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Abstract

The paper deals with vertex functions representing matrix elements of two-
fragment (a → 1 + 2) or three-fragment (a → 1 + 2 + 3) virtual decays of a
bound nuclear system a. Much attention is given to the on-shell vertex functions
corresponding to the case when all external particles (fragments) are on the
mass shell. The relations are established between the on-shell vertex functions
and the coefficients multiplying the asymptotic forms of wave functions and
overlap integrals in two- or three-fragment channels. It is shown that the on-shell
three-fragment vertex functions determine the contributions to the amplitudes of
processes described by the Feynman diagrams containing loops. The anomalous
asymptotics of the wave functions in the two-fragment channels is discussed.
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1 Introduction

The vertex function (VF) W for the virtual n-fragment decay of a bound state a is
the matrix element of the process

a→ 1 + 2 + . . .+ n. (1)

If the system 1+ 2+ . . .+ n possesses a bound state a, then the matrix element (the
amplitude) of the scattering process

1 + 2 + . . .+ n→ 1 + 2 + . . .+ n (2)

has a pole at the energy corresponding to that bound state, and the VF W is related
to the residue of the matrix element at that pole (see Fig. 1).
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The matrix element of the process (2) can be written as

M =
〈

Φf |V |PΨ(+)
i

〉

= 〈Φf |V |P (1 +GV )Φi〉, (3)

P is the (anti)symmetrization operator. Using the spectral decomposition of the
Green’s function G and the relation V = H −H0 one easily gets

W (~q1, ~q2, . . . , ~qn−1) = −N1/2 (T + ǫ) 〈φ1φ2 . . . φn|φa〉. (4)

Here ~qi are the Jacobi momenta, φi is the internal wave function of the fragment i,
T is the relative kinetic energy, and ǫ > 0 is the binding energy in the channel
a→ 1 + 2 + . . .+ n.

The factor N1/2 arises due to the identity of constituents. If all fragments consist
of nucleons which are considered to be identical, then

N =
Aa!

A1!A2! . . . An!
, (5)

where Ai denotes the number of nucleons in the fragment i. If all fragments 1, 2, . . . n
are treated as structureless, then 〈φ1φ2 . . . φn|φa〉 turns into the wave function φa
and N equals n!.

VFs W for a→ 1 + 2+ . . .+ n are related to the coordinate asymptotics of φa in
the channel 1+ 2+ . . .+n. In what follows we discuss this relation for the important
cases n = 2 and n = 3.

The system of units ~ = c = 1 is used throughout the paper.

2 Two-fragment case (n = 2)

2.1 General formalism

From general principles the expression for the vertex function (the matrix element)
of the two-body decay (virtual or real) a→ b+ c can be written as [1]

Wa→b+c =
√
4π

∑

lsmlms

Gabc(ls;σa, σb, σc)

× (JbMbJcMc|sms)(lmlsms|JaMa)Ylm(~qbc/qbc). (6)

Here Ji and Mi are the spin of the particle i and its projection, (aαbβ|cγ) are the
Clebsh–Gordon coefficients, ~qbc is the relative momentum of b and c, l and ml are the
relative angular momentum of b and c and its projection, s andms are the channel spin
and its projection, Ylm is the spherical function, Gabc(ls;σa, σb, σc) are the invariant
vertex form factors (VFF). Generally, when all three particles a, b, c are off-shell,
VFFs Gabc may depend on three kinematic invariants and the quantities σa, σb, σc are
selected as such invariants in Eq. (6). σi is defined as σi = Ei − ~p2i /2mi where Ei, ~pi
and mi are the kinetic energy, the momentum, and the mass of the particle i. If the
particle i is on-shell, then σi = 0.

However, if one relates the vertex function to the residue of a scattering amplitude
and defines it according to Eq. (4), then the VFF Gabc(ls;σa, σb, σc) depends on the
relative momentum qbc only which is related to σi:

q2bc = −κ
2 − 2µbc(σb + σc − σa), κ

2 = 2µbcǫ, ǫ = mb +mc −ma, (7)

µij is the reduced mass of i and j. It follows from Eq. (7) that if all three particles
are on shell (σa = σb = σc = 0), then qbc = iκ.

The on-shell values of VFFs are called vertex constants (VC): G ≡ G(q)|q=iκ .
They are the analogues of the renormalized coupling constants in quantum field the-
ory. The VCs thus defined are real.
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Using Eq. (6) and the analogous expansion of the overlap function (4) in the
coordinate representation one obtains

Gabc(ls; q) = −(πNbc)
1/2 q

2 + κ
2

µbc

∞
∫

0

jl(qr) Iabc(ls; r) r
2dr, (8)

where Iabc(ls; r) is the radial overlap integral of the wave functions of a, b and c, and r
is the distance between b and c.

