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Introduction

The vertex function (VF) W for the virtual n-fragment decay of a bound
state a is the matrix element of the process

a → 1 + 2 + . . .+ n.

It is related to the residue in energy of the matrix element of the scattering
amplitude of 1 + 2 + . . . + n → 1 + 2 + · · ·+ n.
The matrix element of this process is

M =
〈

Φf |V |PΨ
(+)
i

〉

= 〈Φf |V |P(1 + GV )Φi 〉 , (1)

P is the (anti)symmetrization operator. Using the spectral decomposition
of the Green function G and the relation V = H − H0 one easily gets

W (~q1, ~q2, . . . , ~qn−1) = −N1/2 (T + ǫ) 〈φ1φ2 . . . φn|φa〉 . (2)

~qi - Jacobi momenta, φi - internal wave functions, T - kinetic energy, ǫ -
binding energy in the channel a → 1 + 2 + . . .+ n.
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Introduction

N1/2 arises due to the identity of constituents. If all fragments consist of
identical nucleons, then

N =
Aa!

A1!A2! . . .An!
. (3)

Ai - number of nucleons in i .

If all fragments 1, 2, . . . n are structureless, then 〈φ1φ2 . . . φn|φa〉 turns into
wave function φa.

VFs W for a → 1+ 2+ . . .+ n are related to the coordinate asymptotics of
φa in the channel 1 + 2 + . . .+ n. In what follows we discuss this relation
for important cases n = 2 and n = 3. (~ = c = 1).
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Introduction

Two-fragment case (n = 2)

From general principles the expression for the vertex function (the matrix
element) of two-body decay (virtual or real) a → b + c can be written as
(L.B., I. Borbely, E.I. Dolinskii. Part. Nucl. 8, 485 (1977)).

Wa→b+c =
√

4π
∑

lsmlms

Gabc(ls;σa, σb, σc)

×(JbMbJcMc | sms)(lml sms | JaMa)Ylm(~qbc/qbc ). (4)

Here Ji , Mi – spin and its projection of particle i , (aαbβ | cγ) –
Clebsh-Gordon coefficients, ~qbc – relative momentum of b and c , l and ml

– relative angular momentum of b and c and its projection, s and ms –
channel spin and its projection, Ylm – spherical function,
Gabc (ls;σa, σb, σc ) – invariant vertex form factors (VF). Generally, when all
three particles a, b, c are off-shell, Gabc may depend on three kinematic
invariants and the quantities σa, σb, σc (σi = Ei − ~p2

i /2mi ) are selected as
such invariants in (4). On-shell σi = 0.

Blokhintsev L.D. (Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia )Vertex Functions and Asymptotics of Bound-State Wave Functions 6 / 1



Introduction

However, if one relates a vertex function to the residue of a scattering
amplitude and defines it according to (2), then the VF Gabc(ls;σa, σb, σc)
only depends on relative momenrum qbc which is related to σi

q2
bc = −κ

2 − 2µbc(σb + σc − σa), κ
2 = 2µbcǫ, ǫ = mb + mc − ma. (5)

µij is the reduced mass of i and j .

It follows from (5) that if all three particles are on shell
(σa = σb = σc = 0), then qbc = iκ.

On-shell values of VFs are called vertex constants (VC): G ≡ G (q|q=iκ).
They are analogues of renormalized coupling constants in quantum field
theory. VCs thus defined are real.
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Introduction

Using Eq.(4) and the analogous expansion of the overlap function (2) in
the coordinate representation one obtains

Gabc (ls; q) = −(πNbc)
1/2 q2 + κ

2

µbc

∞
∫

0

jl(qr)Iabc (ls; r)r
2dr (6)

where Iabc(ls; r) is the radial overlap integral of wave functions of a, b, c , r

is the distance between b and c .
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Introduction

VC G is directly related to the asymptotic normalization coefficient (ANC)
of Iabc(ls; r) at r → ∞. In the case of short-range interaction

Iabc(ls; r) ≈ Cabc(ls)
e−κr

r
, r → ∞. (7)

Inserting (7) into (6) and putting q = iκ, it is easy to obtain the relation
between VC Gabc (ls) and ANC Cabc(ls):

Gabc(ls) = −(πNbc )
1/2

µbc

Cabc(ls). (8)

N
1/2
bc is often included into the definition of Cabc(ls) and Iabc(ls; r).
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Introduction

The long-range Coulomb interaction modifies the asymptotic behavior of
the overlap integral Iabc(ls; r)

Iabc(ls; r) ≈ Cabc(ls)
W−η,l+1/2(κr)

r
≈ Cabc(ls)

e−κr−η ln(2κr)

r
, r → ∞.

