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Abstract

Collision of two relativistic heavy ions produces highly intense electromag-

netic field. Exact solution of Maxwell equations indicates that the field strength

reaches ∼m2

π
at RHIC and ∼10m2

π
at LHC. Moreover, time-evolution of this

field in electrically conducting nuclear matter is much slower than in vacuum.

This fact has many important phenomenological consequences, two of which

are discussed in detail: J/ψ dissociation in background magnetic field and syn-

chrotron photon radiation by quark-gluon plasma.

Keywords: Heavy-ion collisions; magnetic field; synchrotron radiation, J/ψ
production

1 Origin of magnetic field

Electromagnetic field of two relativistic heavy-ions can be estimated using elementary
arguments. Suppose that each ion has radius R, electric charge Ze and collide at
impact parameter b. According to the Biot and Savart law they create magnetic
field that in the center-of-mass frame has magnitude B ∼ γZeb/R3 and directed
perpendicular to the collision plane, where γ =

√
sNN/2mN is the Lorentz factor. At

RHIC heavy-ions are collided at 200 GeV per nucleon, hence γ = 100. Using Z = 79
for Gold and b ∼ RA ≈ 7 fm we estimate eB ≈ m2

π ∼ 1018 G. To appreciate how
strong is this field, compare it with the following numbers: the strongest magnetic
field created on Earth in a form of electromagnetic shock wave is ∼107 G, magnetic
field of a neutron star is estimated to be 1010−1013 G, that of a magnetar up to 1015 G.

It has been known for a long time that classical electrodynamics breaks down at the
critical (Schwinger) field strength F = m2

e/e. In cgs units the corresponding magnetic
field is 1013 G. Because mπ/me = 280, electromagnetic fields created at RHIC and
LHC are well above the critical value. This offers a unique opportunity to study
the super-strong electromagnetic fields in laboratory. In the next section I present a
classical solution to the problem of electromagnetic field in heavy-ion collisions. I then
consider two phenomenological applications: Lorentz ionization of J/ψ in Section 3,
and synchrotron photon radiation in Section 4.

2 Solution of Maxwell equations

In relativistic heavy-ion collisions, production of valence quarks in the central rapid-
ity region – the baryon stopping – is suppressed. Hence Z valence quarks of each
nucleus continue to travel after heavy-ion collision along the straight lines in opposite
directions. These valence quarks carry total electric charge 2Ze that creates electro-
magnetic field in the interaction region. Unlike the valence quarks, gluons and sea
quarks are produced mostly in the central rapidity region, i. e. in a plane perpen-
dicular to the collision axis. It has been suggested by Landau long ago [1, 2] that
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high multiplicity events in heavy-ion collisions can be effectively described using rela-
tivistic hydrodynamics. In particular, matter produced in heavy-ion collisions can be
characterized by a few transport coefficients. This approach has enjoyed a remarkable
phenomenological success (see, e. g., Ref. [3]). Since sea quarks carry electric charge,
electromagnetic field created by valence quarks depends on the permittivity ǫ, per-
meability µ and conductivity σ of the produced matter.

Consider electromagnetic field created by a point charge e moving along the pos-
itive z-axis with velocity v. It is governed by Maxwell equations:

∇ ·B = 0, ∇×E = −∂B
∂t

, (1)

∇ ·D = e δ(z − vt) δ(b), ∇×H =
∂D

∂t
+ σE + evẑ δ(z − vt) δ(b), (2)

where r = zẑ + b (such that b · ẑ = 0) is the position of the observation point.
Introducing Fourier transforms of field components

E(t, r) =

∫ ∞

−∞

dω

2π

∫ ∞

−∞

dkz
2π

∫

d2k⊥
(2π)2

e−iωt+ikzz+ik⊥·bEωk, etc., (3)

we can write the solution as follows:

Hωk = −2πiev
k × ẑ

ω2ǫ̃µ− k2 δ(ω − kzv), Eωk = −2πie
ωµvẑ − k/ǫ
ω2ǫ̃µ− k2 δ(ω − kzv), (4)

where ǫ̃ = ǫ+ iσ/ω and ǫ, µ are functions of ω that depend on matter properties.
Later time dependence of electromagnetic field is determined by a singularity of

Eq. (4) in the plane of complex ω that has smallest imaginary part. To obtain a
conservative estimate of the matter effect we assume that the leading singularity is
determined by electrical conductivity. Therefore, we adopt a simple model ǫ = µ = 1,
i. e. neglect polarization and magnetization response of nuclear matter, but take into
account its finite electrical conductivity. Plugging (4) into Eq. (3) we take first trivial
kz-integral. Integration over ω for positive values of x− = t − z/v is done by closing
the integration contour over the pole in the lower half-plane of complex ω. In the
relativistic limit γ = 1/