The VC G is directly related to the asymptotic normalization coefficient (ANC)
of Iabc(ls; r) at r → ∞. In the case of a short-range interaction,

Iabc(ls; r) ≈ Cabc(ls)
e−κr

r
, r → ∞. (9)

Inserting Eq. (9) into Eq. (8) and setting q = iκ, it is easy to obtain a relation between
the VC Gabc(ls) and the ANC Cabc(ls) [1]:

Gabc(ls) = − (πNbc)
1/2

µbc
Cabc(ls). (10)

Note that the factorN
1/2
bc is often included into the definition ofCabc(ls) and Iabc(ls; r).

The long-range Coulomb interaction modifies the asymptotic behavior of the over-
lap integral Iabc(ls; r), namely

Iabc(ls; r) ≈ Cabc(ls)
W−η,l+1/2(κr)

r
≈ Cabc(ls)

e−κr−η ln(2κr)

r
, r → ∞. (11)

Here η = ZbZce
2µbc/κ is the Coulomb (Sommerfeld) parameter for a bound state a,

Zie is the charge of the fragment i, and W is the Whittaker function.
In the presence of the Coulomb interaction Eq. (8) can not be used for determining

the VC since at q → iκ the right-hand-side of (8) tends to 0 for the repulsive Coulomb
potential and to ∞ for the attractive potential.

There are different definitions of VCs in the presence of the Coulomb interac-
tion. The most natural definition relates the VC to the Coulomb-modified scattering
amplitude.

The total amplitude of elastic bc scattering in the presence of the Coulomb and
short-range interactions is written as

f(~k) = fC(~k) + fNC(~k), (12)

fC(~k) =

∞
∑

l=0

(2l + 1)
exp(2iσl)− 1

2ik
Pl(cos θ), (13)

fNC(~k) =

∞
∑

l=0

(2l + 1) exp(2iσl)
exp(2iδNC

l )− 1

2ik
Pl(cos θ). (14)

Here σl = argΓ(l+1+iηs) and δ
NC
l are the pure Coulomb and Coulomb-nuclear phase

shifts, Γ(z) is the Gamma function and ηs = ZbZce
2µ/k is the Coulomb parameter

for a scattering state.
The renormalized Coulomb-nuclear partial-wave amplitude f̃N

l in the case of the
repulsive Coulomb potential is introduced as follows [2]:

f̃N
l = exp(2iσl)

exp(2iδNC
l )− 1

2ik

(

l!

Γ(l + 1 + iηs)

)2

eπηs . (15)
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The analytic properties of f̃N
l on the physical sheet are analogous to those for the

scattering by a short-range potential. In particular, it is regular near zero energy.
If the b+ c system possesses a bound state a with the binding energy ǫ = κ

2/2µ,
then the amplitude f̃N

l (k) has a pole at k = iκ. The residue at that pole is expressed

in terms of the Coulomb-renormalized VC G̃l and ANC Cl:

res f̃N
l (k) = lim

k→iκ
[(k − iκ)f̃N

l (k] = i
µ2

2πκ
G̃2

l , (16)

Cl = − µ√
π

Γ(l + 1 + η)

l!
G̃l. (17)

The knowledge of ANCs is essential for an analysis of nuclear reactions between
charged particles at low energies. In particular, the value of the ANC Cabc(ls) de-
termines essentially the cross section of the radiative capture b(c, γ)a reaction at
astrophysical energies [3].

2.2 Anomalous asymptotics

In fact, the asymptotic form (9) has been rigorously proved only for the simplest case
when the composite system a consists of two elementary constituents. In that case
the form (9) follows directly from the Schrödinger equation. It is shown below that
the asymptotics of the overlap integral may differ from Eq. (9) if a consists of three
or more constituents.

Consider the Fourier transform J(q2) of I(r):

I(r) = (2π)−3

∫

ei~q~r J(q2) d3q. (18)

According to Eqs.(2) and (6), J(q2) can be written in the form:

J(q2) = −N−1/2
bc

2µbc

q2 + κ2
G(q2), (19)

Inserting Eq. (19) into Eq. (18) and integrating over angular variables, one obtains:

I(r) = const · 1

ir

∫ ∞

−∞

eiqr
G(q2)

q2 + κ2
qdq. (20)

In the upper half-plane of the complex variable q the integrand in Eq. (20) has a
pole at q = iκ and a cut beginning from the nearest singular point q = iκ1 of the
form factor G(q2). Making use of the Cauchy theorem one gets from Eq. (20)

I(r) = const ·
{

π

r
e−κrG(−κ

2) +
1

ir

∞
∫

κ1

e−kr discG(−k2)
k2 − κ2

kdk

}

= I0(r) + I1(r). (21)

An explicit asymptotic form of the second term on the r.h.s. of Eq. (21) depends
on the behavior of discG(q2) at q2 → −κ

