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Abstract

Basis Light-Front Quantized Field Theory (BLFQ) is an ab initio Hamilto-
nian approach that adopts light-cone gauge, light-front quantization and state-
of-the-art many-body methods to solve non-perturbative quantum field theory
problems. By a suitable choice of basis, BLFQ retains the underlying symme-
tries to the extent allowed within light-front coordinates. In this talk, we outline
the scheme for applying BLFQ to QCD bound state problems. We adopt a 2D
harmonic oscillator with 1D plane wave basis that corresponds to the AdS/QCD
soft-wall solution. Exact treatment of the symmetries will be discussed.

Keywords: Light-front; harmonic oscillator basis; QCD; non-perturbative; sym-

metry

1 Introduction

Solving bound state problems arising in quantum chromodynamics (QCD) is the
key to understand a series of important questions in physics. The solutions will
provide consistent descriptions of the structure of mesons, baryons and also particles
with “exotic” quanta beyond the scope of the constituent quark model. One salient
challenge is to predict the spin content of the baryons. Furthermore, it could also
help to explain the nature of confinement and dynamical chiral symmetry breaking.
QCD bound states are strong coupling non-perturbative solutions that cannot be
generated from perturbation theory. Among various non-perturbative methods, light-
front Hamiltonian quantization within a basis function approach has shown significant
promise by capitalizing on both the advantages of light-front dynamics as well as the
recent theoretical and computational achievements in quantum many-body theory.
We begin with an overview of the light-front quantum field theory. We will then
introduce the Basis Light-Front Quantized Field Theory (BLFQ) and its application
to bound state problems in quantum field theory.

2 Light-front quantum field theory

The idea of quantization on a light-front surface was first considered by Paul Dirac
in 1949 in his famous investigation of forms of relativistic dynamics [1]. Light-front
quantum field theory is quantized on a light-front plane x+ ≡ x0 + x3 = 0 and
evolves according to light-front time x+. It is convenient to define light-front vari-
ables x± = x0 ± x3, x⊥ = (x1, x2), where x+ is the light-front time, x− is the longi-
tudinal coordinate. The light-front momentum p± = p0 ± p3, p⊥ = (p1, p2), where
the p+ is the longitudinal momentum and p+ = 1

2
p− is the light-front energy. For
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positive energy states, p+ and p− are positive. An important consequence of this is
that the light-front vacuum state is trivial [2, 3].

Let Mµν , Pµ be the generators of the Poincaré symmetry. Jk = 1
2
ǫijkM ij ,

Ki = M0i, (i, j, k = 1, 2, 3) are the equal-time angular momentum and boost genera-
tors respectively. The light-front rotation and boost generators are F− ≡M12 = J3,
F i ≡ εijM j− = J i + εijKj, (i, j = 1, 2) and E− ≡ 1

2
M+− = K3, Ei ≡ M+i =

Ki + εijJj , (i, j = 1, 2). According to Dirac, in light-front dynamics the number of
kinematic operators of the Poincaré algebra is maximal: {P+,P⊥, E−,E⊥, F−}. The
kinematic feature of the the light-front boost generatorsE−, E⊥ provides convenience
in evaluating matrix elements of certain experimental observables where the initial
and final states differ by a boost. Note however that the total angular momentum
operator is dynamic in light-front dynamics.

Irreducible representations can be identified with mutually commuting operators
or compatible operators. It is customary to take the set of compatible operators
as {P 2,W 2, P+,P⊥,J 3}, where Wµ = − 1

2ε
µνκλMνκPλ is the Pauli–Lubanski

vector, J 3 ≡ W+

P+ = J3 + εij EiP j

P+ is the longitudinal projection of the light-front
spin [3]. Note that in relativistic dynamics, the total angular momentum
operator J2 = J2

1 + J2
2 + J2

3 is generally different from the total spin operator1

J
2 = J 2

1 + J 2
2 + J 2

3 = −W 2/P 2 [3, 4]. In light-front dynamics, P 2 ≡ PµP
µ,

W 2 ≡WµW
µ are dynamical. They have to be diagonalized simultaneously at x+ = 0:

P 2 |M ,J 〉 = M
2 |M ,J 〉, (1a)

W 2 |M ,J 〉 = −M
2J (J + 1) |M ,J 〉. (1b)

It is conventional to call P 2 the “light-cone Hamiltonian”, Hlc ≡ P 2. It is convenient
to express this light-cone Hamiltonian in terms of kinetic energy and potential energy,

Hlc = H
(0)
lc + Vint. The kinetic energy, H

(0)
lc , resembles the non-relativistic kinetic

energy,

H
(0)
lc = 2P+P

(0)
+ − P⊥2

=
∑

a

p⊥
a

2
+m2

a

xa
− P⊥2

, (2)

where “a” represents the quark or gluon constituent and P⊥ =
∑

a p
⊥
a is the to-

tal transverse Center-of-Mass (CM) momentum while xa =
p+
a

P+ is the longitudinal
momentum fraction carried by each constituent.

