Evgeny Epelbaum, Ruhr-Universität Bochum

Workshop on Nuclear Theory in the Supercomputing Era, Khabarovsk, Russia, June 23 - 28, 2014

Chiral nuclear forces: State of the art and future perspectives

Introduction Chiral EFT and nuclear forces Chiral NN potentials 3N force Summary & outlook

Facets of strong interactions

$$\mathcal{L}_{\text{QCD}} = \bar{q}(i\mathcal{D} - m)q - \frac{1}{4}G_{\mu\nu}G^{\mu\nu}$$

$$Quark \qquad Quark \qquad Qua$$

Seemingly very simple formulation is responsible for extremely complex phenomena!

lattice — nuclear physics

effective chiral Lagrangian — (low-energy) nuclear physics

- Ideal world [$m_u = m_d = 0$], zero-energy limit: non-interacting massless GBs (+ strongly interacting massive hadrons)
- Real world [m_u , $m_d \ll \Lambda_{QCD}$], low energy: weakly interacting light GBs (+ strongly interacting massive hadrons)

expand about the ideal world (ChPT)

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Weinberg, Gasser, Leutwyler, Meißner, ...

$$Q = \frac{\text{momenta of pions and nucleons or } M_{\pi} \sim 140 \text{ MeV}}{\text{hard scales [at best } \Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}]} \text{Manohar, Georgi '84}$$

Tool: Feynman calculus using the effective chiral Lagrangian

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Weinberg, Gasser, Leutwyler, Meißner, ...

$$Q = \frac{\text{momenta of pions and nucleons or } M_{\pi} \sim 140 \text{ MeV}}{\text{hard scales [at best } \Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}]} \text{ Manohar, Georgi '84}}$$

Tool: Feynman calculus using the effective chiral Lagrangian

- Vertices with more derivatives are suppressed
- Pion loops are suppressed
- At any order, a finite number of vertices and Feynman diagrams contribute

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Weinberg, Gasser, Leutwyler, Meißner, ...

$$Q = \frac{\text{momenta of pions and nucleons or } M_{\pi} \sim 140 \text{ MeV}}{\text{hard scales [at best } \Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}]} \text{Manohar, Georgi '84}}$$

Tool: Feynman calculus using the effective chiral Lagrangian

- Vertices with more derivatives are suppressed
- Pion loops are suppressed
- At any order, a finite number of vertices and Feynman diagrams contribute

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Weinberg, Gasser, Leutwyler, Meißner, ...

$$Q = \frac{\text{momenta of pions and nucleons or } M_{\pi} \sim 140 \text{ MeV}}{\text{hard scales [at best } \Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}]} \text{Manohar, Georgi '84}}$$

Tool: Feynman calculus using the effective chiral Lagrangian

- Vertices with more derivatives are suppressed
- Pion loops are suppressed
- At any order, a finite number of vertices and Feynman diagrams contribute

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Weinberg, Gasser, Leutwyler, Meißner, ...

$$Q = \frac{\text{momenta of pions and nucleons or } M_{\pi} \sim 140 \text{ MeV}}{\text{hard scales [at best } \Lambda_{\chi} = 4\pi F_{\pi} \sim 1 \text{ GeV}]} \text{Manohar, Georgi '84}}$$

Tool: Feynman calculus using the effective chiral Lagrangian

- Vertices with more derivatives are suppressed
- Pion loops are suppressed
- At any order, a finite number of vertices and Feynman diagrams contribute

Chiral Perturbation Theory: expansion of the scattering amplitude in powers of Weinberg, Gasser, Leutwyler, Meißner, ...

$$Q = \frac{\text{momenta of pions and nucleons or } M_{\pi} \sim 140 \text{ MeV}}{\text{hard scales [at best } \Lambda_{\gamma} = 4\pi F_{\pi} \sim 1 \text{ GeV}]} \text{Manohar, Georgi '84}$$

Tool: Feynman calculus using the effective chiral Lagrangian

Pion-nucleon scattering up to Q⁴ in heavy-baryon ChPT

Fettes, Meißner '00; Krebs, Gasparyan, EE '12

Chiral EFT for nuclear systems

Naive application of power counting to NN scattering seem to suggests perturbativeness (i.e. no bound states...)

Chiral EFT for nuclear systems

Naive application of power counting to NN scattering seem to suggests perturbativeness (i.e. no bound states...)

However, diagrams involving NN intermediate states are infrared-divergent in the limit of $m \rightarrow \infty$ (due to pinch singularity). For finite m, reducible diagrams are infrared-finite but enhanced and need to be re-summed (e.g. by solving the LS equation).

Main steps in the derivation of nuclear forces in the method of UT

EE, Glöckle, Meißner '98

- 1. Begin with the most general chiral-invariant effective Lagrangian for π , N [+ possibly Δ]
- 2. Apply standard canonical formalism to switch to πN Hamiltonian
- 3. Apply unitary transformation in Fock space to decouple purely nucleonic space [i.e. our "model space"] from the rest

$$H \to \tilde{H} = U^{\dagger} \left(\begin{array}{c} \\ \end{array} \right) U = \left(\begin{array}{c} \tilde{H}_{\text{nucl}} & 0 \\ 0 & \tilde{H}_{\text{rest}} \end{array} \right)$$

For U use a minimal Okubo-parametrization in terms of

 $A = \lambda A\eta, \quad \lambda (H - [A, H] - AHA)\eta = 0$

(solved perturbatively in terms of chiral expansion)

- 4. Apply all possible UTs on the η -subspace consistent with a given chiral order [e.g. static N³LO nucl.: 6 additional angles α_i , Δ -contributions: 50 additional α^{Δ_i} ...]
- 5. Evaluate 2-body, 3-body, ... momentum-space MEs of the resulting $\eta U^{\dagger}HU\eta$
- 6. Demand renormalizability of nuclear potentials. This fixes some of the α_i and α^{Δ_i} and leads to unique (static) expressions.
- 7. Calculate the π N system to the same accuracy to determine the relevant LECs, tune NN, NNN, ... contact terms to nuclear observables.

Nuclear chiral effective field theory

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt...

