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Outline

• The abstract problem setup

– Why offdiagonal perturbations

– Maximal angle between subspaces

– The questions we answer

• Review of known bounds on variation of spectral subspaces

• Bounds on the shift of the spectrum (under offdiagonal perturbations)

• Applications to Schrödinger operators
(in particular to fewbody Hamiltonians)

First, we present rather general, abstract results that hold for operators on ar

bitrary Hilbert spaces. Then we will turn to quantummechanical Hamiltonians.
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Recalling of the operator norm definition

If V is a bounded linear operator on a Hilbert space H, its norm
∥V∥ is given by

∥V∥= sup
∥ f∥=1

∥V f∥ (N.B.: sup = least upper bound).

For any f ∈ H we have ∥V f∥ ≤ ∥V∥∥ f∥.
If V is a selfadjoint (i.e. Hermitian) operator on H, and

mV = min spec(V ) and MV = max spec(V ),

then
∥V∥= max{|mV |, |MV |}.

Example 1. V = |ϕ⟩κ⟨ϕ | with ∥ϕ∥= 1, κ ∈ R =⇒ ∥V∥= |κ|.
Example 2. H = L2(R), (V f )(x) = V (x) f (x) with V (·) a bounded
function on R. In this case ∥V∥= sup

x∈R
|V (x)|.
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Let A be a selfadjoint operator on a Hilbert space H such that

spec(A) = σ0∪σ1, dist(σ0,σ1) = d > 0.

The spectral subspaces of A:

H0 = RanEA(σ0), H1 = RanEA(σ1).

A 2× 2 operator block matrix representation of A w.r.t. the de
composition H= H0⊕H1 :

A =

(
A0 0
0 A1

)
, A0 = A

∣∣
H0
, A1 = A

∣∣
H1
.

We focus on the problem of variation of the spectral subspaces
under offdiagonal perturbations (i.e. potentials in the case)

V =

(
0 B
B∗ 0

)
(∥V∥= ∥B∥).

Perturbed operator (total Hamiltonian):

H = A+V.
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Comment: Why offdiagonal perturbations?

One can decompose any bounded V into the sum V =Vdiag+Voff of
the diagonal and offdiagonal (w.r.t. H= H0⊕H1 ) parts

Vdiag =

(
P0V
∣∣
H0

0
0 P1V

∣∣
H1

)
and Voff =

(
0 P0V

∣∣
H1

P1V
∣∣
H0

0

)
,

where P0 and P1 are the orthogonal projections onto H0 and H1,
respectively, P0 = EA(σ0) and P1 = EA(σ1).

The subspaces H0 and H1 remain invariant under Vdiag and, hence,
under A+Vdiag. Therefore, for the diagonal perturbations the prob
lem reduces to the perturbation of spectra only.

The action of the offdiagonal part Voff is completely nontrivial: it
may change the spectrum and does change the spectral subspaces.
Thus, the core of the perturbation theory for invariant subspaces
is in the study of their variation under offdiagonal perturbations.
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The bounds on variation of the spectral subspaces will be given in
terms of the maximal angle between two subspaces.

It is well known that
∥P−Q∥ ≤ 1

for any two orthogonal projections P and Q in the Hilbert space H.

Definition. Let HP = RanP and
HQ = RanQ. The quantity

θ(HP,HQ) := arcsin(∥P−Q∥)
is called the maximal angle between
the subspaces HP and HQ.

The concept of maximal angle is traced back at least to [Krein,
Krasnoselsky, Milman (1948)]; [Dixmier (1949)].
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Remark. Assuming that (HP,HQ) is an ordered pair of subspaces in H with
HP ̸= {0}, Krein, Krasnoselsky, and Milman applied the notion of the (relative)
maximal angle between HP and HQ to the number φ(HP,HQ)∈

[
0, π

2

]
introduced

by

sinφ(HP,HQ) = sup
x∈HP, ∥x∥=1

dist(x,HQ).

If both HP ̸= {0} and HQ ̸= {0} then

θ(HP,HQ) = max{φ(HP,HQ),φ(HQ,HP)}.

Unlike φ(HP,HQ), the maximal angle
θ(HP,HQ) is always symmetric w.r.t. the
interchange of the arguments HP and HQ.

φ(HP,HQ) =
π
2

Furthermore,

φ(HP,HQ) = φ(HQ,HP) = θ(HP,HQ) whenever ∥P−Q∥< 1.
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Surely,
∥P−Q∥= sin

(
θ(HP,HQ)

)
.

One is interested in the case where the “rotation angle” from an
unperturbed spectral subspace to the perturbed one is acute (i.e.
the maximal angle θ between them is smaller than 90◦).