The triviality of the Fock space vacuum provides a strong appeal for the Fock
space representation of the quantum field theory [2]. The Fock space expansion of an
eigenstate in a plane-wave basis reads,

|Ψ ;P 〉 =

∞
∑

n=0

∑

σ1,···σn

∫

d3k1

(2π)32k+1
θ(k+1 ) · · · d3kn

(2π)32k+n
θ(k+n )

× 2P+(2π)3 δ3(k1 + · · · + kn − P )Ψσ1,···,σn
n (k1, · · ·, kn) a†σ1

(k1) · · · a†σn
(kn) |0〉, (3)

where d3k = d2k⊥dk+, δ3(p1−p2)=δ(p+1 −p+2 ) δ2(p⊥
1 −p⊥

2 ) and Ψσ1,···,σn
n (k1, k2, · · ·, kn)

is called the light-front wavefunction (LFWF). LFWFs are boost-invariant, namely
frame independent, following the boost-invariance of the light-cone Hamiltonian and
the pure kinematic character of the light-front boosts. In practice, a non-perturbative
diagonalization of the Hamiltonian can only be achieved in a finite-truncated Fock
space. The Tamm–Dancoff approximation (TDA) introduces a truncation based on
Fock sectors. The rationale of the TDA is founded on the success of the constituent
quark model, according to which the hadrons can be approximated by a few particles
as in the leading Fock space representation [6]. However, there are also new challenges

1Note that the total spin J is the observable quantity quoted as “J” in the Particle Data Group
compilations [5].
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in light-front TDA. Fock sector truncation breaks rotational symmetry. As a result,
the total spin J in a truncated calculation is no longer a good quantum number.

3 Basis light-front quantized field theory

BLFQ is an ab initio Hamiltonian approach to light-front quantum field theory that
adopts a complete set of orthonormal single-particle basis functions for field expan-
sions resulting in Fock space basis states |φi〉 expressed in terms of these single-particle
basis states [7]. In the Fock space basis, the Hamiltonian and eigenstates become,

Hij = 〈φi| Hlc |φj〉, |Ψ〉 =
∑

i

ci |φi〉. (4)

The system of equations (1a) is reformulated as a standard eigenvalue problem,
∑

j

Hijcj = λci, (5)

which is then truncated and solved numerically. The full field theory is restored in the
continuum limit and the complete Fock sectors limit of the Hamiltonian many-body
dynamics.

In principle, the choice of the basis functions is arbitrary but subject to the con-
ditions of completeness and orthonormality. Basis functions preserving the kinematic
symmetries can dramatically reduce the dimensionality of the problem for a specific
accuracy. Basis functions emulating the correct asymptotic behavior of the solu-
tion can accelerate the convergence. BLFQ adopts a light-front basis comprised of
plane-wave functions in the longitudinal direction and 2D harmonic oscillator (HO)
functions in the transverse direction. The transverse HO basis states are generated
by the following operator [8],

P ho

+ =
∑

a

p⊥
a

2

2p+a
+

Ω2

2
p+a r

⊥
a

2
, (6)

where r⊥
a ≡ x⊥

a = −E⊥

a

p
+
a

(at x+ = 0) is the transverse position operator2. The

adoption of the BLFQ basis exploits known similarity between light-front dynamics
and non-relativistic dynamics, and is consistent with the recent development of the
AdS/QCD [9, 10]. In momentum space, the single-particle basis functions are given
in terms of the generalized Laguerre polynomials Lα

n by

〈

p+,p⊥|n,m, x
〉

= N eimθ
(

ρ√
x

)|m|
e−

ρ2

2x L|m|
n (ρ2/x) δ(p+ − xP+)

≡ 1√
x

Ψm
n

(

p⊥

√
x

)

2π2p+δ(p+ − xP+), ρ =
|p⊥|√
P+Ω

, θ = argp⊥, (7)

which are associated with the HO eigenvalues En,m = (2n + |m| + 1)Ω. x is the
longitudinal momentum fraction. We can identify the HO energy scale parameter
b =

√
P+Ω comparing with b =

√
MΩ used in the non-relativistic HO basis [11–13].