- Schrödinger eq. for nucleons interacting via contact forces + long-range potentials (π -exchanges)

derived in ChPT

$$\left[\left(\sum_{i=1}^{A} \frac{-\nabla_i^2}{2m_N} + \mathcal{O}(m_N^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{}\right] |\Psi\rangle = E|\Psi\rangle$$

- access to heavier nuclei (ab initio few-/many-body methods)

Nuclear chiral effective field theory

Weinberg, van Kolck, Kaiser, EE, Glöckle, Meißner, Entem, Machleidt...

- Schrödinger eq. for nucleons interacting via contact forces + long-range potentials (π -exchanges)

$$\left[\left(\sum_{i=1}^{A} \frac{-\nabla_{i}^{2}}{2m_{N}} + \mathcal{O}(m_{N}^{-3})\right) + \underbrace{V_{2N} + V_{3N} + V_{4N} + \dots}_{\text{derived in ChPT}}\right] |\Psi\rangle = E|\Psi\rangle$$

- access to heavier nuclei (ab initio few-/many-body methods)

From *L*_{eff} **to nuclear forces**

Example: chiral 2π -exchange potential proportional to g_A^4 :

$$V_{2\pi}^{(2)}(q) = -\eta H_I \frac{\lambda}{E_{\pi}} H_I \frac{\lambda}{E_{\pi}} H_I \frac{\lambda}{E_{\pi}} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I \frac{\lambda}{E_{\pi}^2} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}^2} H_I \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I \frac{\lambda}{E_$$

From L_{eff} to nuclear forces

Example: chiral 2π -exchange potential proportional to g_A^4 :

$$V_{2\pi}^{(2)}(q) = -\eta H_I \frac{\lambda}{E_{\pi}} H_I \frac{\lambda}{E_{\pi}} H_I \frac{\lambda}{E_{\pi}} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I \frac{\lambda}{E_{\pi}^2} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}^2} H_I \eta H_I \frac{\lambda}{E_{\pi}^2} H_I \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I$$

From *L*_{eff} to nuclear forces

Example: chiral 2π -exchange potential proportional to g_A^4 :

$$\begin{split} V_{2\pi}^{(2)}(q) &= -\eta H_I \frac{\lambda}{E_{\pi}} H_I \frac{\lambda}{E_{\pi}} H_I \frac{\lambda}{E_{\pi}} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}} H_I \eta H_I \frac{\lambda}{E_{\pi}^2} H_I \eta + \frac{1}{2} \eta H_I \frac{\lambda}{E_{\pi}^2} H_I \eta$$

$$= -\frac{g_A^4}{384\pi^2 F_\pi^4} \left[\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \left(20M_\pi^2 + 23q^2 + \frac{48M_\pi^4}{4M_\pi^2 + q^2} \right) - 18\left(\vec{\sigma}_1 \cdot \vec{q} \, \vec{\sigma}_2 \cdot \vec{q} - q^2 \, \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right) \right] L(q)$$

 $\omega_{\pm} = \sqrt{(\vec{q} \pm \vec{l}) + 4M_{\pi}^2}$

where the loop function is given by (in DR):

$$L(q) = \frac{1}{q}\sqrt{4M_{\pi}^2 + q^2} \ln \frac{\sqrt{4M_{\pi}^2 + q^2} + q}{2M_{\pi}}$$

The integral has logarithmic and quadratic divergences can be absorbed into short-range terms:

$$V_{\text{cont}} = (\alpha_1 + \alpha_2 q^2) \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 + \alpha_3 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) \cdot \\ + \alpha_4 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) q^2$$

Kaiser, Brockmann, Weise '97

$$\begin{split} \mathcal{V}_{NN} &= V_C(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_C(r) + \left[V_S(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_S(r) \right] \vec{\sigma}_1 \cdot \vec{\sigma}_2 \\ &+ \left[V_T(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_T(r) \right] \left(3 \vec{\sigma}_1 \cdot \hat{r} \vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right) + \left[V_{LS}(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_{LS}(r) \right] \vec{L} \cdot \vec{S} \,, \end{split}$$

Kaiser, Brockmann, Weise '97

$$\begin{aligned} \mathcal{V}_{NN} &= V_C(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_C(r) + \left[V_S(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_S(r) \right] \vec{\sigma}_1 \cdot \vec{\sigma}_2 \\ &+ \left[V_T(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_T(r) \right] \left(3\vec{\sigma}_1 \cdot \hat{r}\vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right) + \left[V_{LS}(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_{LS}(r) \right] \vec{L} \cdot \vec{S} \,, \end{aligned}$$

The profile functions (in Dimensional Regularization)

$$\begin{split} V_C^{TPE}(r) &= \frac{3g^2m^6}{32\pi^2f^4} \frac{e^{-2x}}{x^6} \Big\{ \left(2c_1 + \frac{3g^2}{16M} \right) x^2 (1+x)^2 + \frac{g^5x^5}{32M} + \left(c_3 + \frac{3g^2}{16M} \right) \left(6 + 12x + 10x^2 + 4x^3 + x^4 \right) \\ W_T^{TPE}(r) &= \frac{g^2m^6}{48\pi^2f^4} \frac{e^{-2x}}{x^6} \Big\{ - \left(c_4 + \frac{1}{4M} \right) (1+x) (3+3x+x^2) + \frac{g^2}{32M} \left(36+72x+52x^2+17x^3+2x^4 \right) \Big\}, \\ V_T^{TPE}(r) &= \frac{g^4m^5}{128\pi^3f^4x^4} \Big\{ - 12K_0(2x) - (15+4x^2)K_1(2x) + \frac{3\pi m e^{-2x}}{8Mx} \left(12x^{-1} + 24 + 20x + 9x^2 + 2x^3 \right) \Big\}, \\ W_C^{TPE}(r) &= \frac{g^4m^5}{128\pi^3f^4x^4} \Big\{ \left[1+2g^2(5+2x^2) - g^4(23+12x^2) \right] K_1(2x) + x \left[1+10g^2 - g^4(23+4x^2) \right] K_0(2x) + \frac{g^2m\pi e^{-2x}}{4Mx} \left[2(3g^2-2) \left(6x^{-1} + 12 + 10x + 4x^2 + x^3 \right) \right] + g^2x \left(2+4x+2x^2+3x^2 \right) \Big\}, \\ V_S^{TPE}(r) &= \frac{g^4m^5}{32\pi^3f^4} \Big\{ 3xK_0(2x) + (3+2x^2)K_1(2x) - \frac{3\pi m e^{-2x}}{16Mx} \left(6x^{-1} + 12 + 11x + 6x^2 + 2x^3 \right) \Big\}, \\ W_S^{TPE}(r) &= \frac{g^2m^6}{48\pi^2f^4} \frac{e^{-2x}}{x^6} \Big\{ \left(c_4 + \frac{1}{4M} \right) (1+x) (3+3x+2x^2) - \frac{g^2}{16M} \left(18+36x+31x^2+14x^3+2x^4 \right) \Big\}, \\ V_{LS}^{TPE}(r) &= -\frac{3g^4m^6}{64\pi^2Mf^4} \frac{e^{-2x}}{x^6} (1+x) \left(2+2x+x^2 \right), \\ W_{LS}^{TPE}(r) &= \frac{g^2(g^2-1)m^6}{32\pi^2Mf^4} \frac{e^{-2x}}{x^6} (1+x)^2, \end{split}$$