(9)
η = ZbZce

2µbc/κ – Coulomb (Sommerfeld) parameter for a bound state
a, W – Whittaker function.

In the presence of the Coulomb interaction Eq.(6) could not be used for
determining the VC since at q → iκ the right-hand-side of (6) tends to 0
for repulsive Coulomb potential and to ∞ for attractive potential.

There are different definitions of VCs in the presence of the Coulomb
interaction. The most natural definition relates VC to the
Coulomb-modified scattering amplitude.
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Introduction

The total amplitude of elastic bc scattering in the presence of the Coulomb
and short-range interactions is written as

f (
−→
k ) = fC (

−→
k ) + fNC (

−→
k ) (10)

fC (
−→
k ) =

∞
∑

l=0

(2l + 1)
exp(2iσl )− 1

2ik
Pl(cos θ), (11)

fNC (
−→
k ) =

∞
∑

l=0

(2l + 1) exp(2iσl )
exp(2iδNC

l )− 1

2ik
Pl(cos θ). (12)

Here σl = arg Γ(l + 1 + iηs) and δNC
l – pure Coulomb and

Coulomb-nuclear scattering phases, Γ(z) – Gamma function,
ηs = ZbZce

2µ/k – Coulomb parameter for a scattering state.
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The renormalized Coulomb-nuclear partial-wave amplitude f̃ N
l is introduced

as follows (for repulsive Coulomb potential)

f̃ N
l = exp(2iσl )

exp(2iδNC
l )− 1

2ik

(

l !

Γ(l + 1 + iηs)

)2

eπηs . (13)

The analytic properties of f̃ N
l on the physical sheet are analogous to those

for scattering from the short-range potential. In particular, it is regular near
zero energy.
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Introduction

If the b + c system possesses the bound state a with the binding energy
ǫ = κ

2/2µ, then the amplitude f̃ N
l (k) has a pole at k = iκ. The residue at

that pole is expressed in terms of the Coulomb-renormalized VC G̃l and
ANC Cl

res f̃ N
l (k) = lim

k→iκ
[(k − iκ)f̃ N

l (k ] = i
µ2

2πκ
G̃ 2

l , (14)

Cl = − µ√
π

Γ(l + 1 + η0)

l !
G̃l , (15)

A knowledge of ANCs is essential for analyzing nuclear reactions between
charged particles at low energies. In particular, the value of ANC Cabc(ls)
determines essentially the cross section of the radiative capture b(c , γ)a at
astrophysical energies.
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Anomalous asymptotics

In fact, the asymptotic form (7) (or (9)) has been rigorously proved only
for the simplest case when the composite system a consists of two
elementary constituents. In that case the form (7) follows directly from the
Schrödinger equation. It is shown below that the asymptotics of an overlap
inegral may differ from eq.(7) if a consists of three or more constituents.

Consider the Fourier transform J(q2) of I (r)

I (r) = (2π)−3

∫

e i~q~r J(q2) d3q. (16)
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According to Eqs.(2) and (6) J(q2) can be written in the form

J(q2) = −N
−1/2
bc

2µbc

q2 + κ2
G (q2), (17)

Inserting eq.(17) into eq.(16) and performing integration over angular
variables, one obtains

I (r) = const · 1

ir

∫ ∞

−∞
e iqr G (q2)

q2 + κ2
q dq. (18)
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In the upper half-plane of the complex variable q the integrand in eq.(18)
has a pole at q = iκ and a cut beginning from the nearest singular point
q = iκ1 of the form factor G (q2). Making use of the Cauchy theorem one
gets from Eq.(18)

I (r)= const · {π
r
e−κrG (−κ2) +

1

ir

∞
∫

κ1

e−kr
disc G (−k2)

k2 − κ2
kdk}

= I0(r) + I1(r).