The orthonormality of the basis functions reads

〈n,m, x|n′,m′, x′〉 = 2π2x δ(x− x′) δn,n′ δm,m′ . (8)

To introduce a finite truncation, BLFQ selects a particular finite subset of the
basis space. In the longitudinal direction, we confine the longitudinal coordinate
−L ≤ x− ≤ +L with periodic boundary condition for bosons and anti-periodic bound-
ary condition for fermions. Thus the longitudinal momentum p+ is discretized as,

p+ =
2πk

L
, k =

{

0, 1, 2, 3, · · · for bosons,
1
2 ,

3
2 ,

5
2 ,

7
2 , · · · for fermions,

(9)

2Recall the transverse light-front boost at x
+ = 0: E

i = M
+i = x

+
P

i − x
i
P

+ = −x
i
P

+.
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where L is the length of the longitudinal box. We omit the zero-modes for the bosons
in the calculations that follow. In the transverse direction, we select the Fock space
basis states by

∑

a

(2na + |ma| + 1) ≤ Nmax. (10)

Let P denote the projection operator for the truncated basis space. Then for a
basis state |α〉 ≡ |n1,m1, x1, n2,m2, x2, · · ·〉, P |α〉 = θ(Nmax −Nα) |α〉 where Nα =
∑

a(2na + |ma|+ 1). The continuum limit is achieved by taking L → ∞, Nmax → ∞.
A symmetry may be broken by the basis truncation. For example, let A be a con-

served operator and [Hlc, A] = 0. Then in the truncated basis space, the commutator
becomes

[PHlcP ,PAP ] = P [[P , Hlc], [P , A]]P .
For the transverse truncation, the commutation relation survives if [A,P ho

+ ] = 0. The
proof is as following: [A,P ho

+ ] = 0 ⇒ A |α〉 =
∑

α′ Cα′δNα,Nα′
|α′〉. Then

PA |α〉 = P
∑

α′

Cα′ δNα,Nα′
|α′〉 =

∑

α′

Cα′ δNα,Nα′
θ(Nmax −Nα′) |α′〉

= θ(Nmax −Nα)
∑

α′

Cα′ δNα,Nα′
|α′〉 = AP |α〉 ,

⇒ [P , A] = 0,

⇒ [PHlcP ,PAP ] = 0.

Among all generators of the Poincaré symmetry, a complete set of compatible
operators (including the Hamiltonian) is particularly useful for solving Eq. (5), as
the Hamiltonian is block diagonal with respect to the mutual eigenstates. A distin-
guishing feature of the BLFQ basis with the finite truncation is that it preserves the

set of compatible kinematic operators. We define P cm
+ = 1

2P+

(

P⊥2
+ Ω2E⊥2

)

=

1
2P+P

⊥2
+ Ω2

2 P
+R⊥2

. With some effort, one can show that {Hlc, P
+, P cm

+ , J3,J 3}
is a set of mutually commuting operators and [P+, P ho

+ ] = [J3, P ho

+ ] = [P cm

+ , P ho

+ ] =

[J 3, P ho

+ ] = 0, where J 3 = J3 + εij

P+E
iP j = J3 − εijRiP j . Therefore in the finite

basis space the truncated operators,

{PHlcP ,PP+P ,PP cm

+ P ,PJ3P ,PJ 3P}, (11)

still form a set of compatible operators.
For simplicity, we will omit the projection operator when there is no danger of

confusion. For example, the compatible operators in the finite-truncated basis space
will be denoted as {Hlc, P

+, P cm

+ , J3,J 3}. The compatible operators allow us to
further fix the total longitudinal momentum and the angular momentum projection
of the system from the kinematic construction:

P+ =
2πK
L

⇒
∑

a

ka = K;

J3 = Mj ⇒
∑

a

(ma + σa) = Mj,
(12)

where σa is the spin projection of the a-th constituent. Due to the boost invariance,
the light-cone Hamiltonian depends on the longitudinal momentum fractions xa = ka

K
instead of p+a . Therefore, for a fixed L, the continuum limit is also achieved by taking
K → ∞, Nmax → ∞.