√
1− v2 ≫ 1 the result is [4, 5]

H(t, r) = H(t, r)φ̂ =
e

2πσ
φ̂

∫ ∞

0

J1(k⊥b) k
2
⊥

√

1 +
4k2

⊥

γ2σ2

exp







1

2
σγ2x−



1−
√

1 +
4k2⊥
γ2σ2











dk⊥,

(5)

Ez(t, r) =
e

4π

∫

k⊥ J0(k⊥b)
1−

√

1 +
4k2

⊥

γ2σ2

√

1 +
4k2

⊥

γ2σ2

exp







1

2
σγ2x−



1−
√

1 +
4k2⊥
γ2σ2











dk⊥,

(6)

E⊥(t, r) = H(t, r)r̂, (7)

where r̂ and φ̂ are unit vectors of polar coordinates in transverse plane x, y. Electro-
magnetic field is a function of r − r′, where r and r′ = vtẑ are the positions of the
observation point and the moving charge correspondingly. In fact, it depends only on
distances z − vt = −vx− and b.

Equations (5)–(7) have two instructive limits depending on the value of parame-
ter γσb that appears in the exponents once we notice that k⊥ ∼ 1/b. If γσb ≪ 1,
then, after a simple integration, Eqs. (5)–(7) reduce to the boosted Coulomb potential
in free space:

E =
eγ

4π

b− vx−ẑ

(b2 + γ2v2x2−)
3/2

, H =
eγ

4π

vφ̂

(b2 + γ2v2x2−)
3/2

. (8)
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Figure 1: Time evolution of magnetic field created by a point unit charge at z = 0,
b = 7.4 fm, γ = 100 and (a) σ = 5.8 MeV, (b) σ = 0.01 MeV. Black solid line is
numerical computation of Eq. (5), red dashed line is “diffusion” approximation (9),
blue dash-dotted line is a solution in free space.

This is the solution discussed in Ref. [6]. In the opposite limit γσb ≫ 1, we expend
the square root in Eqs. (5), (6) and derive

Er = Hφ =
e

2π

bσ

4x2−
e
− b2σ

4x− , Ez = − e

4π

x− − b2σ/4

γ2x3−
e
− b2σ

4x− . (9)

This is the solution suggested in Ref. [7]. Notice that the electromagnetic field in
Eq. (8) drops as 1/x3− at late times, whereas in conducting matter only as 1/x2−. At
RHIC γ = 100, σ ≈ 5.8 MeV [8–10]. For b = 7 fm we estimate γσb = 19, hence the
field is given by the “diffusive” solution (9). This argument is augmented by numerical
calculation presented in Fig. 1. In Fig. 1(a) we plot the result of numerical integration
in Eq. (5) for σ ≈ 5.8 MeV and compare it with the asymptotic solutions (8) and (9).
It is seen that solution (9) completely overlaps with the exact solution at all times,
except at t < 0.1 fm (not seen in the figure). To illustrate what happens at γσb≪ 1,
we plotted in Fig. 1(b) the same formulas as in Fig. 1(a) calculated at artificially
reduced conductivity σ ≈ 0.01 MeV. One can clearly observe that at early time
matter plays little role in the field time-evolution which follows Eq. (8), whereas at
later time Foucault currents eventually slow down magnetic field decline, which then
follows Eq. (9).

To obtain the total electromagnetic field of two colliding ions one needs to sum over
all electric charges, which can be approximated by convolution (5)–(7) with nuclear
densities. The resulting time dependence of total magnetic field is shown in Fig. 2.
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Figure 2: Time dependence of total electromagnetic magnetic field F at mid-
rapidity z = 0, γ = 100, B = 7 fm, t = 2 fm. Solid line: F = Hy at x = y = 0, dashed
line F = −Hx at x = y = 1 fm, dashed-dotted line F = −Ey at x = y = 1 fm.
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As expected late time dependence of all components is the same and governed by
Eq. (9).

Transverse coordinate structure of electromagnetic field was investigated in Ref. [4]
were it was observed that the space variation of Hy is mild. Other transverse compo-
nents vary more significantly as they are required to vanish at either x = 0 or y = 0
by symmetry. When averaged over the transverse plane, only Hy component survives.
In the following section we will consider phenomenological effect of constant magnetic
field B = Bŷ = Hyŷ.

3 J/ψ in magnetic field

Strong magnetic field created in heavy-ion collisions generates a number of remarkable
effects on quarkonium production.

1. Lorentz ionization. Consider quarkonium traveling with constant velocity in
magnetic field in the laboratory frame. In quarkonium comoving frame, we
find mutually orthogonal electric and magnetic fields given by Eqs. (10). In
the presence of electric field quark and antiquark have a finite probability to
tunnel through the potential barrier thereby causing quarkonium dissociation.
We discuss this effect at length below.