Kaiser, Brockmann, Weise '97

$$\begin{aligned} \mathcal{V}_{NN} &= V_C(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_C(r) + \left[V_S(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_S(r) \right] \vec{\sigma}_1 \cdot \vec{\sigma}_2 \\ &+ \left[V_T(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_T(r) \right] \left(3\vec{\sigma}_1 \cdot \hat{r}\vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right) + \left[V_{LS}(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_{LS}(r) \right] \vec{L} \cdot \vec{S} \,, \end{aligned}$$

Kaiser, Brockmann, Weise '97

$$\begin{aligned} \mathcal{V}_{NN} &= V_C(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_C(r) + \left[V_S(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_S(r) \right] \vec{\sigma}_1 \cdot \vec{\sigma}_2 \\ &+ \left[V_T(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_T(r) \right] \left(3 \vec{\sigma}_1 \cdot \hat{r} \vec{\sigma}_2 \cdot \hat{r} - \vec{\sigma}_1 \cdot \vec{\sigma}_2 \right) + \left[V_{LS}(r) + \vec{\tau}_1 \cdot \vec{\tau}_2 W_{LS}(r) \right] \vec{L} \cdot \vec{S} \,, \end{aligned}$$

Is there any evidence from NN data?

Chiral two-pion exchange and NN data

Nijmegen Partial Wave Analysis

Rentmeester et al.'99,'03

Number of BC parameters needed to achieve $\chi^2_{datum} \sim 1$ for a given long-range part (input)

31 (1 π) \rightarrow 28 (1 π + 2 π [NLO]) \rightarrow 23 (1 π + 2 π [N²LO])

"Deconstructing" neutron-proton phase shufts Birse, McGovern '06

Idea: Subtract effects of the long-range interaction from phase shifts (DWBA) and look at the residual energy dependence

How to renormalize the Schrödinger Eq?

Lowest-order NN potential:
$$V_{2N}^{(0)} = -\frac{g_A^2}{4F_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \frac{\vec{\sigma}_1 \cdot \vec{q} \ \vec{\sigma}_2 \cdot \vec{q}}{\vec{q}^2 + M_\pi^2} + C_S + C_T \vec{\sigma}_1 \cdot \vec{\sigma}_2$$

Complication: iterations of the LS equation

$$T(\vec{p}',\vec{p}) = V_{2N}^{(0)}(\vec{p}',\vec{p}) + \int \frac{d^3k}{(2\pi)^3} V_{2N}^{(0)}(\vec{p}',\vec{k}) \frac{m_N}{p^2 - k^2 + i\epsilon} T(\vec{k},\vec{p})$$

generate divergences whose subtraction requires infinitely many CTs beyond $V_{2N}^{(0)}$

Kaplan, Savage, Wise, Fleming, Mehen, Stewart, Phillips, Beane, Cohen, Frederico, Timoteo, Tomio, Birse, Beane, Bedaque, van Kolck, Pavon Valderrama, Ruiz Arriola, Nogga, Timmermanns, EE, Meißner, Entem, Machleidt, Yang, Elster, Long, Gegelia, ...

---> use a finite cutoff, self-consistency checks via "Lepage plots"

A new, renormalizable approach (yet to be explored...) EE, Gegelia '12

- non-renormalizability of the LO equation is an artifact of the nonrelativistic expansion
- renormalizable LO equation based on manifestly Lorentz-invariant Lagrangian

$$T(\vec{p}',\vec{p}) = V_{2N}^{(0)}(\vec{p}',\vec{p}) + \frac{m_N^2}{2} \int \frac{d^3k}{(2\pi)^3} \frac{V_{2N}^{(0)}(\vec{p}',\vec{k}) T(\vec{k},\vec{p})}{(k^2 + m_N^2) (E - \sqrt{k^2 + m_N^2} + i\epsilon)}$$

higher-order corrections (e.g. two-pion exchange) to be treated perturbatively in progress...

Neutron-proton phase shifts at N³LO

Entem, Machleidt '04; E.E., Glöckle, Meißner '05

Current topics & ongoing developments

Renormalitazion and power counting van Kolck, Pavon Valderrama, Brise, Gegelia, EE, Machleidt, ...

Merging chiral EFT with dispersion relations

Albaladejo, Oller '11,'12; Gasparyan, EE, Lutz '12; Guo, Oller, Rios '13

 Calculate the discontinuity of the amplitude along the left-hand cut using ChPT

 Reconstruct the amplitude in the physical region using dispersion relations + analytic cont. (conformal mapping)

Generalization to the SU(3) sector Haidenbauer, Meißner, Kaiser, Petschauer, Nogga, ...

Nuclear parity violation Schindler, Viviani, Kievski, Girlanda, de Vries, van Kolck, Kaiser, Meißner, EE, ...

Partial wave analysis Rentmeester et al., Birse, McGovern, Navarro Perez, Ruiz Arriola et al.

- Role of 2π -exchange
- Error propagation in nuclear observables

New generation of chiral NN potentials

Current topics & ongoing developments

Renormalitazion and power counting van Kolck, Pavon Valderrama, Brise, Gegelia, EE, Machleidt, ...