We also take advantage of the internal symmetries to fix the charge Q =
∑

aQa,
baryon number B =

∑

aBa, color projection and the total color, that is, color con-
figurations are restricted to color-singlet configurations.
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Figure 1: Using Lagrange multiplier method to lift the CM excitations. The cal-
culation is performed in the Fock sectors |e+e−〉 and |e+e−γ〉 with Mj = 0,

K = Nmax = 8,
√
P+Ω = 0.3me (See Section 4 for details). The vertical axis shows

the eigenvalues of the light-cone Hamiltonian Hlc. States with different Ecm are col-
ored differently. We show spectra with the lowest 50 states for three cases: λcm = 0,
λB = 0; λcm = 0.5, λb = 0 and λcm = 0.5, λb = 0.05. In the last case, degeneracies
caused by CM excitations are lifted.

Let HO states |N,M〉 be the mutual eigenstates of P cm
+ and L3 ≡ J3 − J 3 =

R1P 2 − R2P 1 associated with the eigenvalues Ecm = EN,M ≡ (2N + |M | + 1)Ω
and M , respectively. Then the eigenvalue Mj of the light-front spin projection J 3

can be expressed in terms of the eigenvalues of J3 and L3 as Mj = Mj −M . The
eigenstates of P 2 can be identified with the eigenvalues of the compatible opera-
tors as |M 2, 2πK

L
, EN,M ,Mj ,Mj

〉

. They can also be identified in terms of N , M
as |M ,K,Mj , N,M〉 ≡ |ϕintr〉⊗|Φcm〉, where |ϕintr〉 = |M ,K,Mj〉, |Φcm〉 = |N,M〉.
Therefore, the finite BLFQ basis admits an exact factorization of the center-of-mass
motion [14].

The light-cone Hamiltonian Hlc = H
(0)
lc + Vint only acts on the intrinsic part of

the wavefunction. So different CM states are degenerate. It is useful to introduce
Lagrange multipliers in the Hamiltonian [15]:

P+ → P+ + λcm(P cm

+ − Ω) + λbΩL3, (13)

where λcm > 0 and |λb| < λcm. The eigenvalues of the light-cone Hamiltonian be-
come λ = M 2+2λcm(2N+ |M |)P+Ω+2λbMP+Ω. The CM excitations are driven to
high energy with sufficiently large λcm. Fig. 1 shows the use of Lagrange multipliers
to lift the degeneracies of the states in a numerical calculation of a positronium model.

To separate the CM part and the intrinsic part in the basis functions in single-
particle coordinates, we introduce the generalized 2D Talmi–Moshinsky (TM) trans-
formation [16],

Ψm1

n1

(

p1√
x1

)

Ψm2

n2

(

p2√
x2

)

=

∑

NMnm

(NMnm|n1m1n2m2)|ξ δε1+ε2,E+ǫ δM+m,m1+m2
ΨM

N

(

p1+p2√
x1+x2

)

Ψm
n

(

p√
x

)

,

(14)
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where εi = 2ni + |mi| + 1, E = 2N + |M | + 1, ǫ = 2n + |m| + 1, ξ = arctan
√

x2

x1
,

x =
√

x1x2
x1+x2

and p = x2

x1+x2
p1− x1

x1+x2
p2 is the intrinsic momentum. The sum is finite

due to the Kronecker delta δE1+E2,E+ε. The coefficients (NMnm|n1m1n2m2)|ξ are
called the generalized 2D TM coefficients. They can be computed analytically within
a closed form (See appendix A).

4 Basis light-front quantization applied to QED

In recent applications to QED, Honkanen et al. and Zhao et al. calculated the electron
anomalous magnetic moment and obtained high precision results [11, 12]. Here we
present an application of BLFQ to a highly regularized model of positronium in the
Fock sectors |e−e+〉 and |e−e+γ〉 which complements the treatment of positronium
presented in Ref. [13].

