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MOTIVATIONS 

 

1. A large body of experimental information concerning 

cluster decay widths of resonance states is accumulated. 

 

2. Redefinition of the cluster spectroscopic characteristics 

has changed the view on clustering significantly. 

 

3. Supercomputing era came. Advanced approaches to 

nuclear structure producing wave functions of nuclei which 

make it possible to describe nuclear  spectra, moments, 

electromagnetic transitions, etc. with rather high quality are 

created. 

 



INTENSIONS 

 

A global intension is to create the theory of clustering 

suited to the requirement of supercomputing era. 

 

A particular program is to build techniques for 

description of the cluster observables for the wave 

functions of such a type in the case that they are 

representable in the form of the oscillator expansion.  

 

Contrary to the modern approaches to clustering 

concentrating attention on the strongly clustered 

states we try to consider all states as the objects.  



NUCLEAR REACTIONS AND MANIFESTATION 

OF CLUSTERING 

I.   Spontaneous cluster decay. 

II.  Cluster transfer reactions. 

III. Cluster knock-out.  

 

IV. RESONANCE SCATTERING OF COMPOSITE    

PARTICLES.   

 

The investigations are: 

1. Modern, being in progress, promising. 

2. Providing broad and rich cluster spectra. 

 

An objective of this work is to build a theory of such spectra 

and to study various nuclear processes. 





ALPHA-PARTICLE LEVEL DENSITY PUZZLE 



CLUSTERING IN SHEL-MODEL APPROACHES 

 

MATHEMATICS OF CLUSTERING 

 

I. Translationally- invariant shell model (TISM) 

 

Cluster fractional parentage coefficient (FPC) is defined 

as:  
ˆ| { ( ) }nl

MDC M D nl CF A     

where: 

, ,M D C   

internal translationally-invariant wave functions (WFs) of 

the mother, daughter nuclei and the cluster respectively. 

The formalism of translationally-invariant shell model 

[I.V. Kurdiumov, et al. A 145, 593 (1970)] is, however, too 

cumbersome for actual calculations. 

( )nl   wave function (WF) of the relative motion, 

Â  the antisymmetrizer, 



II. Traditional shell model 

 

Multi-nucleon fractional parentage coefficient of the 

X-nucleon configuration            is defined as:  

ˆ( ) ( ) | { ( ) }R

MD M M D D XNF XN R A R   

XN

where the notation: ( ) ( )( )M D M DR stands for the a WF  

of the traditional shell model containing the redundant 

center-of-mass (CM) coordinate.  



In the case that C is  the X-nucleon cluster, the WFs of 

the mother and the daughter nuclei ( )D DR( )M MR and 
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[Yu.F. Smirnov, Yu. M. Tchuvil’sky, Phys. Rev. C 15, 

84 (1977)] takes place. Here first two multipliers 

present the recoil factor and the multiplier  

denotes cluster coefficient. Methods of calculation of 

this object for various cluster masses and nucleon 

configurations are developed in many papers.  

| ( )nl XN nl C CX R  

are superpositions of the oscillator WFs, the CM 

motions of the nuclei described by these WFs are zero 

oscillations the formula 



As an example, a general expression for the cluster 

coefficients of light d, t, h, and α clusters takes the 

form: 

( 0) ( 0)

1

1/ 21/ 2

/ 2

1 1

( 0) : 000 | ( )

!/ ! ! ! .

X

n i n C C

i

X k
n

i i

i j

X n n R

X n n X









 

  

  
    

   



 

[Ichimura et al. Nucl. Phys A 204, 225 (1973)]. The 

SU(3)-coupling of the one-nucleon WFs is implied 

here. The components of the symmetry   
contribute to the expression only.  
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PHYSICS OF CLUSTERING 

A long-term concepts was the measure of clustering – 

spectroscopic amplitude and  the projection of the  

nuclear wave function onto the cluster channel i. e. 

FPC in the TISM (1) is one and the same [H.J. Mang 

Z. Phys. 148,  556 (1957); V.V. Balashov et al. JETP 

37, 1385 (1959); a set of works by SINP MSU and 

VSU groups]: 
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and thus the the cluster form factor and spectroscopic 

factor can be expressed as:  
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In the paper [T. Fliessbach and H.J. Mang, Nucl. Phys. A 

263, 75 (1976)] this point of view was thrown doubt. The 

matter is that a certain matching procedure is required to 

deduce the amplitude and the width of a cluster channel. 