2
1 , that is, on the type of the singularity

at q = iκ1. To investigate the singular behavior of G(q2), it is convenient to use
the formalism of Feynman diagrams. In the vicinity of a proper singularity z = z0,
the singular part of the amplitude of a Feynman diagram having n inner lines and v
vertices, behaves as [4, 5]

Mnv |z→z0∼ (z − z0)
s if s 6= 0, 1, 2, ...,

Mnv |z→z0∼ (z − z0)
s ln(z − z0) if s = 0, 1, 2, ...,

(22)

where s = (3n− 4v + 3)/2.
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Figure 2: The simplest Feynman diagram for an a→ b+ c vertex.

The simplest Feynman diagram for an a → b + c vertex is a triangle diagram of
Fig. 2.

For this diagram, s = 0 and it is easy to obtain from Eq. (21) that the contribution
of that diagram results in

I(r) |r→∞= c0
e−κr

r
+ c1

e−κ1r

r2
, (23)

κ1 = i
mb

md
(κade + κbdf ), κ

2
ijk = 2µjkǫijk, ǫijk = mj +mk −mi. (24)

The first term on the r.h.s. of Eq. (23) corresponds to a ‘normal’ asymptotics.
If κ < κ1, then this term is a leading one and the overlap integral I(r) possesses
the normal asymptotics. However, in the opposite case, κ > κ1, the asymptotics
of I(r) is governed by the second term in Eq. (23) (the ‘anomalous’ case).

Though there is no a general rules preventing the ‘anomalous’ condition κ > κ1

from being satisfied, it appears that for real nuclear systems this condition is satis-
fied not very often. The nuclear vertices 16O → 13N(13C) + 3H(3He) and
20Ne → 17F(17O) + 3H(3He) can serve as examples of the anomalous asymptotics of
the overlap integrals due to the triangle diagram of Fig. 2.

3 Three-fragment case (n = 3)

Consider a 3-body bound system a = {123} with the wave function

ψa(~ρ,~r), ~ρ = ~r1 − ~r2, ~r = ~r3 −
m1~r1 +m2~r2
m1 +m2

. (25)

The constituents 1, 2, and 3 might be composite, then ψa turns into an overlap
integral.

Introduce the Fourier transform ϕa(~k, ~p) of ψa(~ρ,~r) and the vertex function

(VF) W (~k, ~p):

~k = (m2
~k1 −m1

~k2)/m12, ~p =
[

m12
~k3 −m3(~k1 + ~k2)

]

/M,

mij = mi +mj, M = m1 +m2 +m3. (26)

ψa(~ρ,~r) =

∫

exp [i(~k~ρ+ ~p~r)]ϕa(~k, ~p)
d~k

(2π)3
d~p

(2π)3
, (27)

ϕa(~k, ~p) = −W (~k, ~p)/L(k, p), L(k, p) = −(ǫ+ k2/2µ1 + p2/2µ2),

ǫ = m1 +m2 +m3 −ma, µ1 = m1m2/m12, µ2 = m1m12/M. (28)

ψa and ϕa are normalized:
∫

|ψa(~ρ,~r)|2 d~ρ d~r = 1,

∫

|ϕa(~k, ~p)|2 d~k d~p/(2π)6 = 1. (29)
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Introduce modified Jacobi variables:

~x1 =
√

2µ1~ρ, ~x2 =
√

2µ2~r, ~k1 = ~k/
√

2µ1, ~k2 = ~p/
√

2µ2,

x21 + x22 = R2, k21 + k22 = P 2. (30)

ψa(~x1, ~x2) and W (~k1, ~k2) can be expanded through their partial-wave components

ψ
(l,λ,L)
a (x1, x2) andW

(l,λ,L)(k1, k2) corresponding to Jacobi angular momenta l and λ

(~l + ~λ = ~L). Spin variables could be taken into account as well. Strictly speaking,
the following text applies to these partial-wave components. However, to simplify
the presentation, we suppose that the l = λ = 0 components contribute only to ψa

and W . Then after integrating over the angular variables Eq. (27) assumes the form

ψa(x1, x2) =
(µ1µ2)

3/2

2π4

1

x1x2

∫ ∞

0

dk1

∫ ∞

0

dk2k1k2
W (k1, k2)

ǫ+ P 2

× (eik1x1 − e−ik1x1)(eik2x2 − e−ik2x2). (31)

W (k1, k2) should depend on k21 , k
2
2 ; that is W (k1, k2) is an even function of k1, k2.

Hence Eq. (31) can be written as

ψa(x1, x2) =
(µ1µ2)

3/2

2π4

1

x1x2

∫ ∞

−∞

dk1

∫ ∞

−∞

dk2 k1k2e
i(k1x1+k2x2)

W (k1, k2)

ǫ+ P 2
. (32)

We neglect the Coulomb interaction in what follows though the results could be easily
generalized to the case when two of the particles 1, 2 and 3 are charged.

