1 − i

4π3

∫ ∞

−∞

dk0
∫ ∞

0

k2dk g2(k0, k)G(k0, k; s)

]−1

. (5)

As the simplest assumption, the relativistic Yamaguchi-type form factor gY (p0, p)
is used,

gY (p0, p) =
1

−p20 + p2 + β2
, (6)

with parameters λ and β chosen to describe the experimental data. The values of the
parameters are given in Table 1.

To calculate the scattering phase shifts of proton-neutron elastic collisions, the
following parametrization of the on-mass-shell T matrix is used:

TL(p̄) = TL(0, p̄, 0, p̄; s) =
−8π

√
s

p̄
eiδL(p̄) sin δL(p̄)

with δL(p̄) being the scattering phase shifts and p̄ =
√

s/4−m2
N =

√

1
2mNTlab. The

calculated scattering phase shifts together with the experimental data are shown in
Fig. 1. The results of calculations of the low-energy parameters and properties of the
bound state (deuteron) are given in Table 2 together with the experimental data from
Ref. [3].

As it seen from Table 2, the properties of low-energy proton-neutron scattering in
the 1S0 and

3S1 partial waves and the deuteron binding are in a satisfactory agreement
with the experimental data. However, as is seen in Fig. 1, the scattering phase shifts
describe the experiment up to Tlab = 100−120 MeV only. This disadvantage is due
to the simplest rank-one choice of the nucleon-nucleon kernel.
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Figure 1: Scattering phase shifts for the relativistic Yamaguchi-type form factors.
The experimental data are taken from Ref. [2]

Table 2: The scattering length a0, the effective range r0 and the deuteron binding
energy Ed for the 1S0 and 3S1 partial waves.

3S1 experiment 1S0 experiment
a0 (fm) 5.424 5.424(4) −23.748 −23.748(10)
r0 (fm) 1.775 1.759(5) 2.75 2.75(5)

Ed (MeV) 2.2246 2.224644(46)

2 Three-particle case

A three-particle system can be described by the Faddeev equations

[ T (1)

T (2)

T (3)

]

=

[

T1

T2

T3

]

−
[

0 T1G1 T1G1

T2G2 0 T2G2

T3G3 T3G3 0

][ T (1)

T (2)

T (3)

]

, (7)

where the full matrix T =
∑3

i=1 T
(i), Gi is the two-particle (j and n) Green’s function

[ijn is cyclic permutation of (1,2,3)],

Gi(kj , kn) =
1

(k2j −m2
N + iǫ)(k2n −m2

N + iǫ)
, (8)

and Ti is the two-particle T matrix which can be written as

Ti(k1, k2, k3; k
′
1, k

′
2, k

′
3) = (2π)4 δ(4)(Ki −K ′

i)Ti(kj , kn; k
′
j , k

′
n). (9)

For the system of equal-mass particles, the Jacobi momenta can be written as

pi =
1

2
(kj − kn), qi =

1

3
K − ki, K = k1 + k2 + k3. (10)

Using expressions (10), Eq. (7) can be rewritten as

T (i)(pi, qi; p
′
i, q

′
i; s) = (2π)4 δ(4)(qi − q′i)Ti(pi; p

′
i; s)

− i

∫

dp′′i
(2π)4

Ti(pi; p
′′
i ; s)Gi(k

′′
j , k

′′
n)
[

T (j)(p′′j , q
′′
i ; p

′
i, q

′
i; s) + T (n)(p′′i , q

′′
i ; p

′
i, q

′
i; s)

]

. (11)
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For the three-particle bound state it is suitable to introduce an amplitude

Ψ(i)(pi, qi; s) = 〈pi, qi|T (i)|MB〉, (12)

where MB =
√
s = 3mN − EB is the mass of the bound state (triton) and s = K2 is

the total momentum squared. Assuming the orbital angular momenta in the triton to
be equal to zero (lp = lq = 0), only two partial-wave states (1S0 and 3S1) should be
taken into account. In the case of the two-particle T matrix in the separable form (4),
the amplitude of the triton becomes

Ψ(i)(p, q; s) =
∑

j=1,2

gj(p) τj(s)Φj(q; s), (13)

where j = 1(1S0), 2(
3S1). The functions Φj(q) satisfy the following system of integral

equations:

Φj(q0, q; s) =
∑

j′

i

4π3

∫

dq′0

∫

q′
2
dq′

× Zjj′ (q0, q, q
′
0, q

′; s)
τj′

[

(23
√
s+ q′0)

2 − q′
2]

(

1
3

√
s− q0

)2 − q′2 −m2
N + iǫ

Φj′ (q
′
0, q

′; s). (14)

The so-called effective energy-dependent potential Z is

Zjj′ (q0, q, q
′
0, q

′; s) = Cjj′

∫ 1

−1

d(cosϑqq′)

× gj
(

− 1
2q0 − q′0, | − 1

2q− q′|
)

gjj′
(

q0 +
1
2q

′
0, |q+ 1

2q
′|
)