We adopt a light-cone gauge A+ = 0 for QED. The light-front QED interactions
are shown in Fig. 2 which include the e→ eγ vertex,

P
(e→eγ)
+ = g

∫

dx+d2x⊥ ψ̄(x) γµ ψ(x)Aµ(x)

∣

∣

∣

∣

x+=0

, (15)

and two instantaneous vertices,

P
(eγ→eγ)
+ = 1

2g
2

∫

dx+d2x⊥ ψ̄(x) γµA
µ(x)

γ+

i∂+
γν A

ν(x)ψ(x)

∣

∣

∣

∣

x+=0

,

P
(ee→ee)
+ = 1

2g
2

∫

dx+d2x⊥ ψ̄(x) γ+ ψ(x)
1

(i∂+)2
ψ̄(x) γ+ ψ(x)

∣

∣

∣

∣

x+=0

.

(16)

In this model, we take the coupling constant α = g2

4π = 0.2 and the basis energy

scale b =
√
P+Ω = 0.3me, where me = 0.511 MeV is the mass of the electron.

We adopt a regulator for the light-front small-x singularity, 1
(x1−x2)2

→ 1
(x1−x2)2+ε

with ε = 0.01 [8, 17]. We then construct the light-cone Hamiltonian matrix H
(pos)
lc .

Fig. 3 shows the number of nonzero matrix elements compared to the total number
of matrix elements. The Hamiltonian matrix is a large sparse matrix. We diagonalize
the matrix with the Lanczos method implemented by the ARPACK software [18],
which is particularly suitable for solving large sparse matrix eigenvalue problems.

We obtain the positronium spectrum directly from the diagonalization. Fig. 4(a)
shows the positronium bound-state spectrum for light-front spin projections Mj =
0, 1, 2 from the numerical calculations with Nmax = K = 12, Mj = 0, 1, 2, 3;
λcm = 5, λb = 0. Some of the states in the figure are nearly degenerate. We have
put a label n to the left of each bar to indicate the existence of n states around each
bar in Fig. 4(a). In the light-front TDA, the total spin J is only approximate. We
can identify the total spin by counting the approximate degeneracy of particles with

(a) e→ eγ vertex (b) eγ → eγ vertex (c) ee→ ee vertex

Figure 2: The relevant light-front QED vertices for positronium in the Fock sectors
|e−e+〉 and |e−e+γ〉.
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Figure 3: The sparsity of the light-cone Hamiltonian matrix H
(pos)
lc . The horizontal

axis is the dimensionality N of the basis space. The square dots show the number
of nonzero matrix elements. A power-law fitting suggests the number of nonzero
elements is proportional to ∼N1.485.

different Mj [3]. Fig. 4(b) shows the states with Mj = 0 identified by their total
spin J . The energy splitting between the singlet state (J = 0,Mj = 0) and the triplet
state (J = 1,Mj = 0) is the fine splitting [shown in Fig. 4(a)]. The non-relativistic
quantum mechanics gives a fine splitting for the ground state Etriplet − Esinglet =
1
3α

4me ≃ 5.33 × 10−4me [19]. In our calculation, the fine splitting is 2.77 × 10−4me,
which is the correct order of magnitude and is reasonable given that we have a rela-
tivistic treatment (important for strong coupling) and our implementation of regula-
tors.

(a) (b)

Figure 4: The positronium spectrum for (a) spin projection Mj = 0, 1, 2; (b) total
spin J = 0, 1, 2, Mj = 0 identified from plot (a). For Mj = 3, there is no
state within the range of the plot. The numbers to the left of the bars in plot (a)
label the multiplicity of the states around each bar. Plot (a) also shows the fine
splitting between the lowest J = 0, Mj = 0 and J = 1, Mj = 0 states. The total
spin J in plot (b) is obtained by counting the approximate degeneracy of states with
different Mj .
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5 Conclusions and outlook

We have introduced the Basis Light-Front Quantization (BLFQ) approach to the
QCD bound-state problem and analyzed the symmetries of the finite basis space.
BLFQ converts the field theory problem into a form where we can take advantage of
the recent advances in quantum many-body problems and the state-of-the-art meth-
ods developed for large sparse matrix eigenvalue problem. The compatible operators
provide a means to identify states. We have shown the exact factorization of the
center-of-mass motion in the finite basis space. They also allow us to reduce the
dimensionality of the problem dramatically for a given level of accuracy, as we have
demonstrated in the positronium model. BLFQ has retained the kinematic symme-
tries of the underlying Hamiltonian. We also introduced a generalized 2D Talmi–
Moshinsky transformation to relate internal motions to a fixed coordinate system.
Finally we have applied BLFQ to QED and obtained the positronium bound-state
spectrum.