But the values of one and the same sense can solely be 

matched. I. e. the cluster form factor must be matched  

with the same projection of the cluster channel WF. Not:   
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( )l 

( ),lf 

( )f  – a solution of two-body problem, with the traditional 

norm but: 

( )l 
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And the channel wave function:  

microscopic solution  of A-nucleon problem which 

may be RGM, OCM, etc. In the case that it is 

normalized as usual: 

the WF of the relative motion must be normalized as: 

1

( '), ( '), .
D C D C

E E k k etc
 

 
    

    

2ˆ ( ) ( , ) ( )N N d           



       
1 2 1 22 2

( , )

1 1ˆ ˆ .A A lm A A lm

N

A Y A Y 

   

   
               

    

R. Lovas et al. Phys. Rep. 294, 265 (1998).  

As a result: 
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In the case that the WFs     are presented in the 

form of superposition of the oscillator WFs the 

calculations of “new” characteristics can be carried out 

by the following way: 

 

1. The eigenvalues    and the eigenfunctions         

are found by diagonalization of the norm kernel 

matrix: 
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2. The “new” cluster form factor     is expanded 

onto the eigenfunctions of the norm kernel : 
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the “new” spectroscopic factor takes the form 
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The sum rule of the “new” spectroscopic factors 

corresponding to a fixed value of n (cluster 

strength in 2ħω domain turn out to be unity. Thus 

the statistical properties are described accurately.  

That is crutial for the dense spectra 

it is easy to deduce the relationship: 
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Inserting the complete set of the resonance wave 

functions  
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α-CLUSTER STRENGTH IN 32S SPECTRUM 



CLUSTERING IN ADVANCED SHELL MODEL 

APPROACHES 

As usual the WFs of the modern versions of the shell 

model are:  

 

a) presented in the form of a superposition of A-nucleon 

oscillator WFs,  

 

b) fulfill the factorization condition: 

( ) ( ) 000 ( ) ( )( ) ( ) .M D M D M D M DR R  

Therefore they are convenient in operating in the just 

presented formalism.  



As that is the case for approaches proposed  earlier 

the lowest oscillator wave function of a cluster is 

used in the approach:  

| 4 0[ ] [4]( ) 0 0 0X N f L S T         

where [f ] is the symbol of the permutation symmetry 

(Young frame) and (λμ) – the SU(3) symmetry (Elliott 

symbol). The problem is concentrated on the 

calculation of the fractional parentage coefficient : 

ˆ( ) | { ( ) }M M D D XNR A R   



To do that within the shell model approach 

normalized SU(3) states in are constructed by 

diagonalization of the SU(3) Casimir operator. In 

the explicit form these operators can be written as: 

where the projection of the Hermitian conjugated 

quadrupole operator takes the form: 
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L – operator of angular momentum. 



is used. Its  mean values are different for different Young 

frames [f].   

To determine the permutation symmetry in each state 

obtained by this way the operator: 
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From the technical point of view Casimir operator is 

conveniently expressed in the formalism of the fermion 

second quantization: 
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This approach as a whole was called  Cluster-Nucleon 

Configuration Interaction Model (CNCIM) and presented 

first time in the paper [A. Volya, Yu.M. Tchuvil’sky. IASEN 

Conference Proceedings. World Scientific (2014)].  

 

The results of calculations presented bellow are restricted 

by (sd)-shell.  

 

The Hamiltonian proposed in the paper [Y. Utsuno, S. 

Chiba, Phys. Rev. C 83, 021301 (2011) is used. 

 

For 32S and 24Mg bellow the core is 16O and the size of 

the basis is about  104×104 .  

 

For 16O the core is 4He. The size of the basis is about 

107.5×3∙107.5 .  



EXAMPLES OF CALCULATIONS OF 

SPECTROSCOPIC FACTORS OF α-CLUSTERS 

32S 







CONCLUSIONS 

 

1. A theoretical approach and mathematics making 

possible to calculate cluster spectroscopic 

amplitudes, form factors and spectroscopic factors  

in advanced versions of the shell model including 

no-core one is built. 

2. It is proved that this the expedient allows one to 

describe accurately the statistical properties of 

dense cluster spectra. 

3. Using this approach pioneering descriptions of the 

spectroscopic characteristics of dense spectra of 

highly excited states of nuclei are obtained.  

4. The example demonstrating that the cluster 

observables may be a tool of the test on the quality 

of a dynamical model is found.  



5. The approach  already built looks promising for 

applications in various areas of the cluster 

physics. 

 

6. We see ways of great  improvement of the 

developed approach such as: involving of realistic 

cluster wave functions, description of heavy 

cluster channels, creation of hybrid models, etc. 
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