J-Matrix Analysis of Resonant States in the Shell Model

A. I. Mazur^a, A. M. Shirokov^{a,b,c}, I. A. Mazur^a, J. P. Vary^c

and P. Maris c

- ^a Department of Physics, Pacific National University, Khabarovsk 680035, Russia
- ^b Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991, Russia
- ^cDepartment of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, USA

We suggest a method for calculating energies and widths of resonances based on analysis of dependence of eigenenergies E_{λ} obtained in variational calculations with oscillator basis on the oscillator basis spacing $\hbar\Omega$. Using the *J*-matrix formalism in scattering theory, we calculate the *S*-matrix at the energies E_{λ} and fit the parameters of the resonance governing *S*-matrix energy dependence in the vicinity of the resonance. The suggested approach is tested in calculations with model Woods–Saxon potentials and applied to calculations of resonances in $n\alpha$ scattering using the no-core shell model results for ⁵He nucleus obtained with JISP16 interaction.