Time-dependent density functional calculation of nuclear response functions

Takashi Nakatsukasa Center for Computational Sciences University of Tsukuba and

NTSE-2014@Pacific National Univ., Khabarovsk, 2014.6.22-26

Collaborators

- Shuichiro Ebata (Hokkaido University)
- Tsunenori Inakura (Chiba University)
- Haozhao Liang (RIKEN)
- Kazuhiro Yabana (University of Tsukuba)
- Kenichi Yoshida (Niigata University)

Basic equation

• TDHF eq. (TDKS eq.)

$$i\frac{\partial}{\partial t}\varphi_i(t) = h[\rho(t)]\varphi_i(t), \qquad h[\rho] \equiv \frac{\delta E[\rho]}{\delta \rho}$$

• TDHFB eq. (TDBdGKS eq.)

$$\begin{split} & i \frac{\partial}{\partial t} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix} = \begin{pmatrix} h(t) - \lambda & \Delta(t) \\ -\Delta^{*}(t) & -(h(t) - \lambda)^{*} \end{pmatrix} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix} \\ & h \big[\rho, \kappa, \kappa^{*} \big] = \frac{\delta E \big[\rho, \kappa, \kappa^{*} \big]}{\delta \rho}, \quad \Delta \big[\rho, \kappa, \kappa^{*} \big] = \frac{\delta E \big[\rho, \kappa, \kappa^{*} \big]}{\delta \kappa^{*}} \end{split}$$

Time-dependent DFT (TDDFT)

Time-dependent Kohn-Sham equation (1984)

$$i\frac{\partial}{\partial t}\varphi_{i}(t) = \left\{-\frac{\hbar^{2}}{2m}\nabla^{2} + V_{\text{KS}}[\rho(t)]\right\}\varphi_{i}(t)$$
$$V_{\text{KS}}[\rho(t)] = V_{0} + \delta V_{\text{KS}}(t)$$

Induced (screening) field

$$\delta V_{\rm KS}(t) = \frac{\delta V_{\rm KS}}{\delta \rho} \delta \rho(t)$$

The collective motion is induced by the motion of the potential.

Complete analogue of the unified model by Bohr and Mottelson

Neutrons

$$\delta \rho_n(t) = \rho_n(t) - (\rho_0)_n$$

Time-dep. transition density

<mark>δρ> 0</mark> δρ< 0 $V_{\rm ext}(t) = \eta M(E1)\delta(t)$

Instantaneous weak E1 field

16**(**

$$\delta \rho_p(t) = \rho_p(t) - (\rho_0)_p$$

Protons

Neutrons

 $\delta \rho_n(t) = \rho_n(t) - (\rho_0)_n$

Time-dep. transition density

<mark>δρ> 0</mark> δρ< 0 Instantaneous weak E1 field $V_{\rm ext}(t) = \eta M(E1)\delta(t)$

$$\delta \rho_p(t) = \rho_p(t) - (\rho_0)_p$$

Protons

Canonical-basis TDHFB

Ebata, TN, Inakura, Yoshida, Hashimoto, Yabana, PRC 82 (2010) 034306

$$i\frac{\partial}{\partial t}|k(t)\rangle = (h(t) - \eta_{k}(t))|k(t)\rangle$$

$$i\frac{\partial}{\partial t}\rho_{k}(t) = \Delta_{k}^{*}(t)K_{k}(t) - \text{c.c.}$$

$$i\frac{\partial}{\partial t}K_{k}(t) = (\eta_{k}(t) + \eta_{\bar{k}}(t))K_{k}(t) + \Delta_{k}(t)(2\rho_{k}(t) - 1)$$

- Time-dependent canonical states "k"
- Time-dependent (u,v)-factors

Skyrme Cb-TDHFB in real space & real time

Time evolution is calculated by the predictor-corrector method.

3D mesh representation for canonical states

$$\left\langle \mathbf{r}, \sigma; t \left| k \right\rangle = \left\{ \left\langle \mathbf{r}_{i}, \sigma; t_{n} \left| k \right\rangle \right\}_{i=1,\cdots,Mr}^{n=1,\cdots,Mt}, \quad k = 1,\cdots,M \ge N$$
$$u_{k}(t), v_{k}(t) \quad k = 1,\cdots,M$$

Spatial size is a spherical box of radius of 12 - 15 fm.

Spatial mesh size is 0.8 fm.