(19)

Blokhintsev L.D. (Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia )Vertex Functions and Asymptotics of Bound-State Wave Functions 16 / 1



Introduction

The explicit asymptotic form of the second term on the r.h.s. of eq.(19)
depends on the behavior of disc G (q2) at q2 → −κ

2
1, that is, on the type

of the singularity q = iκ1. To investigate the singular behavior of G (q2), it
is convenient to use the formalism of Feynman diagrams. Near the proper
singularity z = z0 the singular part of the amplitude of a Feynman diagram
having n inner lines and v vertices, behaves as follows

Mnv |z→z0∼ (z − z0)
s

if s 6= 0, 1, 2, ...,

Mnv |z→z0∼ (z − z0)
s ln(z − z0) if s = 0, 1, 2, ...,

(20)

where s = (3n − 4v + 3)/2.
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Introduction

The simplest Feynman diagram for an a → b + c vertex is a triangle
diagram of Fig. 2.
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For this diagram s = 0 and it is easy to obtain from Eq.(19) that the
contribution of that diagram results in

I (r) |r→∞= c0
e−κr

r
+ c1

e−κ1r

r2
, (21)

κ1 = i
mb

md

(κade + κbdf ), κ
2
ijk = 2µjkǫijk , ǫijk = mj + mk − mi . (22)

The first term on the r.h.s. of Eq.(21) corresponds to the ‘normal’
asymptotics. If κ < κ1, then this term is a leading one and the overlap
integral I (r) possesses the normal asymptotics. However, in the opposite
case (κ > κ1) the asymptotics of I (r) is determined by the second term in
Eq.(21) (the ‘anomalous’ case). Though no general rules prevent the
‘anomalous’ condition κ > κ1 from being obeyed, it appears that for real
nuclear systems this condition is obeyed not very often. The nuclear
vertices 16

O →13
N(13C) +3

H(3He) and 20
Ne →17

F(17O) +3
H(3He) can

serve as examples of the anomalous asymptotics of the overlap integrals
due to the triangle diagram 1.
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Three-fragment case (n = 3)

Three-fragment case (n = 3)

Consider a 3-body bound system a = {123} with the wave function

ψa(~ρ,~r), ~ρ = ~r1 −~r2, ~r = ~r3 −
m1~r1 + m2~r2

m1 + m2
. (23)

Constituents 1, 2, and 3 might be composite, then a = {123} turns into an
overlap integral.

Introduce the Fourier transform ϕa(~k ,~p) of ψa(~ρ,~r) and the vertex

function (VC) W (~k ,~p)

~k = (m2
~k1 − m1

~k2)/m12, ~p =
[

m12
~k3 − m3(~k1 + ~k2)

]

/M,

mij = mi + mj , M = m1 + m2 + m3. (24)
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Three-fragment case (n = 3)

ψa(~ρ,~r) =

∫

exp [i(~k~ρ+ ~p~r)]ϕa(~k,~p)
d~k

(2π)3
d~p

(2π)3
(25)

ϕa(~k ,~p) = −W (~k,~p)/L(k , p), L(k , p) = −(ǫ+ k2/2µ1 + p2/2µ2),

ǫ = m1 + m2 + m3 − ma, µ1 = m1m2/m12, µ2 = m1m12/M. (26)

ψa and ϕa are normalized

∫

|ψa(~ρ,~r)|2 d~ρ d~r = 1,

∫

|ϕa(~k ,~p)|2 d~k d~p/(2π)6 = 1. (27)
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Three-fragment case (n = 3)

Introduce the modified Jacobi variables

~x1 =
√

2µ1~ρ, ~x2 =
√

2µ2~r , ~k1 = ~k/
√

2µ1, ~k2 = ~p/
√

2µ2,

x2
1 + x2

2 = R2, k2
1 + k2

2 = P2. (28)

ψa(~x1,~x2) and W (~k1, ~k2) can be expanded in partial-wave components

ψ
(l ,λ,L)
a (x1, x2) and W (l ,λ,L)(k1, k2) corresponding to Jacobi angular

momenta l and λ (~l + ~λ = ~L). Spin variables could be taken into account
as well. Strictly speaking, the following text applies to these partial-wave
components. However, to simplify the presentation, we suppose that
l = λ = 0 contribute only to ψa and W . Then after integrating over
angular variables Eq.(25) assumes the form
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Three-fragment case (n = 3)

ψa(x1, x2) =
(µ1µ2)

3/2

2π4

1

x1x2

∫ ∞

0

dk1

∫ ∞

0

dk2k1k2
W (k1, k2)

ǫ+ P2

×(e i k1x1 − e−i k1x1)(e i k2x2 − e−i k2x2). (29)

W (k1, k2) should depend on k2
1 , k2

2 , that is W (k1, k2) is an even function
of k1, k2. Hence Eq.(29) can be written as

ψa(x1, x2) =
(µ1µ2)

3/2

2π4

1

x1x2

∫ ∞

−∞
dk1

∫ ∞

−∞
dk2k1k2e

i(k1x1+k2x2)
W (k1, k2)

ǫ+ P2
(30)