Definition. HP and HQ are in the acuteangle case if HP ̸= {0},
HQ ̸= {0}, and

θ(HP,HQ)<
π
2
,

that is, if ∥P−Q∥< 1.
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MAIN QUESTIONS:

(i) What is an optimal requirement on ∥V∥ (= ∥B∥) that guarantees
that V does not close the gaps between σ0 and σ1 (and, thus,
dist(σ ′

0,σ ′
1)> 0)?

(ii) What then can be said about variation of the spectral subspace,
say, H0: Is it then true that the unperturbed and perturbed spec
tral subspaces H0 and H′

0 are in the acuteangle case, i.e.

θ(H0,H
′
0)<

π
2

?

And what is a (sharp) bound on θ := θ(H0,H
′
0) in terms of ∥V∥

and d = dist(σ0,σ1)?

Recall, θ(H0,H
′
0) stands for the maximal angle between the un

perturbed and perturbed spectral subspaces H0 = RanEA(σ0) and
H′

0 = RanEA+V(σ ′
0).
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Under the assumption that spec(A) = σ0∪σ1 and σ0∩σ1 = ∅ one
distinguishes the following three cases:

Generic case (G): The only condition dist(σ0,σ1) = d > 0.

Special case (S2): σ0 and σ1 are subordinated, conv(σ0)∩ conv(σ1) = ∅.

Special case (S3): One of the sets σ0 and σ1 lies in a finite gap of
the other one, say conv(σ0)∩σ1 = ∅.
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Review of the results for offdiagonal selfadjoint V=

(
0 B
B∗ 0

)
(G) [V.Kostrykin, K.A.Makarov, A.K.M. (2007)]: Gaps between σ0 and σ1

remain open whenever ∥V∥<
√

3
2

d (sharp);
√

3
2

= 0.866025 . . ..

θ <
π
2

whenever ∥V∥<cMS d, cMS = 0.675989 . . .

[K.A.Makarov, A. Seelmann (2010, 2013)]

(S2) For any ∥V∥ the initial gap between σ0 and σ1 remains in ρ(L).
The sharp bound for θ :

tan2θ ≤ 2∥V∥
d

⇐⇒ θ ≤ 1
2

arctan
2∥V∥

d

(
<

π
4

)
.

(The DavisKahan tan2θ Theorem, 1970)

(S3) [V.Kostrykin, K.A.Makarov, A.K.M. (2005)]: Gaps between σ0 and σ1

remain open and θ <
π
2

whenever ∥V∥<
√

2d (sharp);

tanθ ≤ ∥V∥
d

[S. Albeverio, A.V. Selin, A.K.M. (2006, 2012)]

(see [Integr. Equation Operator Theory 73 (2012), 413]).
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Estimates like that in tan2θ Theorem (but in terms of quadratic
forms of A and V ) have been obtained even for some unbounded V
(see [A.K.M., A.V.Selin, Integr. Equations Oper. Theory 56 (2006), 511], [L.

Grubišić, V. Kostrykin, K. A. Makarov, K. Veselić, J. Spectr. Theory 3 (2013),

83]).
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Bounds on position of the perturbed spectrum

(G) [V.Kostrykin, K.A.Makarov, A.K.M., 2007, bounded A],
[C. Tretter, 2009, unbounded A]:

σ ′
i ⊂ OrV(σi), i = 0,1,

where OrV(σi) denotes the closed rVneighborhood of σi with

rV = ∥V∥ tan
(

1
2

arctan
2∥V∥

d

)
< ∥V∥.

(S2) The gap between σ0 and σ1 remains in ρ(A+V ).

(S3) σ ′
0 ∈ OrV(σ0). The gaps between OrV(σ0) and σ1

remain in ρ(A+V ).
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Bounds in the case of nonoffdiagonal selfadjoint V=
(

V0 B
B∗ V1

)

In order to have disjoint perturbed spectral components, one should

assume ∥V∥< d
2
. In this case σ ′

i ⊂ O∥V∥(σi), i = 0,1.

(G) The subspaces H0 and H′
0 are in the acute case,

θ <
π
2
, whenever ∥V∥<cS d, cS = 0.454839 . . . [A. Seelmann (2013)].

In particular,

θ ≤ 1
2

arcsin
π∥V∥

d
<

π
4

if ∥V∥<1
π

d

[S. Albeverio, A.K.M. (2013)].