Merging chiral EFT with dispersion relations

Albaladejo, Oller '11,'12; Gasparyan, EE, Lutz '12; Guo, Oller, Rios '13

 Calculate the discontinuity of the amplitude along the left-hand cut using ChPT

 Reconstruct the amplitude in the physical region using dispersion relations + analytic cont. (conformal mapping)

Generalization to the SU(3) sector Haidenbauer, Meißner, Kaiser, Petschauer, Nogga, ...

Nuclear parity violation Schindler, Viviani, Kievski, Girlanda, de Vries, van Kolck, Kaiser, Meißner, EE, ...

Partial wave analysis Rentmeester et al., Birse, McGovern, Navarro Perez, Ruiz Arriola et al.

- Role of 2π -exchange
- Error propagation in nuclear observables

New generation of chiral NN potentials

New chiral NN interactions

Already available:

- Optimized N²LO chiral nuclear force (tune LECs to reduce the impact of 3NF in the > 2N systems) Ekström, Baardsen, et al. '13. Justified from EFT point of view?
- Fully local potentials @ LO, NLO, N²LO [R₀ = 1.0, 1.1 and 1.2 fm and Λ_{SFR} = 0.8...1.4 GeV]
 Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, PRL 111 (13) 032501;
 Gezerlis, Tews, EE, Freunek, Gandolfi, Hebeler, Nogga, Schwenk, arXiv:1406.0454;
 Lynn, Carlson, EE, Gandolfi, Gezerlis, Schwenk, arXiv:1406.2787

In development/testing [in collaboration with: Krebs, Nogga, Meißner, Golak, Skibinski, Witala, Kamada]

- New version of local-chiral potentials @ LO, NLO, N²LO [Λ_{SFR} up to Infinity, PWD MEs and operator form both in r-space and p-space]
- New improved-chiral potentials up to N³LO [Λ_{SFR} up to Infinity, PWD MEs and operator form in p-space]
 - Local regulator preserves the analytic structure of the amplitude and allows to minimize cutoff artifacts
 → better performance at high energies!
 - No need for SFR cutoff, can accommodate for LECs from πN

i-chiral 2NF: Order-by-order improvement

neutron-proton phase shifts on *i-chiral* 2NF at LO, NLO, N²LO and N³LO (w.o. 1/m)

 $R_0 = 0.9 \text{ fm}, \Lambda_{SFR} = \text{Infinity [i.e. DR]}$

Cutoff dependence: i-chiral vs old EGM'04

np phase shifts based on EGM'04 N²LO/N³LO 2NF

N²LO: Λ = 450...600 MeV, Λ_{SFR} =500...700 MeV N³LO: Λ = 450...600 MeV, Λ_{SFR} =500...700 MeV

Cutoff dependence: i-chiral vs old EGM'04

np phase shifts based on EGM'04 N²LO/N³LO 2NF

np phase shifts based on i-chiral N²LO/N³LO 2NF

N²LO: Λ = 450...600 MeV, Λ_{SFR} =500...700 MeV N³LO: Λ = 450...600 MeV, Λ_{SFR} =500...700 MeV N²LO: R₀ = 0.8...1.0 fm, Λ_{SFR} =1GeV...Infinity N³LO: R₀ = 0.8...1.1 fm, Λ_{SFR} =1GeV...Infinity LECs from Q⁴ KH πN

Cutoff dependence: i-chiral vs old EGM'04

np phase shifts based on EGM'04 N²LO/N³LO 2NF

np phase shifts based on *i-chiral* N²LO/N³LO 2NF

N²LO: Λ = 450...600 MeV, Λ _{SFR} =500...700 MeV N³LO: Λ = 450...600 MeV, Λ _{SFR} =500...700 MeV N²LO: R₀ = 0.8...1.0 fm, Λ_{SFR} =1GeV...Infinity N³LO: R₀ = 0.8...1.1 fm, Λ_{SFR} =1GeV...Infinity LECs from Q⁴ KH πN

I-chiral 2NF: elastic nd scattering order-by-order

EE, Golak, Kamada, Krebs, Meißner, Nogga, Skibinski, Witala, in preparation

I-chiral 2NF: elastic nd scattering order-by-order

EE, Golak, Kamada, Krebs, Meißner, Nogga, Skibinski, Witala, in preparation

nd scattering with I-chiral 2NF: Cutoff dependence

EE, Golak, Kamada, Krebs, Meißner, Nogga, Skibinski, Witala, in preparation

nonlocal NLO/N²LO/N³LO: $\Lambda = 450...600 \text{ MeV},$ $\Lambda_{SFR} = 500...700 \text{ MeV}$

local NLO/N²LO:

 $R_0 = 1...1.2 \text{ fm},$ $\Lambda_{SFR} = 1...2 \text{ GeV}$

Three-nucleon force: Status and ongoing developments

Chiral expansion of the 3NF (Δ -less EFT)

3NF structure functions at large distance are model-independent and parameter-free predictions based on χ symmetry of QCD + exp. information on π N system

NLO (Q²)

NLO (Q²)

The TPE 3NF has the form (modulo 1/m-terms):

 $V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{[q_1^2 + M_\pi^2] [q_3^2 + M_\pi^2]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$

The TPE 3NF has the form (modulo 1/m-terms):

 $V_{2\pi} = \frac{\vec{\sigma}_1 \cdot \vec{q}_1 \, \vec{\sigma}_3 \cdot \vec{q}_3}{[q_1^2 + M_\pi^2] [q_3^2 + M_\pi^2]} \Big(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_3 \, \mathcal{A}(q_2) + \boldsymbol{\tau}_1 \times \boldsymbol{\tau}_3 \cdot \boldsymbol{\tau}_2 \, \vec{q}_1 \times \vec{q}_3 \cdot \vec{\sigma}_2 \, \mathcal{B}(q_2) \Big)$

$$\mathcal{A}^{(3)}(q_2) = \frac{g_A^2}{8F_\pi^4} \left((2c_3 - 4c_1)M_\pi^2 + c_3 q_2^2 \right), \qquad \mathcal{B}^{(3)}(q_2) = \frac{g_A^2 c_4}{8F_\pi^4}$$

$$N^{3}LO [Q^{4}]: \qquad \mathcal{A}^{(4)}(q_{2}) = \frac{g_{A}^{4}}{256\pi F_{\pi}^{6}} \Big[A(q_{2}) \left(2M_{\pi}^{4} + 5M_{\pi}^{2}q_{2}^{2} + 2q_{2}^{4} \right) + \left(4g_{A}^{2} + 1 \right) M_{\pi}^{3} + 2 \left(g_{A}^{2} + 1 \right) M_{\pi}q_{2}^{2} \Big], \\ \mathcal{B}^{(4)}(q_{2}) = -\frac{g_{A}^{4}}{256\pi F_{\pi}^{6}} \Big[A(q_{2}) \left(4M_{\pi}^{2} + q_{2}^{2} \right) + \left(2g_{A}^{2} + 1 \right) M_{\pi} \Big] \qquad \text{Ishikawa, Robilotta '07} \\ \text{Bernard, EE, Krebs, Meißner '08}$$