Time step is about 0.2 fm/c

HFB+QRPA for axially deformed nuclei

$$\begin{pmatrix} h-\lambda & \Delta \\ -\Delta^* & -(h-\lambda)^* \end{pmatrix} \begin{pmatrix} U_{\mu}(\rho,z;\sigma) \\ V_{\mu}(\rho,z;\sigma) \end{pmatrix} = E_{\mu} \begin{pmatrix} U_{\mu}(\rho,z;\sigma) \\ V_{\mu}(\rho,z;\sigma) \end{pmatrix} Z$$

$$\left\{ \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} - \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \begin{pmatrix} X_{\mu\nu}(\omega) \\ Y_{\mu\nu}(\omega) \end{pmatrix} = 0$$

- HFB equations are solved in the 2D coordinate space, assuming the axial symmetry for the SkM* functional with the cutoff of $E_{qp} < 60$ MeV.
- The pairing energy functional is the one determined by a global fitting to deformed nuclei (Yamagami, Shimizu, TN, PRC **80**, 064301 (2009))
- QRPA matrix is calculated in the quasiparticle basis ($E_{2qp} < 60$ MeV).
- All the residual interactions are taken into account, except for the residual Coulomb interaction.

Finite Amplitude Method

T.N., Inakura, Yabana, PRC **76** (2007) 024318 Avogadro and T.N., PRC **84**, 014314 (2011)

To avoid the calculation of "two-body"-like residual interaction

$$\begin{cases} \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} - \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{cases} \begin{pmatrix} X_{\mu\nu}(\omega) \\ Y_{\mu\nu}(\omega) \end{pmatrix} = \begin{pmatrix} F_{\mu\nu}^{20} \\ F_{\mu\nu}^{02} \end{pmatrix} \qquad \Longrightarrow \qquad \begin{pmatrix} (E_{\mu} + E_{\nu} - \omega) X_{\mu\nu}(\omega) + \delta H_{\mu\nu}^{20}(\omega) = F_{\mu\nu}^{20}(\omega) \\ (E_{\mu} + E_{\nu} + \omega) Y_{\mu\nu}(\omega) + \delta H_{\mu\nu}^{02}(\omega) = F_{\mu\nu}^{02}(\omega) \end{cases}$$

Residual fields can be calculated with small parameter η

$$\delta H(\omega) = \frac{1}{\eta} \left\{ H[\overline{V_{\eta}}^*, \overline{U_{\eta}}^*; V_{\eta}, U_{\eta}] - H_0 \right\} \qquad V_{\eta} = V + \eta U^* Y, \quad \overline{V_{\eta}}^* = V^* + \eta U X$$
$$U_{\eta} = U + \eta V^* Y, \quad \overline{U_{\eta}}^* = U^* + \eta V X$$

Trivial programming of the (Q)RPA code Only need the single-particle potential, with different bras and kets.

- 3D real-space FAM without pairing
 - Inakura, T.N., Yabana, PRC 80, 044301 (2009); PRC 84, 021302 (2011)
- 2D HO-basis FAM with pairing
 - Stoitsov et al, PRC 84, 041305 (2011)

Figure from UNEDF Web Site

Skyrme energy density $E[\rho_q, \tau_q, \ddot{J}_q; \kappa_q]$ functionalkineticpair density

Kohn-Sham scheme (BdG-KS, HFB)

$$\begin{pmatrix} h-\lambda & \Delta \\ -\Delta^* & -(h-\lambda)^* \end{pmatrix} \begin{pmatrix} U_{\mu} \\ V_{\mu} \end{pmatrix} = E_{\mu} \begin{pmatrix} U_{\mu} \\ V_{\mu} \end{pmatrix}$$
$$\rho = VV^+, \quad \kappa = UV^T$$

$$h[\rho] = \frac{\delta E}{\delta \rho} = -\frac{\hbar^2}{2m} \nabla^2 + V_{\rm KS}[\rho](\vec{r}), \quad \Delta[\kappa] = \frac{\delta E}{\delta \kappa^*}$$

 Spontaneous symmetry breaking - nuclear deformation, pair condensation

In this talk, I present results with the SkM* functional.