(S2 & S3) The sharp bound for θ (DavisKahan sin2θ Theorem, 1970):

θ ≤ 1
2

arcsin
2∥V∥

d
<

π
4
.
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Applications to Schrödinger operators
(in particular to fewbody Hamiltonians)

Let A = H0+V0 be the Schrödinger operator with H0 the kinetic en
ergy and V0 the “main” potential (combining, say, twobody forces).
Let V be an additional interaction (say, threebody forces), and

H = A+V .

1. Suppose that E0 is the g.s. energy (simple eigenvalue) of A,
and ψ0 the g.s. wave function, Aψ0 = E0ψ0 (∥ψ0∥= 1).

Set spec(A) = σ0∪σ1 with σ0 = {E0} and σ1 = spec(A)\{E0} (̸= ∅).

If 2∥V∥< d := dist(E0,σ1) then there is g.s. (E ′
0,ψ ′

0) for H,

Hψ ′
0 = E ′

0ψ ′
0.

We claim that |⟨ψ ′
0,ψ0⟩|= cosθ with θ < π/4 such that

sin2θ ≤ 2∥V∥
d

.

This is the consequence of the DavisKahan sin2θ Theorem (1970).
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If, in addition, V is offdiagonal then, for any arbitrary large ∥V∥,
NO spectrum of H enters the gap between E0 and σ1, and

|⟨ψ ′
0,ψ0⟩|= cosθ

with

tan2θ ≤ 2∥V∥
d

.

In particular, we have:

|⟨ψ ′
0,ψ0⟩|2 ≥

1
2

(
1+

d√
d2+4∥V∥2

) (
>

1
2

)
(Probability of the system to remain in the initial ground state ψ0.)

Furthermore, necessarily

E ′
0 ≤ E0

and

E0−E ′
0 ≤ ∥V∥ tan

(
1
2

arctan
2∥V∥

d

)
(< ∥V∥).
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2. Suppose that
σ0 = {E0,E1, . . . ,En}

consists of the n+1 lowest eigenvalues of A and let σ1 = spec(A)\σ0

be the remainder of the spectrum of A.

Denote by H0 the spectral subspace of A associated with σ0, i.e.
the linear span of the corresponding eigenvectors.

Assume that 2∥V∥ < d := dist(σ0,σ1) and σ ′
0 combines the eigen

values of H = A+V that stem from the eigenvalues of A contained
in σ0.

Then

θ ≤ 1
2

arcsin
2∥V∥

d

(
=⇒ θ <

π
4

)
,

where, recall, θ := θ(H0,H
′
0) is the maximal angle between H0 and

the spectral subspace of H = A+V associated with σ ′
0.
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If, in addition, V is offdiagonal, then, for any arbitrary large ∥V∥,
NO spectrum of H enters the gap between En+1

(
= max(σ0)

)
and

σ1, and

θ ≤ 1
2

arctan
2∥V∥

d
.

Moreover, necessarily
E ′

0 ≤ E0

and

E0−E ′
0 ≤ ∥V∥ tan

(
1
2

arctan
2∥V∥

d

)
(< ∥V∥).
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3. Suppose that

σ0 = {En+1,En+2, . . . ,En+k}, n ≥ 0, k ≥ 1,

is a set of consecutive eigenvalues of A and σ1 = spec(A)\σ0.

Notice that there are eigenvalues E0,E1, . . . ,En of A lying to the left
of σ0. Also there is a part of spec(A) lying to the right of σ0.

Assume that

∥V∥< d
2

(
d = dist(σ0,σ1)

)
,

and σ ′
0 consists of the eigenvalues of H = A+V that result from the

eigenvalues of A contained in σ0. Then θ = θ(H0,H
′
0)<

π
4 and

sin2θ ≤ 2∥V∥
d

.

This follows again from the DavisKahan sin2θ Theorem.
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If V is offdiagonal then the bound may be essentially strengthened:

• The gaps between σ0 and σ1 remain open whenever condition

∥V∥<
√

2d

is satisfied.

• Moreover, under this condition

tanθ ≤ ∥V∥
d

.

This is corollary of the a priori tanθ Theorem [S. Albeverio, A.V. Selin,

A.K.M. (2006, 2012)].
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Conclusions

• We have found new sharp norm bounds on rotation of spectral
subspaces of a selfadjoint operator under offdiagonal perturba
tions.

• We have also established optimal bounds on the shift of the
spectrum under offdiagonal perturbations.

• The maximal angle bounds obtained allow one to derive the cor
responding bounds on variation of spectral subspaces under non
offdiagonal (generic) perturbations.

• The general results have been applied to quantummechanical (in
particular, to fewbody) Hamiltonians.

• The spectral shift and subspace variation bounds may be em
ployed to verify the quality of numerical calculations. They may
be used to give the corresponding upper estimates prior the
actual calculations.