 N⁴LO [Q⁵]: Krebs, Gasparyan, EE '12

N²LO [Q³]:
 van Kolck '94

$$\begin{aligned} \mathcal{A}^{(5)}(q_2) &= \frac{g_A}{4608\pi^2 F_{\pi}^6} \Big[M_{\pi}^2 q_2^2 (F_{\pi}^2 \left(2304\pi^2 g_A (4\bar{e}_{14} + 2\bar{e}_{19} - \bar{e}_{22} - \bar{e}_{36}) - 2304\pi^2 \bar{d}_{18} c_3 \right) \\ &+ g_A (144c_1 - 53c_2 - 90c_3)) + M_{\pi}^4 \left(F_{\pi}^2 \left(4608\pi^2 \bar{d}_{18} (2c_1 - c_3) + 4608\pi^2 g_A (2\bar{e}_{14} + 2\bar{e}_{19} - \bar{e}_{36} - 4\bar{e}_{38}) \right) \\ &+ g_A \left(72 \left(64\pi^2 \bar{l}_3 + 1 \right) c_1 - 24c_2 - 36c_3 \right) \right) + q_2^4 \left(2304\pi^2 \bar{e}_{14} F_{\pi}^2 g_A - 2g_A (5c_2 + 18c_3) \right) \Big] \\ &- \frac{g_A^2}{768\pi^2 F_{\pi}^6} L(q_2) \left(M_{\pi}^2 + 2q_2^2 \right) \left(4M_{\pi}^2 (6c_1 - c_2 - 3c_3) + q_2^2 (-c_2 - 6c_3) \right) , \\ \mathcal{B}^{(5)}(q_2) &= -\frac{g_A}{2304\pi^2 F_{\pi}^6} \Big[M_{\pi}^2 \left(F_{\pi}^2 \left(1152\pi^2 \bar{d}_{18} c_4 - 1152\pi^2 g_A (2\bar{e}_{17} + 2\bar{e}_{21} - \bar{e}_{37}) \right) + 108g_A^3 c_4 + 24g_A c_4 \right) \\ &+ q_2^2 \left(5g_A c_4 - 1152\pi^2 \bar{e}_{17} F_{\pi}^2 g_A \right) \Big] + \frac{g_A^2 c_4}{384\pi^2 F_{\pi}^6} L(q_2) \left(4M_{\pi}^2 + q_2^2 \right) \end{aligned}$$

Krebs, Gasparyan, EE '12

π N phase shifts in HB ChPT up to Q⁴ (KH PWA)

The determined values of LECs

	c_1	c_2	c_3	c_4	$\bar{d}_1 + \bar{d}_2$	$ar{d}_3$	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	$ar{e}_{15}$	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
Q^4 fit to GW	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-5.80	1.76	-0.58	0.96
Q^4 fit to KH	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26

Krebs, Gasparyan, EE '12

The determined values of LECs

	c_1	c_2	<i>C</i> 3	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\left \bar{d}_{14}-\bar{d}_{15}\right $	\bar{e}_{14}	$ar{e}_{15}$	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
Q^4 fit to GW	-1.13	3.69	-5.51	3.71	5.57	-5.35	0.02	-10.26	1.75	-5.80	1.76	-0.58	0.96
Q^4 fit to KH	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26

Most general structure of a IC local 3NF

Most general local isospin-conserving 3NF can be written via

 $V(q_1, q_2, q_3) = \sum_{i=1}^{20} \mathcal{G}_i F_i(q_1, q_2, q_3) + \text{permutations}$ $V(r_{12}, r_{23}, r_{31}) = \sum_{i=1}^{20} \tilde{\mathcal{G}}_i F_i(r_{12}, r_{23}, r_{31}) + \text{permutations}$

(2 operators out of the 22 given in Krebs, Gasparyan, EE, PRC87 (2013) are redundant EE, Gasparyan, Krebs, Schat, to appear)