(

1
3

√
s+ q0 + q′0

)2 − (q+ q′)2 −m2
N + iǫ

, (15)

where Cjj′ is the spin and isospin recoupling-coefficient matrix:

Cjj′ =

[

1
4 − 3

4
− 3

4
1
4

]

. (16)

The system of integral equations (14)–(15) has a number of singularities, namely:

• poles from the one-particle propagator:

q′01,2 =
1

3

√
s∓ [E|q′| − iǫ];

• poles from the propagator in the Z-function:

q′03,4 = −1

3

√
s− q0 ± [E|q′+q| − iǫ];

• poles from the Yamaguchi-functions:

q′05,6 = −2q0 ± 2[E| 1
2
q′+q|,β − iǫ]

and

q′07,8 = −1

2
q0 ± 1

2
[E|q′+1

2
q|,β − iǫ];

• cuts from the two-particle propagator τ :

q′09,10 = ±
√

q′2 + 4m2
N − 2

3

√
s and ±∞;
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• poles from the two-particle propagator τ :

q′011,12 = ±
√

q′2 + 4M2
d − 2

3

√
s.

However in the case of the bound three-particle system (
√
s ≤ 3mN), all above sin-

gularities do not cross the path of integration over q0 and thus do not affect the Wick
rotation procedure q0 → iq4. Therefore Eqs. (14)–(15) become:

Φj(q4, q; s) = − 1

4π3

2
∑

j′=1

∫ ∞

−∞

dq′4

∫ ∞

0

q
′2dq′

× Zjj′ (iq4, q; iq
′
4, q

′; s)
τj′
[

(23
√
s+ iq′4)

2 − q
′2
]

(

1
3

√
s− iq′4

)2 − q′2 −m2
N

Φj′ (q
′
4, q

′; s) (17)

and

Zjj′ (q4, q; q
′
4, q

′; s) = Cjj′

∫ 1

−1

d(cosϑqq′)

× gj
(

− 1
2q

0 − q0
′

, | 12q+ q′|
)

gj
(

q0 + 1
2q

0′ , |q+ 1
2q

′|
)

(

1
3

√
s+ q0 + q0′

)2 − (|q+ q′|)2 −m2
N

. (18)

Various methods can be used to solve Eqs. (17)–(18). One of them is discussed in
the next section.

3 Solution and results

In order to solve the system of integral equations, the Gaussian quadrature method is
used. The integration variables q [0,∞) and q4 (−∞,∞) are mapped to the [−1, 1] in-
terval. The quadrature method replaces integrals by sums and transforms the system
of homogeneous linear integral equations to a system of algebraic equations. These
equations can be solved using FORTRAN codes.

The method can be presented schematically as

f(x) =

∫

A(x, y) f(y) → f(xi) =
∑

j=1,n

A(xi, yj)wj f(yj),

where xi, yj and wj are the Gauss points and weights and n is the number of points.
The homogeneous system of linear equations takes the form

Mφ = 0

with Mij ≡ Aij − δij and φi = f(xi); i, j = 1, 2, ... , n. This system of equations has a
solution if the determinant of the matrix is equal to zero. This condition is satisfied
at the binding energy of the three-nucleon system:

detM(s) = 0 at
√
s = 3mN − EB.

The result of calculations (n = 15) for the binding energy is EB = 11.09 MeV
which should be compared to the experimental value of 8.48 MeV. The difference can
be explained by the simplicity of the rank-one separable kernel of the nucleon-nucleon
interaction.

The obtained partial-wave amplitudes are shown in Figs. 2–4. The imaginary
parts of the amplitudes arise as a pure relativistic effect which does not appears in
nonrelativistic Faddeev equations.
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Figure 2: Real parts of the 3S1 (left) and 1S0 (right) amplitudes as functions of q at
various q4 values.
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Figure 3: Real (left) and imaginary (right) parts of the 3S1 amplitude as functions
of q4 at various q values.
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Figure 4: Real (left) and imaginary (right) parts of the 1S0 amplitude as functions
of q4 at various q values.
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4 Summary

In this paper a three-body system in the Bethe–Salpeter approach is investigated. A
rank-one separable nucleon-nucleon interaction is utilized. The form factor is chosen
in the form of a relativistic generalization of the Yamaguchi-type function. The pa-
rameters of the nucleon-nucleon potential in the 1S0 and 3S1 partial waves reproduce
low-energy scattering parameters and deuteron properties as well as the phase shifts
up to the laboratory energy of 100–120 MeV.

The Faddeev equations for the triton wave functions considered in the BS formal-
ism are solved using the Gauss quadrature method. The triton binding energy and
amplitudes of the 1S0 and 3S1 partial-wave states are calculated.

The triton binding energy is essentially overestimated. To improve the results,
the rank of the separable kernel should be increased. Other partial waves, the P and
D waves in particular, and the spinor propagators for nucleons should be also taken
into account.
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