Shape phase transition

2323 -

2191

-6+

---- 4+

Evolution of nuclear shapes: R_{4/2}

Calculated effective potential

Shape transition produced by EDFT

Yoshida, Nakatsukasa, PRC PRC 83, 021304(R) (2011)

Time-dependent density-functional theory with Skyrme energy density functionals

• Time-odd densities (current density, spin density, etc.)

$$E \left[\rho_q(t), \tau_q(t), \vec{J}_q(t), \vec{j}_q(t), \vec{s}_q(t), \vec{T}_q(t); \kappa_q(t) \right]$$

kinetic current spin-kinetic spin-current spin pair density

• Time-dependent BdGKS (HFB) eq.

$$i\frac{\partial}{\partial t} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix} = \begin{pmatrix} h(t) - \lambda & \Delta(t) \\ -\Delta^{*}(t) & -(h(t) - \lambda)^{*} \end{pmatrix} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix}$$

Linear response and photoabsorption cross section

Yoshida, Nakatsukasa, PRC 83, 021304(R) (2011)

Isoscalar giant monopole resonances

Fermi Liquid Properties

Sum-rule analysis for nuclear IS Giant Quadrupole Resonance

$$m_3 \propto \frac{1}{2} \frac{\partial^2}{\partial \eta^2} E(\eta) \bigg|_{\eta=0} \propto \langle T \rangle$$

The restoring force originates from the kinetic energy.

The spatial deformation leads to the deformation of the Fermi sphere. This is different from the classical (incompressible) liquid model.

Isoscalar giant quadrupole resonances

Exp: Youngblood, et al., PRC 69, 034315 (2004)

Nuclear matter properties

$$\omega_{ISGMR} = \Omega \sqrt{\frac{5K}{3m} \langle r^2 \rangle}$$
$$\omega_{ISGDR} = \Omega \sqrt{\frac{7}{3} \left[\frac{5K}{3m} \langle r^2 \rangle + \frac{8}{5} \left(\frac{m}{m^*} \right) \right]}$$

$$\Omega = 41A^{-1/3} \text{ MeV}$$

$$\omega_{ISGQR} = \Omega \sqrt{\frac{2m}{3m^*}}$$

$$\omega_{HEQR} = \Omega \sqrt{\frac{28m}{5m^*}}$$

Effective mass and Incompressibility SkM*, SLy4, SkP

16.2

15.8

15.6

15.4

15.2

(14.8 14.6 We 15.4

15.2

14.6

14.4 14.2

14.2

15 14.8

15-

16-

HE-ISGMR

ISGMR

14.4

14.6 14.8

K^{1/2} (MeV^{1/2})

$$m^*/_m = 0.8 \sim 0.9$$

H H D

¹⁵⁴Sm

¹⁴⁴Sm

15

15.2

K^{1/2} (MeV^{1/2})

Photoabsorption cross sections

Inakura, T.N., Yabana, PRC 84, 021302 (R) (2011); PRC 88, 051305(R) (2013)

Pygmy dipole states

- Robust features
 - Strong shell effects for E1 strengths S(E1)
 - "Magic numbers"
 - Correlation between *S(E1)* and the skin thickness [*L* parameter] in select nuclei
- Model dependent features
 - Absolute values of S(E1)
 - Collective nature
 - Correlation between *S(E1)* and skin thickness in general

Model dependence & independence

SkM* SkI3

E1 hindrance or enhancement?

"Magic" numbers

Shell effect

Deformation effect

E1 Hindrance and decoupling

- Hindrance of low-energy E1
- "Destructive coherence"
- Strength goes to GDR

- Decoupling of low-lying dipole modes
- "Single-particle" excitations

Decoupling of low-E E1

Slope parameter of symmetry energy

Neutron skin thickness

Selected isotopes

Inakura, Nakatsukasa, Yabana, PRC 88, 051305 (2013)

Strong correlation between low-energy E1 strength and skin thickness (slope parameter L) in selected nuclei

Nuclear TDDFT

Summary

- Calculation of response functions
- Parallel computing
 - Orbital parallelization (real-time cal.)
 - Matrix element parallelization (QRPA cal.)
- Evolution of IS giant resonances
 - Peak splitting due to deformation
 - Prominent in GMR, "invisible" in GQR/GOR

− m/m* = 0.8 ~ 0.9; *K* = 210 ~ 230 MeV

- Pygmy dipole states in neutron-rich nuclei
 - Strong neutron shell effects
 - Decoupling from GDR
 - Skin thickness (L parameter) in select nuclei

Phonon condensation

Low-energy E1 strength in exotic nuclei

Inakura, Nakatsukasa, Yabana, PRC 84, PRC 88, 051305(R) (2013)

Ebata, Nakatsukasa, Inakura, in preparation.

- Constrain the neutron skin thickness and the neutron matter EOS?
 - Yes, but better in very neutron rich!
 - Data on ⁸⁴Ni are better than ⁶⁸Ni
- Influence the r-process?
 - Significantly influence the direct neutron capture process near the neutron drip line
 - We need calculation with a proper treatment of the continuum.

