# Exotic halos and collective excitations in weakly-bound deformed nuclei



Junchen Pei

School of Physics, Peking University

State Key Laboratory of Nuclear Physics and Technology

#### Contents

- Physics and motivations
- Coordinate-space HFB developments
- Ground state studies of weakly-bound nuclei
- Excited state studies of weakly-bound nuclei
- Summary



#### **Physics and motivations**

- Radioactive Beam Facilities can provide great opportunities and challenges for study of extremely unstable nuclei
- FRIB(U.S), HIAF(China recently approved); supercomputing
- Exotics: threshold effects, continuum coupling vs pairing anti-halo, exotic surfaces (dilute halos/deformed halos, vibrations/new modes, few-body vs many-body, BEC-BCS---low density superfluity, decoupling, clustering )





#### **Continuum effects**

- Continuum coupling: pairing induced; angular-momentum dependence
- Weakly-bound s.p. states coupled with continuum: resonances
- Near-threshold non-resonant continuum is important for halos (Pei 2013)
- High energy continuum: Thomas-Fermi approximation (Pei 2011)
- Enhance stability; enhance halo features; enhance collectivity?







#### **Continuum effects**





# **Continuum coupling in HFB theory**

- Current progress: particularly difficult for deformed nuclei
  - Diagonalization on single-particle basis :HO, woods-saxon, PTG, Gamow...
  - Direct diagonalization on coordinate-space lattice
  - Outgoing boundary condition: *difficult for deformed cases*

**\*\****H. Oba, M. Matsuo, PRC, 2009,* self-consistent calculations are still missing

 Coordinate-space HFB has advantages for describing weakly-bound systems and large deformations

Bound states, continuum and embedded resonances are treated on an equal footing; L<sup>2</sup> discretization leads to a very large configuration space
 Computing resources and capabilities are increasing exponentially



### **Does continuum discretization work?**

• Non-resonant continuum check with Thomas-Fermi approximation



- 2. Calculate the HFB resonance widths with box stabilization Pei, Kruppa, Nazarewicz, PRC, 2011
- Problem: broad resonance is expensive (CDCC also surfers)



#### Large coordinate-space HFB calculations

- Conventionally, HFB solvers were benchmarked by energies, this is not sufficient for detailed properties of soft weakly-bound nuclei.
- Subtle interplay among surface deformations, surface diffuseness, and continuum needs precise HFB solutions.
- Large coordinate-space resulted in a vast number of continuum states and provides good resolutions for resonances and continuum (proportional L<sup>3</sup>)
- Small box may not be sufficient for describing pairing properties.
  M. Grasso, N. Sandulescu, Nguyen Van Giai, R. Liotta, PRC, 2001.
  H. Oba and M. Matsuo, PRC, (2009)
- Small box may be not good for broad resonances.
- Small box may cause false peaks in QRPA



### **Hybrid parallel HFB calculations**



Large boxes calculations are crucial for describing halo densities, large deformation and discretized continuum

From 20 fm to 40 fm, the estimated computing cost increased by 40 times.

• Calculations performed in Tianhe-1A; Tianhe-2 (TOP 1)

**advantage:** take into account deformation, pairing, and weak-binding effects simultaneously.



#### Exotic egg-like halo structure

- Self-consistent calculations: SLy4 force + density dependent pairing
- 38Ne, (a) neutron density; (b) n pairing density
- About 2 neutrons in the halo
- Deformations: beta2 = 0.24, beta2\_pair=0.48
- Mainly contributed by near-threshold continuum



#### New exotic "egg"-like halo structure obtained; accurate approach is<sup>z</sup>essential

J.P., Y.N. Zhang, F.R. Xu, PRC (R) 87, 051302(2013)





#### **Near-Threshold Continuum**

- Different box calculations to distinguish resonances and continuum states
- Near threshold non-resonant continuum is responsible for halo and surface deformations
- No halo in <sup>40</sup>Mg since no near-threshold continuum contributions (*N*=28)





#### **Phase-space decoupling**

- Non-resonant continuum states gradually grows and decouples in heavy nuclei
- sparse negative-parity level density is crucial; deformed halos in medium-mass nuclei is possible, e.g. in <sup>110</sup>Ge. Heavy halos are hindered due to denser levels.
- Core-halo decoupling is related to the phase space decoupling in quasiptaricle spectrum





#### **Systematics of deformed halos**

- Halo hindered by deformed cores? (seems correct) F. Nunes, NPA, 2005(3-body model)
- Halo and surface deformations are mainly contributed by near-threshold continuum
- Heavy halos not likely existed; decoupling effect decreased





#### **Coordinate-space vs Basis expansion**

Basis expansion HFB fails in describing weakly-bound nuclei!





