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Abstract

Quasi-Sturmian (QS) functions are proposed as an expansion basis to de-
scribe continuum states of a quantum system. A closed analytic representation
of QS functions is derived. A two-body scattering example is given to demon-
strate advantages of the method.
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1 Introduction

The three-body Coulomb scattering is one of the fundamental unresolved problem.
In atomic physics two-electrons systems are of great interest. In the one-electron con-
tinuum problem (e. g., when the electron is scattered by a bound pair) an expansion
on the bispherical basis is applicable. In this case an expansion of the partial wave
function on the basis of square integrable functions (of the electron coordinates r1
and r2) is recognized to be suitable. In the J-matrix method [1] as well as in the
converge-close coupling (CCC) approach [2] the Laguerre basis functions are used for
this purpose. Recently a new version of the Sturmian approach [3] has been devel-
oped, based upon an expansion on the so called generalized Sturmian functions (see,
e. g., the papers [4, 5] and references therein) which are eigensolutions for integral or
differential Sturm–Liouville equations with the outgoing- and incoming-wave bound-
ary conditions. The Coulomb interaction within all these approaches is involved in
the construction of the basis functions into the unperturbed part of the two-body
Hamiltonian. In the framework of the J-matrix, the Coulomb Green’s function have
been obtained in a suitable analytic form [6,7] in terms of hyper-geometric functions.
In turn, the short-ranged operator of the potential energy is represented here in a
finite subspace of L2 basis functions. As a result, e. g., the phase shift corresponding
to this truncated model potential, oscillates as the number of used basis functions
increases [8]. Thus an application of the J-matrix method to the two-body scatter-
ing problem yet requires additional efforts in order to improve the convergence. The
Sturmian function approach is free from such flaws. However these basis functions
are calculated numerically, so the generation of the basis poses a problem as difficult
as the original scattering problem.

In this paper, basis functions are proposed which we call Quasi Sturmians (QS).
The QS functions formally are the solutions of the inhomogeneous Schrödinger equation
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whose right-hand-side contains the Laguerre L2 functions. Hence, unlike the Stur-
mian functions, the QS functions with an appropriate asymptotic behavior can be
obtained in a closed analytic form.

The atomic units are assumed throughout.

2 Quasi Sturmians

Let us consider the motion of a particle of mass µ in a potential V (r) = VC(r)+U(r)

which is represented by the sum of the Coulomb potential VC(r) =
Z1Z2

r and a short-

range one U . The scattering wave function Ψ
(+)
ℓ (we consider the outgoing-wave

boundary condition) satisfies the Schrödinger equation

[

−
1

2µ

(

d2

dr2
−

ℓ(ℓ+ 1)

r2

)

+ V (r)− E

]

Ψ
(+)
ℓ (r) = 0. (1)

To solve the scattering problem, we express the wave function as a sum of the

Coulomb wave and of the so-called scattering wave Ψ
(+)
sc :

Ψ(k, r) = ΨC
ℓ (k, r) + Ψ(+)

sc (k, r), (2)

where ΨC
ℓ is the regular Coulomb solution [9]:

ΨC
ℓ (k, r) =

1

2
(2kr)ℓ+1 e−πα/2 eikr

|Γ(ℓ + 1 + iα)|

(2ℓ+ 1)!
1F1(ℓ + 1 + iα; 2ℓ+ 2;−2ikr). (3)

Here α = µZ1Z2

k is the Sommerfeld parameter, the energy is defined as E = k2

2µ .

Inserting (2) into (1) yields the following inhomogeneous equation for Ψ
(+)
sc :

[

−
1

2µ

(

d2

dr2
−

ℓ(ℓ+ 1)

r2

)

+
Z1Z2

r
+ U(r) − E

]

Ψ(+)
sc (k, r) = −U(r)ΨC

ℓ (k, r). (4)

We suggest to find the solution Ψ
(+)
sc of the Driven Equation (4) in form of the

expansion

Ψ(+)
sc (r) =

N−1
∑

n=0

cn,ℓQ
(+)
n,ℓ (r). (5)

The functions Q
(+)
n,ℓ satisfy the inhomogeneous equation

[

−
1

2µ

(

d2

dr2
−

ℓ(ℓ+ 1)

r2

)

+
Z1Z2

r
− E

]

Q
(+)
n,ℓ (r) =

1

r
φn,ℓ(r), (6)

where the Laguerre basis functions

φn,ℓ(λ, r) =

√

n!