We neglect the Coulomb interaction in what follows though the results
obtained could easily be generalized to the case when two of particles 1, 2,
and 3 are charged.
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Three-fragment case (n = 3)

If a pair subsystem ij (ij = 12, 23, 31) can form a bound state with binding
energy ǫij , then the VF W (k1, k2) has a two-body pole at the relative
kinetic energy Eij = −ǫij . Such poles lead to the two-body asymptotics
analogous to that considered in Section 2. In the present section we will
consider the true three-body asymptotics generated by the pole P2 = −ǫ in
Eq. (30). Denoting that contribution by ψ3 and integrating over k2 in the
integral (30) by taking the residue at k2

2 = ǫ− k2
1 , one obtains

ψ3(x1, x2) = i
(m1m2m3/M)3/2

2π3

1

x1x2

J(x1x2),

J(x1x2) =

∫ ∞

−∞
dk1 k1 exp (ik1x1 −

√

ǫ+ k2
1 x2)W (k1, i

√

ǫ+ k2
1 ). (31)

Denoting x1 = R cosα, x2 = R sinα one can evaluate J(x1x2) at R → ∞
by the saddle-point method (the saddle-point is k1 = iǫ1/2 cosα). As a
result, one obtains the following expression for the leading contribution to
the asymptotic form of ψ3(x1, x2)
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Three-fragment case (n = 3)

ψ
(0)
3as(R , α) = C3

e−
√
ǫR

R5/2
,

C3 = −(m1m2m3/M)3/2√
2π5/2

W (i
√
ǫ cosα, i

√
ǫ sinα) (32)

The R dependence of the asymptotic form (32) agrees with that presented
in S.P.Merkuriev and L.D.Faddeev. Quantum Scattering Theory for
Few-Body Systems. Moscow, Nauka, 1985.
C3 is the 3-body asymptotic normalization factor. It is expressed in terms
of the on-shell 3-body vertex function (OSTBVF)
W (α) ≡ W (i

√
ǫ cosα, i

√
ǫ sinα) corresponding to P2 = −ǫ.

Eq.(32) is the 3-body analogue of the 2-body relation (7).
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Three-fragment case (n = 3)

The saddle-point method allows one to calculate corrections to the leading
term (32). In the present work, the expressions for the correction terms of
the order (

√
ǫR)−1 and (

√
ǫR)−2 are obtained. These corrections are

expressed in terms of W (α) and its derivatives. The explicit expression for
ψ3as including the corrections of the order (

√
ǫR)−1 is of the form

ψ
(1)
3as = ψ

(0)
3as

[

1 + (
√
ǫR)−1χα

]

,

χα =
15

8
− 2 cot(2α) γ1(α)−

1

2
γ2(α), γn(α) =

dnW (α)

dαn
/W (α) (33)
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Three-fragment case (n = 3)

The asymptotics of the 3-body wave function was considered in L.B.,
M.K.Ubaidullaeva, R.Yarmukhamedov. Phys. Atom. Nucl., V.62, P.1289
(1999). The results of that work include the corrections due to non-zero
values of the angular momenta l and λ. However, these corrections do not
include the terms of the same order due to using the saddle-point method.
Making use of the results of the present work, one can calculate the reliable
correction terms for l + λ ≤ 2.
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Discussion and Conclusion

Discussion and Conclusion

The on-shell VFs W (α) are important 3-body characteristics determining
the asymptotics of 3-body wave functions. Of special interest are quantities
W0 = W (α = π/2) corresponding to k1 = 0 what means that particles 1
and 2 move as one body with mass m1 + m2.
W0 is a constant which is an analog of the 2-body vertex constant Gabc . It
could be called the generalized vertex constant (GVC).
It follows from Landau equations that GVCs determine contributions of
proper singularities of Feynman diagrams containing loops consisting of two
particles (as in Fig.3).
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Discussion and Conclusion

Thus W0s a → 1 + 2 + 3 and 1 + 2 + 4 → c in Fig.3a determine a possible
anomalous asymptotics of the overlap integral I abc . W0s a → 1+ 2+ 3 and
x + 1 + 2 → y in Fig.3b determine the contribution of the t-channel
normal threshold to the amplitude of the process a + x → 3 + y .
The concept of GVC could be directly extended to the loops containing
more than 2 particles.

In conclusion it is worthwhile to note that the GVC W0 for the vertex
a → 1+ 2+ 3 could be in principle determined by the analytic continuation
of the differential cross section of the a + x → 1 + 2 + y reaction to the
pole of the diagram of Fig.4.
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Thank U 4 attention
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