Generators \mathcal{G} in momentum space	Generators $\tilde{\mathcal{G}}$ in coordinate space
$\mathcal{G}_1 = 1$	$ ilde{\mathcal{G}}_1 = 1$
$\mathcal{G}_2 = oldsymbol{ au}_1 \cdot oldsymbol{ au}_3$	$ ilde{\mathcal{G}}_2 = oldsymbol{ au}_1 \cdot oldsymbol{ au}_3$
$\mathcal{G}_3=ec{\sigma}_1\cdotec{\sigma}_3$	$ ilde{\mathcal{G}}_3=ec{\sigma}_1\cdotec{\sigma}_3$
$\mathcal{G}_4 = oldsymbol{ au}_1 \cdot oldsymbol{ au}_3 ec{\sigma}_1 \cdot ec{\sigma}_3$	$ ilde{\mathcal{G}}_4 = oldsymbol{ au}_1 \cdot oldsymbol{ au}_3 ec{\sigma}_1 \cdot ec{\sigma}_3$
$\mathcal{G}_5 = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 ec{\sigma}_1 \cdot ec{\sigma}_2$	$ ilde{\mathcal{G}}_5 = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 ec{\sigma}_1 \cdot ec{\sigma}_2$
$\mathcal{G}_6 = oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_1 \cdot (ec{\sigma}_2 imes ec{\sigma}_3)$	$ ilde{\mathcal{G}}_6 = oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_1 \cdot (ec{\sigma}_2 imes ec{\sigma}_3)$
$\mathcal{G}_7 = oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_2 \cdot (ec{q}_1 imes ec{q}_3)$	$ ilde{\mathcal{G}}_7 = oldsymbol{ au}_1 \cdot oldsymbol{(au_2 imes oldsymbol{ au_3})} ec{\sigma}_2 \cdot (\hat{r}_{12} imes \hat{r}_{23})$
${\cal G}_8=ec q_1\cdotec \sigma_1ec q_1\cdotec \sigma_3$	$ ilde{\mathcal{G}}_8 = \hat{r}_{23}\cdotec{\sigma}_1\hat{r}_{23}\cdotec{\sigma}_3$
$\mathcal{G}_9=ec q_1\cdotec \sigma_3ec q_3\cdotec \sigma_1$	$ ilde{\mathcal{G}}_9 = \hat{r}_{23}\cdotec{\sigma}_3\hat{r}_{12}\cdotec{\sigma}_1$
${\cal G}_{10}=ec q_1\cdotec \sigma_1ec q_3\cdotec \sigma_3$	$ ilde{\mathcal{G}}_{10} = \hat{r}_{23} \cdot ec{\sigma}_1 \hat{r}_{12} \cdot ec{\sigma}_3$
$\mathcal{G}_{11} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 ec{q}_1 \cdot ec{\sigma}_1 ec{q}_1 \cdot ec{\sigma}_2$	$\hat{\mathcal{G}}_{11} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 \hat{r}_{23} \cdot ec{\sigma}_1 \hat{r}_{23} \cdot ec{\sigma}_2$
$\mathcal{G}_{12} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 ec{q}_1 \cdot ec{\sigma}_1 ec{q}_3 \cdot ec{\sigma}_2$	$\hat{\mathcal{G}}_{12} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 \hat{r}_{23} \cdot ec{\sigma}_1 \hat{r}_{12} \cdot ec{\sigma}_2$
$\mathcal{G}_{13} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 ec{\sigma}_1 ec{q}_1 \cdot ec{\sigma}_2$	$\mathcal{G}_{13} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 \hat{r}_{12} \cdot ec{\sigma}_1 \hat{r}_{23} \cdot ec{\sigma}_2$
$\mathcal{G}_{14} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 ec{\sigma}_1 ec{q}_3 \cdot ec{\sigma}_2$	$\hat{\mathcal{G}}_{14} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 \hat{r}_{12} \cdot ec{\sigma}_1 \hat{r}_{12} \cdot ec{\sigma}_2$
$\mathcal{G}_{15} = oldsymbol{ au}_1 \cdot oldsymbol{ au}_3 ec{q}_2 \cdot ec{\sigma}_1 ec{q}_2 \cdot ec{\sigma}_3$	$\mathcal{G}_{15} = oldsymbol{ au}_1 \cdot oldsymbol{ au}_3 \hat{r}_{13} \cdot ec{\sigma}_1 \hat{r}_{13} \cdot ec{\sigma}_3$
$\mathcal{G}_{16} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 ec{\sigma}_2 ec{q}_3 \cdot ec{\sigma}_3$	$\mathcal{G}_{16} = oldsymbol{ au}_2 \cdot oldsymbol{ au}_3 \hat{r}_{12} \cdot oldsymbol{ au}_2 \hat{r}_{12} \cdot oldsymbol{ au}_3$
$\mathcal{G}_{17} = oldsymbol{ au}_1 \cdot oldsymbol{ au}_3 ec{q}_1 \cdot ec{\sigma}_1 ec{q}_3 \cdot ec{\sigma}_3$	$\mathcal{G}_{17} = oldsymbol{ au}_1 \cdot oldsymbol{ au}_3 \hat{r}_{23} \cdot ec{\sigma}_1 \hat{r}_{12} \cdot ec{\sigma}_3$
$\mathcal{G}_{18} = oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_1 \cdot ec{\sigma}_3 ec{\sigma}_2 \cdot (ec{q}_1 imes ec{q}_3)$	$\mathcal{G}_{18} = oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_1 \cdot ec{\sigma}_3 ec{\sigma}_2 \cdot (\hat{r}_{12} imes \hat{r}_{23})$
$\mathcal{G}_{19} = oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{d}_3 \cdot ec{q}_1 ec{q}_1 \cdot (ec{d}_1 imes ec{d}_2)$	$\mathcal{G}_{19} = oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_3 \cdot \hat{r}_{23} \hat{r}_{23} \cdot (ec{\sigma}_1 imes ec{\sigma}_2)$
$\mathcal{G}_{20} = oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_1 \cdot ec{q}_1 ec{\sigma}_3 \cdot ec{q}_3 ec{\sigma}_2 \cdot (ec{q}_1 imes ec{q}_3)$	$\mathcal{G}_{20} = oldsymbol{ au}_1 \cdot (oldsymbol{ au}_2 imes oldsymbol{ au}_3) ec{\sigma}_1 \cdot \hat{r}_{23} ec{\sigma}_3 \cdot \hat{r}_{12} ec{\sigma}_2 \cdot (\hat{r}_{12} imes \hat{r}_{23})$

Long-range 3NF up to N⁴LO (preliminary)

EE, Gasparyan, Krebs, Schat, to appear

Chiral expansion of the 3NF

Chiral expansion of the 3NF

...

Chiral expansion of the 3NF

Pion-nucleon system in Δ-full EFT up to Q⁴

Krebs, Gasparyan, EE, to appear

π N phase shifts in HB ChPT up to Q⁴ (KH PWA)

LECs from pion-nucleon scattering (HB ChPT) in units of GeV⁻ⁿ (fit to KH PWA)

	c_1	c_2	c_3	c_4	$\bar{d}_1 + \bar{d}_2$	\bar{d}_3	\bar{d}_5	$\bar{d}_{14} - \bar{d}_{15}$	\bar{e}_{14}	\bar{e}_{15}	\bar{e}_{16}	\bar{e}_{17}	\bar{e}_{18}
Δ-less approach	-0.75	3.49	-4.77	3.34	6.21	-6.83	0.78	-12.02	1.52	-10.41	6.08	-0.37	3.26
∆-full approach	-0.95	1.90	-1.78	1.50	2.40	-3.87	1.21	-5.25	-0.24	-6.35	2.34	-0.39	2.81
∆-contribution	0	2.81	-2.81	1.40	2.39	-2.39	0	-4.77	1.87	-4.15	4.15	-0.17	1.32

2π-exchange 3NF: Δ-full vs Δ-less EFT

Krebs, Gasparyan, EE, to appear

2π-exchange 3NF: Δ-full vs Δ-less EFT

Krebs, Gasparyan, EE, to appear

- Δ -full and Δ -less EFT predictions agree well with each other
- Δ-full approach shows clearly a superior convergence
- remarkably, the final 2π 3NF turns out to be rather weak at large distances...