(n+ 2ℓ+ 1)!
e−λr (2λr)ℓ+1L2ℓ+1

n (2λr) (7)

are used; λ is the scale parameter of the basis.

We call the functions Q
(+)
n,ℓ Quasi Sturmians due to their analogy with (using

as a basis) Sturmian functions. QS with appropriate asymptotic properties can be
obtained (unlike the Sturmian functions) in a closed form.

QS functions can be presented as an integral:

Q
(+)
n,ℓ (r) =

∞
∫

0

dr′ Gℓ(±)(k; r, r′)
1

r′
φn,ℓ(λ, r

′). (8)



Quasi-Sturmian basis 141

The Green function operator Ĝℓ(+) kernel is expressed in terms of the Whittaker
functions [10]:

Gℓ(±)(k; r, r′) = ∓
µ

ik

Γ(ℓ+ 1± iα)

(2ℓ+ 1)!
M∓iα;ℓ+1/2(∓ikr<)W∓iα;ℓ+1/2(∓ikr>). (9)

Explicit expressions for the matrix elements

Gℓ(±)
m,n (k;λ) =

∞
∫

0

∞
∫

0

drdr′
1

r
φm,ℓ(λ, r) G

ℓ(±)(k; r, r′)
1

r′
φn,ℓ(λ, r

′) (10)

have been obtained in Ref. [6] (see also Ref. [7]) using two linear independent J-matrix
solutions [11]:

Gℓ(±)
m,n (k;λ) =

2µ

k
Sn<,ℓ(k) C

(±)
n>,ℓ(k). (11)

The coefficients of the QS function expansion in terms of the Laguerre basis func-
tions (7) are calculated by multiplying Eq. (8) by 1

rφn,ℓ(λ, r) and integrating over r.
As a result, in view of Eq. (10), we obtain

Q
(±)
n,ℓ (r) =

∞
∑

m=0

φm,ℓ(λ, r) G
ℓ(±)
m,n(k;λ). (12)

3 Example

Let us consider an s-wave scattering of a particle of mass µ = 1 and momentum k = 1
by the combination of the Coulomb potential with Z1Z2 = 1 and Yukawa potential

U(r) = b
e−ar

r
, a = 1.3, b = 1. (13)

We study the expansion (5) convergence with increasing N . The functions Q
(+)
n,0

oscillate with different frequencies within the range of the potential U (see Fig. 1)
while the Sturmians possess the same behavior up to the amplitude factor outside the
range.
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Figure 1: Real parts of the first six QS functions for a particle of mass µ = 1 and
momentum k = 1 in the Coulomb potential VC = 1

r . The scale parameter of the
basis λ = 2.6.
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Figure 2: Convergence of the phase shift with N .

We insert the expansion (5) into Eq. (4), multiply the resulting expression
by φn,ℓ(λ, r) and integrate over r to obtain a discrete equation for the coefficients cn,ℓ:

[I+ U ] c = d. (14)

The components dm, m = 0, . . . , N − 1 of the vector d in the right-hand-side of
Eq. (14) are defined as

dm = −

∞
∫

0

dr φm,0(λ, r)U(r)ΨC
0 (r), (15)

the elements Um,n of the N ×N matrix U are defined as

Um,n =

∞
∫

0

dr φm,0(λ, r)U(r)Q
(+)
n,0 (r) (16)

The unit matrix I present in the left-hand-side of Eq. (14) appears due to the orthog-
onality relation for the Laguerre basis.

Convergence of the s-wave phase shift δ0(k) with N is shown in Fig. 3.

4 Conclusion

A comparison of the phase shift obtained by our method with the phase shift from the
J-matrix calculations shows advantages of the proposed approach over the J-matrix
method.

In this work we suggested the Quasi-Sturmian functions and showed that their
application to the two-body scattering problem is quite efficient. The convergence
rate appeared to be comparable or even higher than that achieved in the J-matrix
method and generalized Sturmian approach. Moreover, the QS functions have an
obvious advantage that they can be expressed in a closed analytic form. An explicit
representation of the basis QS function in terms of known special functions may be
useful in applications to the Coulomb three-body problem.
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