#### **Density and pairing density at surfaces**



HFB solvers and Continuum effects------J.C. Pei

#### **Quasiparticle spectrum near thershold**



#### **Box size dependence of energies**

• Total energy is not sensitive to box size, however (pairing, deformation, stability)....

| 38            | 246     | 070     | 2005    | 266     |
|---------------|---------|---------|---------|---------|
| Ne            | 24fm    | 27fm    | 30fm    | 36fm    |
| $E_{tot}$     | -220.29 | -220.29 | -220.35 | -220.33 |
| $E_{c}$       | 18.94   | 18.95   | 18.95   | 18.96   |
| $E_{pair}$    | -68.10  | -67.77  | -67.41  | -67.43  |
| $E_{kin}^p$   | 138.34  | 138.46  | 138.51  | 138.56  |
| $E_{kin}^{n}$ | 444.84  | 443.48  | 442.85  | 442.10  |
| $\beta_{2p}$  | 0.00    | 0.00    | 0.00    | 0.00    |
| $\beta_{2n}$  | 0.13    | 0.19    | 0.24    | 0.34    |
| $R_{rms}$     | 9.39    | 9.38    | 9.38    | 9.37    |
| $\Delta_p$    | 1.46    | 1.47    | 1.47    | 1.46    |
| $\Delta_n$    | 2.97    | 2.95    | 2.93    | 2.92    |
| $\lambda_p$   | -23.853 | -23.802 | -23.784 | -23.747 |
| $\lambda_n$   | -0.079  | -0.096  | -0.103  | -0.116  |



Y.N. Zhang, J.C. Pei, F.R. Xu, PRC 88, 054305, 2013



#### **Peninsula of stability**

• Enhanced stability due to deformations and continuum effects



Y.N. Zhang, J. P., F.R. Xu, PRC 88, 054305, 2013



#### **MADNESS-SHF+BCS solver**

#### • Benchmark for the triaxial deformed nucleus Mo110:

|             | MADNESS-HF | HFODD(1) | HFODD(2) |
|-------------|------------|----------|----------|
| $E_t$       | 924.77     | 923.86   | 924.05   |
| $\lambda_p$ | -12.743    | -12.651  | -12.713  |
| $\lambda_n$ | -5.432     | -5.457   | -5.459   |
| $E_{k}$     | 2005.89    | 2005.22  | 2003.33  |
| $E_p$       | -16.01     | -17.27   | -16.93   |
| $E_{c}$     | 251.55     | 251.29   | 251.43   |
| $R_{rms}$   | 4.656      | 4.66     | 4.664    |
| $Q_{20}$    | 816.36     | 864.82   | 834.3    |
| $ Q_{21} $  | 0.56       | 0        | 0.0      |
| $Q_{22}$    | 321.46     | 314.15   | 314.78   |
| $Q_2$       | 1144.54    | 1178.97  | 1149.08  |





• Next step: full 3D HFB calculations are very expensive.

Pei et al, JPCS, 2012 Bonger et al., CPC, 2013 Pei, G. Fann, W. Nazarewicz, et al. in preparation, 2014



#### **Deformed continuum-QRPA study excited states**

- Continuum effects in excited states would be very important: cross threshold
- Exotic collective modes: collectivity, weakly binding increase collectivity? different modes mixing, astrophysical interests, how to detect
- Study effective interactions: tensor force?
- Sensitive to pairing interactions
- A basic work for further studies: 0v-beta-decay; di-neutron; cold atoms;
  3D-QRPA.....
- Progress in 2013 year: developed code and benchmark (succeed recently for monopole excitations, including time-odd terms)



#### FAM-QRPA

#### Motivation

Standard QRPA in the matrix form is extremely expensive for deformed nuclei, even more to include continuum configuration

FAM-QRPA provides alternative way solving QRPA equation iteratively rather than diagonalization (it is popular in other quantum systems: Chemistry)

First application in nuclear physics: T. Nakatsukasa, PRC, 2007

• Current status of FAM-QRPA

Based on HFBRAD (spherical coordinate-space HFB),

(PRC, T. Nakatsukasa, 2011)

Based on deformed relativistic HB (T. Nikšić, Phys. Rev. C 88, 044327, 2013)

Based on HFBTHO(deformed HO/THO basis),

(M. Stoitsov, PRC 84, 041305(R),2011)

Relativistic FAM-RPA (Liang HZ, PRC, 2013)