Beyond the linear regime *Future subjects*

- Nuclear reaction involving a large shape change, such as fission, fusion, etc.
- Problems
 - Numerical cost for solution of TDHFB eq.

$$i\frac{\partial}{\partial t} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix} = \begin{pmatrix} h(t) - \lambda & \Delta(t) \\ -\Delta^{*}(t) & -(h(t) - \lambda)^{*} \end{pmatrix} \begin{pmatrix} U_{\mu}(t) \\ V_{\mu}(t) \end{pmatrix}$$

– How to obtain quantum spectra?

Time-dependent Hartree-Fock-Bogoliubov (TDHFB)calculations with Gogny interaction(Y. Hashimoto)

1. Aim:

The aim of the TDHFB calculations is to understand the dynamical role of the pairing correlation in the large-amplitude collective motions including the reaction processes.

- 2. Method :
 - i) A new method of carrying out the Gogny-TDHFB calculations was proposed with the three-dimensional harmonic oscillator basis (3DHO).
 - ii) The program codes were extended to make use of the **spatial grids** (Lagrange mesh) instead of the 3DHO. At present, two-dimensional harmonic oscillator + one-dimensional Lagrange mesh (2DHO+LM) is used.

(calculations are in progress on a computer)

Physics

Home

spotlighting exceptional research

About Browse APS Journals

Synopsis: Time-saving steps

 $i\frac{\partial}{\partial t}K_k(t) = \left(\eta_k(t) + \eta_{\bar{k}}(t)\right)K_k(t) + \Delta_k(t)\left(2\rho_k(t) - 1\right)$

Shuichiro Ebata, Takashi Nakatsukasa, Tsunenori Inakura, Kenichi Yoshida, Yukio Hashimoto, and Kazuhiro Yabana Phys. Rev. C 82, 034306 (2010)

 $\left|i\frac{\partial}{\partial t}|k(t)\rangle = \left(h(t) - \eta_k(t)\right)|k(t)\rangle$

 $i\frac{\partial}{\partial t}\rho_k(t) = \Delta_k^*(t)K_k(t) - \text{c.c.}$

Published September 9, 2010

2D cal. w/o Coulomb

~1000 CPU h

3D cal. w Coulomb

~ 20 CPU hours

Canonical-basis real-time method may significantly reduces computational task.

Applicable to nuclear dynamics beyond the liner regime: fusion and fission reactions.

Collective subspace

Next stage: Applications to fission problems

Constrained Hamiltonian

 $H = H - \lambda q$

- Constrained operator
 - *q* Solution of LHE
- **Collective** mass parameters

Local Harmonic Equation (LHE) is able to calculate the collective mass parameters including dynamical effect by the time-odd mean fields.

Magic numbers for low-energy E1 strength

Development of neutron radius

Glauber calculation using the density distribution obtained with the DFT.

Pygmy dipoles & neutron skins

Inakura, Nakatsukasa, Yabana, PRC 88, 051305(R) (2013); 84, 021302(R) (2011)

Low-energy E1 strength in exotic nuclei

Inakura, Nakatsukasa, Yabana, PRC 84, PRC 88, 051305(R) (2013)

Ebata, Nakatsukasa, Inakura, in preparation.

- Constrain the neutron skin thickness and the NM EOS?
 - Yes, but better in very neutron rich!
 - Data on ⁸⁴Ni are better than ⁶⁸Ni
- Influence the r-process?
 - Significantly influence the direct neutron capture process near the neutron drip line
 - We need calculation with a proper treatment of the continuum.

TDDFT simulation of nuclear fusion reaction

Computational efforts

- Ground state: 2D solution of BdGKS equations
 Use of 64 processors in parallel (MPI)
- Linear response and E1 strength functions

$$\left\{ \begin{pmatrix} A & B \\ B^* & A^* \end{pmatrix} - \omega \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\} \begin{pmatrix} X_{mi}(\omega) \\ Y_{mi}(\omega) \end{pmatrix} = 0$$

- Use of 500-1000 processors in parallel (MPI)
- Use of BLACS (Basic Linear Algebra Communication Subprograms) for load balancing and ScaLAPACK for matrix diagonalization
- Truncate the space into about 50,000 2qp excitations
- Neglect the residual Coulomb terms
- Several hours to obtain the total strengths

Including residual Coulomb in a larger model space (canonical basis), the project is currently running on use of "K" computer. [4.4 M node*h]

Low-lying spectra in ⁶⁸Se

Excitation Energy (MeV)