2π-exchange 3NF: Δ-full vs Δ-less EFT

Krebs, Gasparyan, EE, to appear

Numerical implementation of the 3NF at N3LO and applications to few-/many-N systems are is being carried out by the

Low Energy Nuclear Physics International Collaboration (LENPIC)

```
J.Golak, R.Skibinski, K.Topolnicki, H.Witala (Cracow)
EE, H.Krebs (Bochum)
S.Binder, A.Calci, K.Hebeler, J.Langhammer, R.Roth (Darmstadt)
P.Maris, H.Potter, James Vary (Iowa State)
R.J.Furnstahl (Ohio State)
A.Nogga (Jülich)
U.-G. Meißner (Bonn)
V. Bernard (Orsay)
H.Kamada (Kyushu)
```


r [fm]

e distances...

r [fm]

Summary and outlook

- Nonperturbative renormalization with nonperturbative 1π -exchange
 - It is possible to completely eliminate Λ using relativistic equations (e.g. Kadyshevsky) assuming that 2π exchange can be treated in perturbation theory
 - Promising results for phase shifts, deuteron FFs and χ -extrapolations at LO

Future plans: higher orders (TPE), generalization to SU(3)

• New NN chiral potentials about to emerge

A new generation of chiral NN potentials up to N³LO is being developed:

 local-chiral (up to N²LO): local interactions, can be used in QMC
 improved-chiral (up to N³LO): nonlocal potentials

 Common features: better performance at higher energies, less sensitivity to cutoffs, no need for SFR, can use c_i's from πN.

Future plans: sensitivity to c_i 's, extension to Δ -full theory

• 3N force

- A complicated object: 20 independent structures even in local case
- Worked out up to N³LO level (parameter-free), first results are emerging
- Still not converged at this order (certain Δ effects are missing)
- Long-range terms worked out at N⁴LO and N³LO-Δ: signs of convergence...

Future plans: Nd scattering & nuclear structure at N³LO and beyond

I-chiral 2NF: Order-by-order improvement

neutron-proton phase shifts on I-chiral 2NF at LO, NLO and N²LO

 $R_0 = 1 \text{ fm}, \Lambda_{SFR} = 2 \text{ GeV}$

$$\langle \vec{p}' | V^{\text{NNLO}} | \vec{p} \rangle = \left[V_{1\pi}^{(0)} + V_{2\pi}^{(2)} + V_{2\pi}^{(3)} + V_{\text{cont}}^{(0)} + V_{\text{cont}}^{(2)} \right] e^{\frac{-p'^4 - p^4}{\Lambda^4}}$$

The cutoff Λ should not be chosen too large (spurious bound states, nonlinearities, nonrenormalizable theory) Lepage'97, EE., Meißner '06, EE, Gegelia '09. On the other hand, smaller values of Λ introduce unnecessary errors.

Typical choice: $\Lambda = 450...600 \text{ MeV}$ [N³LO potentials by EGM, EM]

$$\langle \vec{p}' | V^{\text{NNLO}} | \vec{p} \rangle = \left[V_{1\pi}^{(0)} + V_{2\pi}^{(2)} + V_{2\pi}^{(3)} + V_{\text{cont}}^{(0)} + V_{\text{cont}}^{(2)} \right] e^{\frac{-p'^4 - p^4}{\Lambda^4}}$$

The cutoff Λ should not be chosen too large (spurious bound states, nonlinearities, nonrenormalizable theory) Lepage'97, EE., Meißner '06, EE, Gegelia '09. On the other hand, smaller values of Λ introduce unnecessary errors.

Typical choice: $\Lambda = 450...600 \text{ MeV}$ [N³LO potentials by EGM, EM]

<u>**Claim</u></u>: while the above nonlocal regulator simplifies the determination of the LECs, it cuts off some model-independent long-range physics one would like to keep and leaves some model-dependent short-range physics one would like to cut off... Given that** $V_{1\pi}^{(0)} + V_{2\pi}^{(2)} + V_{2\pi}^{(3)}$ **is local**, <u>local regulator will do a better job</u>!</u>

Reminder:

 $V_{\text{local}}(\vec{p}',\vec{p}) \equiv \langle \vec{p}' | V_{\text{local}} | \vec{p} \rangle = V(\vec{p}' - \vec{p}) \longrightarrow V(\vec{r}',\vec{r}) \equiv \langle \vec{r}' | V | \vec{r} \rangle = \delta^3(\vec{r}' - \vec{r})V(\vec{r})$

Peripheral NN scattering as a long-range filter: insensitive to short-range physics and determined by the model-independent long-range interaction ($V_{1\pi}$). Can be computed using Born approximation: $T_{\alpha'\alpha}(p) \equiv \langle p, \alpha' | T | p, \alpha \rangle = \langle p, \alpha' | V_{1\pi} | p, \alpha \rangle$

where
$$V_{1\pi}(\vec{q}\,) = -rac{g_A^2}{4F_\pi^2} rac{(\vec{q}\cdot\vec{\sigma}_1)(\vec{q}\cdot\vec{\sigma}_2)}{\vec{q}\,^2 + M_\pi^2} m{ au}_1\cdotm{ au}_2$$

Peripheral NN scattering as a long-range filter: insensitive to short-range physics and determined by the model-independent long-range interaction ($V_{1\pi}$). Can be computed using Born approximation: $T_{\alpha'\alpha}(p) \equiv \langle p, \alpha' | T | p, \alpha \rangle = \langle p, \alpha' | V_{1\pi} | p, \alpha \rangle$

where
$$V_{1\pi}(\vec{q}\,) = -\frac{g_A^2}{4F_\pi^2} \frac{(\vec{q}\cdot\vec{\sigma}_1)(\vec{q}\cdot\vec{\sigma}_2)}{\vec{q}\,^2 + M_\pi^2} \boldsymbol{\tau}_1\cdot\boldsymbol{\tau}_2$$

• Standard, nonlocal regularization $V_{1\pi}^{\text{reg}}(\vec{q}) = V_{1\pi}(\vec{q}) F\left(\frac{p'}{\Lambda}, \frac{p}{\Lambda}\right)$