Discrete states: N. Hinohara, PRC, 2013



#### Implementation

- HFB-AX output: 2D wavefunctions and energies, quasiparticle basis
  B-spline lattice transformed to Gauss-Legendre lattice
- FAM-QRPA procedure:
  - 1. Construct transition densities (including time-odd terms):

$$\begin{split} \delta\rho(\omega) &= UXV^T + V^*Y^TU^{\dagger}, \\ \delta\kappa^{(-)}(\omega) &= UXU^T + V^*Y^TV^{\dagger}, \\ \delta\kappa^{(-)}(\omega) &= V^*X^{\dagger}V^{\dagger} + UY^*U^T, \end{split}$$

$$\left\{s_{\phi}, j_{r}, j_{z}, (\nabla \times \mathbf{j})_{\phi}, (\nabla \times \mathbf{s})_{r}, (\nabla \times \mathbf{s})_{z}, (\Delta \mathbf{s})_{\phi}, T_{\phi}\right\}$$

$$\begin{aligned} \mathcal{E}_{t}^{\text{even}} &= C_{t}^{\rho} \left[ \rho \right] \rho_{t}^{2} + C_{t}^{\tau} \rho_{t} \tau_{t} + C_{t}^{\Delta \rho} \rho_{t} \Delta \rho_{t} + C_{t}^{\nabla J} \rho_{t} \nabla \mathbf{J} + C^{J} \mathbf{J}_{t}^{2} , \\ \mathcal{E}_{t}^{\text{odd}} &= C_{t}^{s} \left[ \rho \right] \mathbf{s}_{t}^{2} + C_{t}^{\Delta s} \mathbf{s}_{t} \cdot \Delta \mathbf{s}_{t} + C_{t}^{T} \mathbf{s}_{t} \cdot \mathbf{T}_{t} + C_{t}^{j} \mathbf{j}_{t}^{2} + C_{t}^{\nabla j} \mathbf{s}_{t} \cdot \nabla \times \mathbf{j}_{t} \\ &+ C_{t}^{\nabla s} \left( \nabla \mathbf{s}_{t} \right) , \end{aligned}$$



#### Implementation

 $(\pm)$ 

2. Calculate H20, H02(including time-odd terms), F20, etc

- 3. Calculate X, Y; and Broyden iteration on X, Y. (30 iterations kept)
- 4. Finally calculate the strength

$$\begin{aligned} X_{\mu\nu} &= -\frac{\delta H_{\mu\nu}^{20}(\omega) - F_{\mu\nu}^{20}}{E_{\mu} + E_{\nu} - \omega}, \quad Y_{\mu\nu} = -\frac{\delta H_{\mu\nu}^{02}(\omega) - F_{\mu\nu}^{02}}{E_{\mu} + E_{\nu} + \omega}, \\ S(F, \omega) &= \frac{1}{2} \sum_{\mu\nu} \left\{ F_{\mu\nu}^{20*} X_{\mu\nu}(\omega) + F_{\mu\nu}^{02*} Y_{\mu\nu}(\omega) \right\}, \end{aligned}$$



#### Implementation

- Combined parallel calculations in Tianhe-1A for different excitation frequency : MPI distributed parallel for each point in a node: OpenMP multi-thread parallel (12 threads)
- Time-consuming: read wavefunctions (10-20 G) and calculate transiton densities and H20
  cutoff at 65 MeV: 6 hours
  cutoff at 85 MeV: 12 hours
  cutoff at 95 MeV: 20 hours
- Devoted to the monopole modes due to soft incompressibility



#### **Benchmark**

• SLy4+volume pairing and surface pairing (100Zr)





#### **Benchmark**

- Tests on Cutoff and box sizes
- Spurious modes <= 2 MeV
- Large box is essential





#### Mg isotopes and soft modes

- Soft mode 4 MeV close to threshold enhanced due to surface pair
- Novel mode 9 MeV novel according to systematics weak in SkM\* calculations





#### Mg isotopes and soft modes

• Earlier calculations by K. Yoshida: SkM\*+mixed pairing, 2009





### **Collectivity and mechanism**

- 4 MeV res. collectivity increase
- 1/2<sup>-</sup> states most important (also for halo)
- Non-resonant continuum (around 2 MeV) pairing halo vibrations

 9 MeV res. is collective no direct relation to cont.
 Most likely pygmy monopole



For experimental detection: around zero degrees (Z.H.Yang, et al., PRL, 2014)



#### Summary

- Coordinate-space HFB has a very good opportunity to explore new exotic structures and excitations, with the development of supercomputing facilities
- Soft mode due to pairing halo vibrations and threshold continuum
- Collective mode around 8-9 MeV appears

To be done:

• 3D Continuum FAM-QRPA for multipole excitations

# **Thanks for your attention!**