22Ideas of the proof, e.g., of the a priori tanθ theorem:
Relation to the operator Riccati equation

Let K : H0 → H1 be a bounded operator.

The graph of K (the graph subspace associated with K)

G (K) =

{(
x

Kx

)∣∣∣∣ x ∈ H0

}
is an invariant subspace for H =

(
A0 B
B∗ A1

)
if and only if K is a

solution to the operator Riccati equation

KA0−A1K +KBK = B∗. (R)
H1

H0

θ

G (K)

x1 = Kx0

x0

The maximal angle θ between H0

and G (K) is given by

tanθ = ∥K∥.



23Proposition. Let P and Q are orthogonal projections in H with HP = RanP and
HQ = RanQ. Then

∥P−Q∥< 1 ⇐⇒ HQ = G (K)

(
∥K∥= ∥P−Q∥√

1−∥P−Q∥2

)
.

for some bounded operator K from HP to H ⊥
P = H⊖HP.

Remark. G (K)⊥ = G (−K∗).

Theorem. If the graph subspace G (K), K ∈ B(H0,H1), is an invariant subspace

for H =

(
A0 B
B∗ A1

)
then

H =UΛU∗,

where U is a unitary operator on H given by

U =

(
I −K∗

K I

)(
I +K∗K 0

0 I +KK∗

)−1/2

and Λ is a block diagonal selfadjoint operator on H,

Λ = diag(Λ0,Λ1),

whose entries
Λ0 = (I +K∗K)1/2(A0+BK)(I +K∗K)−1/2

and
Λ1 = (I +KK∗)1/2(A1−B∗K∗)(I +KK∗)−1/2

are selfadjoint operators on the Hilbert spaces H0 and H1, resp.
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In case (S3) the existence of the corresponding (in certain sense unique) bounded
solution K : H0 →H1 to the operator Riccati equation under condition ∥V∥<

√
2d

has been proven by Kostrykin, Makarov, A.K.M. (2005) (based on the Virozub
Matsaev factorization theorem).

Polar decomposition of K:
K =U |K|,

with U the isometry on Ran(|K|) = Ran(K∗); U : Ran(K∗)→ Ran(K).

Our first idea is to obtain an estimate for eigenvalues of |K| (if they exist).

Lemma. Let K be a bounded solution to the operator Riccati equation

KA0−A1K +KBK = B∗

(with B ̸= 0). Suppose that |K| has an eigenvalue λ > 0, |K|u = λu for some
u ∈ H0, ∥u∥= 1. Then the following identity holds:

λ 2(∥A1Uu∥2+∥BUu∥2−∥Λ0u∥2)= ∥A0u∥2+∥B∗u∥2−∥Λ0u∥2,

where Λ0 = (I +K∗K)1/2(A0+BK)(I +K∗K)−1/2.
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In case (S3) we appropriately choose the origin of the spectral parameter plane
and, under condition ∥V∥<

√
2d, notice that

∥A1Uu∥2+∥BUu∥2−∥Λ0u∥2 > 0.

Then the above identity transforms into

λ 2 =
∥A0u∥2+∥B∗u∥2−∥Λ0u∥2

∥A1Uu∥2+∥BUu∥2−∥Λ0u∥2. (⋆)

If H0 is finite dimensional then K is finite rank and the equality (⋆) is used to find
a bound for the maximal eigenvalue of |K|, that is, a bound for the norm of K,

∥K∥ ≤ ∥V∥
d

⇐⇒ tanθ ≤ ∥V∥
d

.

Further on, by using the result for the finiterank case, we prove this bound for
the infinitedimensional case.
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To be more precise, our complete consideration involves additional parameter,
the length |∆| of the open gap ∆ of σ1 that contains the whole set σ0. Our detail
estimates for θ , thus, involve three parameters: ∥V∥, d, and |∆|.

∆
(∆ is the gap of σ1 that contains the whole set σ0)



27Under the (sharp) gapnonclosing condi
tion

∥V∥<
√

d|∆|
there is an optimal estimating function
M(D,d,v), defined for

d > 0, D ≥ 2d, 0 ≤ v <
√

dD,

such that

tanθ ≤ M(|∆|,d,∥V∥)
(
<
√

2
)
.
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Explicit expression for M has been found.

For ∥V∥<
√

2d,

sup
D≥2d

M(D,d,∥V∥) = ∥V∥
d

.

The sharp estimating function M(D,d,v) is plotted in the figure above right, in
terms of the “dimensionless” variables

x :=
D−2d

D
and y :=

4v2

D2

[
0 ≤ x < 1, 0 ≤ y < 2(1− x)

]
.
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