To obtain physical results, one must perform renormalization. There are three
types of divergences existing in the light-front quantized field theory: the ultra-
violet divergence, the infrared divergence and the spurious small-x divergence. Various
schemes have been developed to address these issues (see, for example,
Refs. [13, 17, 20, 21]).

As a non-perturbative ab initio Hamiltonian approach to QFT, BLFQ requires
major computational efforts. Thanks to the rapid advances in supercomputing, we
foresee promising applications of BLFQ to understanding the structure of QCD bound
states.
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Appendix A: Talmi-Moshinsky transformation

Consider the exponential generating function of the 2D HO wavefunctions Ψm
n (q),

e−
1
2
q2+2q·z−z2

=

∞
∑

n=0

∞
∑

m=−∞

(−1)n
√

4π(n+ |m|)!n!
Ψm

n (q) e−imθ z2n+|m|, (17)

where q = p√
x

, z = |z|/
√
P+Ω, θ = arg z. If we define

Q = q1 cos ξ + q2 sin ξ, q = q1 sin ξ − q2 cos ξ,

Z = z1 cos ξ + z2 sin ξ, z = z1 sin ξ − z2 cos ξ,
(18)

where ξ = arctan
√

x2

x1
, Q = p1+p2√

x1+x2
, q = x2p1−x1p2√

x1x2(x1+x2)
, then there exists an identity

(

− 1
2q

2
1 + 2q1 · z1 − z2

1

)

+
(

−1
2q

2
2 + 2q2 · z2 − z2

2

)

=
(

− 1
2Q

2 + 2Q ·Z −Z2
)

+
(

−1
2q

2 + 2q · z − z2
)

. (19)
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Thanks to Eq.(17),

∑

n1,m1,n2,m2

(−1)n1+n2 Ψm1
n1

(q1) Ψm2
n2

(q2)

4π
√

(n1 + |m1|)!n1!(n2 + |m2|)!n2!
e−im1θ1−im2θ2 z

2n1+|m1|
1 z

2n2+|m2|
2

=
∑

N,M,n,m

(−1)N+n ΨM
N (Q) Ψm

n (q)

4π
√

(N + |M |)!N !(n+ |m|)!n!
e−iMΘ−imθ Z2N+|M| z2n+|m|, (20)

where zi = |zi|, Z = |Z|, z = |z|, θi = arg zi, Θ = argZ, θ = argz. We can express Z,
z, eiΘ, eiθ in terms of z1, z2, e

iθ1 , eθ2 and identify the corresponding coefficients.

Ψm1

n1
(q1) Ψm2

n2
(q2)

≡
∑

NMnm

(NMnm|n1m1n2m2)|ξ δε1+ε2,E+ǫ δm1+m2,M+m ΨM
N (Q) Ψm

n (q),

where E = 2N + |M |+ 1, ǫ = 2n+ |m|+ 1, εi = 2ni + |mi|+ 1 and the coefficients are

(N1M1N2M2|n1m1n2m2)|ξ
= (−1)N1−n1−n2+ 1

2
(|M2|−M2) (sin ξ)2n2+|m2| (cos ξ)2n1+|m1|

×
√

(n1 + |m1|)!(n2 + |m2|)!n1!n2!

(N1 + |M1|)!(N2 + |M2|)!N1!N2!

v1
∑

γ1=0

v2
∑

γ2=0

γ1
∑

β1=0

γ2
∑

β2=0

V2
∑

β3=0

M2
∑

β=0

(− tan ξ)β1−β2+β+M2

×
(

M1

χ

)(

M2

β

)(

V2
β1, β2, β3, β4

)(

v1 + v2 − V2
γ1 − β1, γ2 − β2, v1 − γ1 − β3, β5

)

, (21)

where vi = ni+
1
2 (mi−|mi|), Vi = Ni+

1
2 (Mi−|Mi|), i = 1, 2, χ = v1−v2+m1+γ2−

γ1 − β, ξ = arctan
√

x2

x1
. The multinomial coefficients

(

n
m1,m2,··· ,mk

)

= n!
m1!m2!···mk!

satisfy m1+m2+ · · ·+mk = n, 0 ≤ mi ≤ n, i = 1, 2, ... , k. So, β4 = V2−β1−β2−β3,

β5 = v2−γ2−β4. The generalized binomial coefficients satisfy
(

n
m

)

= n(n−1)···(n−m+1)
m! ,

m ≥ 0 and
(

n
0

)

= 1.
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