Partial-wave decomposition: $\langle p', \alpha' | V_{1\pi}^{\text{reg}} | p, \alpha \rangle = \langle p', \alpha' | V_{1\pi} | p, \alpha \rangle F\left(\frac{p'}{\Lambda}, \frac{p}{\Lambda}\right)$

Regulator affects all partial waves at high momenta independently on $\, lpha, \, lpha'$

Peripheral NN scattering as a long-range filter: insensitive to short-range physics and determined by the model-independent long-range interaction ($V_{1\pi}$). Can be computed using Born approximation: $T_{\alpha'\alpha}(p) \equiv \langle p, \alpha' | T | p, \alpha \rangle = \langle p, \alpha' | V_{1\pi} | p, \alpha \rangle$

where
$$V_{1\pi}(\vec{q}\,) = -\frac{g_A^2}{4F_\pi^2} \frac{(\vec{q}\cdot\vec{\sigma}_1)(\vec{q}\cdot\vec{\sigma}_2)}{\vec{q}\,^2 + M_\pi^2} \boldsymbol{\tau}_1\cdot\boldsymbol{\tau}_2$$

• Standard, nonlocal regularization $V_{1\pi}^{\text{reg}}(\vec{q}) = V_{1\pi}(\vec{q}) F\left(\frac{p'}{\Lambda}, \frac{p}{\Lambda}\right)$ Partial-wave decomposition: $\langle p', \alpha' | V_{1\pi}^{\text{reg}} | p, \alpha \rangle = \langle p', \alpha' | V_{1\pi} | p, \alpha \rangle F\left(\frac{p'}{\Lambda}, \frac{p}{\Lambda}\right)$ Regulator affects all partial waves at high momenta independently on α , α'

Local regularization

 $V_{1\pi}^{\text{reg}}(\vec{q}) = V_{1\pi}(\vec{q}) F\left(\frac{q}{\Lambda}\right)$ or, alternatively, $V_{1\pi}^{\text{reg}}(\vec{r}) = V_{1\pi}(\vec{r}) F(r/R_0)$ Partial-wave matrix elements in momentum space:

$$\langle p', \alpha' | V_{1\pi}^{\text{reg}} | p, \alpha \rangle \sim \int r^2 dr \, j_{l'}(p'r) \left[V_{1\pi}^{\alpha'\alpha}(r) F(r/R_0) \right] j_l(pr)$$

becomes insensitive to F for high l, l'

Construction of the potential (published local version)

Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, PRL 111 (2013) 032501; more details in the talk by Ingo

There are 9 isospin-concerving contact terms whose choice is not unique. Standard: $V_{\text{cont}}^{(0)} = C_S + C_T(\vec{\sigma}_1 \cdot \vec{\sigma}_2)$ $V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 k^2 + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 k^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + \frac{iC_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k} + C_6 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) + C_7 (\vec{\sigma}_1 \cdot \vec{k}) (\vec{\sigma}_2 \cdot \vec{k})$ where $\vec{q} = \vec{p}' - \vec{p}$, $\vec{k} = (\vec{p} + \vec{p}')/2$

Construction of the potential (published local version)

Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, PRL 111 (2013) 032501; more details in the talk by Ingo

There are 9 isospin-concerving contact terms whose choice is not unique. Standard: $V_{\text{cont}}^{(0)} = C_S + C_T(\vec{\sigma}_1 \cdot \vec{\sigma}_2)$ $V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 k^2 + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 k^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + \frac{iC_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k} + C_6 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) + C_7 (\vec{\sigma}_1 \cdot \vec{k}) (\vec{\sigma}_2 \cdot \vec{k})$

where
$$\vec{q} = \vec{p}' - \vec{p}, \ \vec{k} = (\vec{p} + \vec{p}')/2$$

One can choose instead a local basis:

$$V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 q^2 (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + \frac{iC_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k}$$

+ $C_6(\vec{\sigma}_1 \cdot \vec{q})(\vec{\sigma}_2 \cdot \vec{q}) + C_7(\vec{\sigma}_1 \cdot \vec{q})(\vec{\sigma}_2 \cdot \vec{q})(\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$
Construction of the potential (published local version)

Gezerlis, Tews, EE, Gandolfi, Hebeler, Nogga, Schwenk, PRL 111 (2013) 032501; more details in the talk by Ingo

There are 9 isospin-concerving contact terms whose choice is not unique. Standard: $V_{\text{cont}}^{(0)} = C_S + C_T(\vec{\sigma}_1 \cdot \vec{\sigma}_2)$ $V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 k^2 + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 k^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + \frac{iC_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k} + C_6 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) + C_7 (\vec{\sigma}_1 \cdot \vec{k}) (\vec{\sigma}_2 \cdot \vec{k})$

where
$$\vec{q} = \vec{p}' - \vec{p}, \ \vec{k} = (\vec{p} + \vec{p}')/2$$

One can choose instead a local basis:

$$V_{\text{cont}}^{(2)} = C_1 q^2 + C_2 q^2 (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + C_3 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) + C_4 q^2 (\vec{\sigma}_1 \cdot \vec{\sigma}_2) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2) + \frac{i C_5}{2} (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \vec{q} \times \vec{k} + C_6 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) + C_7 (\vec{\sigma}_1 \cdot \vec{q}) (\vec{\sigma}_2 \cdot \vec{q}) (\boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2)$$

Make Fourier Transform and regularize in configuration space, e.g.:

$$V_{\rm long}(\vec{r}) \to V_{\rm long}(\vec{r}) \Big[1 - e^{-r^4/R_0^4} \Big]$$
 and $\delta^3(\vec{r}) \to \alpha e^{-r^4/R_0^4}$ where $\alpha = \frac{1}{\pi\Gamma(3/4)R_0^3}$

The LECs are determined from NN S-, P-waves and the mixing angle ε_1

Error budget: local vs nonlocal regulators

Absolute errors in S- and P-wave phase shifts at N²LO

Ordering of partial waves: ${}^{1}S_{0}$, ${}^{3}S_{1}$, ${}^{1}P_{1}$, ${}^{3}P_{0}$, ${}^{3}P_{1}$, ${}^{3}P_{2}$