If a pair subsystem ij (ij = 12, 23, 31) can form a bound state with the bind-
ing energy ǫij , then the VF W (k1, k2) has a two-body pole at the relative kinetic
energy Eij = −ǫij . Such poles lead to the two-body asymptotics analogous to those
considered in Section 2. In the present Section we will consider the true three-body
asymptotics generated by the pole P 2 = −ǫ in Eq. (32). Denoting its contribution by
ψ3 and integrating over k2 in the integral (32) by taking the residue at k22 = −ǫ− k21 ,
one obtains

ψ3(x1, x2) = i
(m1m2m3/M)3/2

2π3

1

x1x2
J(x1, x2),

J(x1, x2) =

∫ ∞

−∞

dk1 k1 exp
(

ik1x1 −
√

ǫ+ k21 x2

)

W
(

k1, i
√

ǫ+ k21

)

. (33)

Denoting x1 = R cosα, x2 = R sinα one can evaluate J(x1, x2) at R → ∞ by the
saddle-point method (the saddle-point is k1 = iǫ1/2 cosα). As a result, one obtains the
following expression for the leading contribution to the asymptotic form of ψ3(x1, x2):

ψ
(0)
3as(R,α) = C3

e−
√
ǫR

R5/2
,

C3 = − (m1m2m3/M)3/2√
2π5/2

W (i
√
ǫ cosα, i

√
ǫ sinα). (34)

The R dependence of the asymptotic form (34) agrees with that presented in [6].
C3 is the three-body asymptotic normalization factor. It is expressed in terms of

the on-shell three-body vertex function W (α) ≡ W (i
√
ǫ cosα, i

√
ǫ sinα) correspond-

ing to P 2 = −ǫ. Eq. (34) is the three-body analogue of the two-body relation (9).
The saddle-point method allows one to calculate corrections to the leading term

(34). In the present work, the expressions for the correction terms of the order (
√
ǫR)−1
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and (
√
ǫR)−2 are obtained. These corrections are expressed in terms of W (α) and

its derivatives. The explicit expression for ψ
(2)
3as including the corrections of the or-

der (
√
ǫR)−1 and (ǫR2)−1) is of the form:

ψ
(2)
3as = ψ

(0)
3as

[

1 + (
√
ǫR)−1χα + (ǫR2)−1ξα

]

,

χα =
15

8
− 2 cot(2α) γ1(α)−

1

2
γ2(α),

ξα =
105

128
− 11

4
cot(2α) γ1(α) −

43

16
γ2(α) + cot(2α) γ3(α) +

1

8
γ4(α),

γn(α) ≡
1

W (α)

dnW (α)

dαn
. (35)

The asymptotics of the three-body wave function was considered in [7]. The results
of that work include the corrections due to non-zero values of the angular momenta l
and λ. However, these corrections do not include the terms of the same order due to
using the saddle-point method. Making use of the results of the present work, one
can calculate the reliable correction terms for l+ λ ≤ 2.

4 Discussion and Conclusions

The on-shell VFs W (α) are important three-body characteristics determining the
asymptotics of three-body wave functions. Of a special interest are the quantities
W0 =W (α = π/2) corresponding to k1 = 0 what means that the particles 1 and 2
move as a single body with the mass m12 = m1 + m2. W0 is a constant which is
an analog of the two-body vertex constant Gabc. It could be called the generalized
vertex constant (GVC).

It follows from Landau equations [4] that the GVCs determine the contributions
of proper singularities of Feynman diagrams containing the loops consisting of two
particles (as in Fig. 3). ThusW0(a→ 1+2+3) andW0(1+2+4 → c) in Fig. 3a deter-
mine a possible anomalous asymptotics of the overlap integral Iabc. In particular, the
verticesW0(

9Be → n+α+α) andW0(n+α+p→ 6Li) (W0(n+α+n → 6He)) in the
diagrams of the Fig. 3a type were used in Ref. [8] to analyze the anomalous asymp-
totics of the overlap integrals for the vertices 9Be → 6Li + 3H (9Be → 6He + 3He).
W0(a → 1 + 2 + 3) and W0(x + 1 + 2 → y) in Fig. 3b determine the contribution of
the t-channel normal threshold to the amplitude of the process a+ x→ 3 + y.

The concept of the GVC could be directly extended to the loops containing more
than two particles.

In conclusion it is worthwhile to note that the GVCW0 for the vertex a→ 1+2+3
could in principle be determined by the analytic continuation of the differential cross
section of the a+ x→ 1 + 2 + y reaction to the pole of the diagram of Fig. 4.
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