2. Zeeman effect. Magnetic field lifts degeneration of quarkonium states with re-
spect of the total angular momentum projection Jy. The corresponding splitting

is of the order ∆M =
eB

0

2m gJy, where Jy = −J,−J + 1, ... , J , m is quark mass

and g is Landé factor. For example, J/ψ state with spin S = 1, orbital an-
gular momentum L = 0 and total angular momentum J = 1 has g ≈ 2 and
splits into three states with Jy = ±1, 0 with mass difference ∆M = 0.15 GeV
at eB0 = 15m2

π. Thus, the Zeeman effect leads to the emergence of new quarko-
nium states in plasma.

3. Distortion of the quarkonium potential in magnetic field. This effect arises
in higher order perturbation theory and becomes important at field strengths
of order B ∼ 3πm2/e3 [11]. This is 3π/α times stronger than the critical
Schwinger’s field. Therefore, this effect can be neglected at the present collider
energies.

In this section I focus on Lorentz ionization, which contributes to J/ψ suppression
in heavy-ion collisions [12, 13]. Before we proceed to analytical calculations it is
worthwhile to discuss the physics picture in more detail in two reference frames: the
quarkonium proper frame and the lab frame. In the quarkonium proper frame the
potential energy of, say, antiquark (with e < 0) is a sum of its potential energy in
the binding potential and its energy in the electric field −eEx, where x is the electric
field direction. Since |e|Ex becomes large and negative at large and negative x (far
away from the bound state) and because the quarkonium potential has finite radius,
this region opens up for the motion of the antiquark. Thus there is finite quantum
mechanical probability to tunnel through the potential barrier formed on one side
by the vanishing quarkonium potential and on the other by increasing absolute value
of the antiquark energy in electric field. Of course, the total energy of antiquark
(not counting its mass) is negative after tunneling. However, its kinetic energy grows
proportionally to eEx as it goes away. By picking up a light quark out of vacuum it
can hadronize into a D-meson.

If we now go to the reference frame where E = 0 and there is only magnetic
field B (we can always do so since E < B), then the entire process looks quite
different. An energetic quarkonium travels in external magnetic field and decays into
quark-antiquark pair that can late hadronize into D-mesons. This happens in spite
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of the fact that J/ψ mass is smaller than masses of two D-mesons due to additional
momentum eA supplied by the magnetic field. Similarly, a single photon can decay
into electron-positron pair in external magnetic field.

Consider a J/ψ traveling with velocity V in constant magnetic fieldB0 (subscript 0
indicates the laboratory frame). Let B and E be magnetic and electric fields in the
comoving frame, and let subscripts ‖ and ⊥ denote field components parallel and
perpendicular to V correspondingly. Then,

E‖ = 0, E⊥ = γL V ×B0, (10a)

B‖ =
B0 · V
V

, B⊥ = γL
(V ×B0)× V

V 2
, (10b)

where γL = (1 − V 2)−1/2. Clearly, in the comoving frame B · E = 0. We choose y
and x axes of the comoving frame such that B = Bŷ and E = Ex̂. A convenient
gauge choice is A = −Bx ẑ and ϕ = −Ex. The relative strength of electric and
magnetic fields in comoving frame is ρ = E/B. This parameter is always in the
range 0 ≤ ρ ≤ 1 because B2−E2 = B2

0 ≥ 0. When J/ψ moves perpendicularly to the
magnetic field B0, ρ = V .

The force binding q and q̄ in J/ψ is short-range in the sense that (Mεb)
1/2R ≪ 1,

where εb and M are binding energy and mass of J/ψ and R is the nuclear force
range. This approximation enables us to calculate the dissociation probability w
with exponential accuracy regardless of the precise form of the J/ψ wave function.
This is especially important since solutions of the relativistic two-body problem for
quarkonium are not readily available.

It is natural to study quarkonium ionization in the comoving frame [12]. Quark
energy ε0 (ε0 < m) in electromagnetic field can be written as

ε0 =
√

m2 + (p− eA)2 + eϕ =
√

m2 + (pz + eBx)2 + p2x + p2y − eEx. (11)

In terms of ε0, quarkonium binding energy is εb = m − ε0. Ionization probability of
quarkonium equals its tunneling probability through the potential barrier. The later
is given by the transmission coefficient

w = e−2
∫ y1
0

√
−p2

ydy ≡ e−f . (12)

In the non-relativistic approximation one can also calculate the pre-exponential factor,
which appears due to the deviation of the quark wave function from the quasi-classical
approximation. The result of the calculation reads [12]:

f

m2
=

√

−ǫ20 + 1 + q2 (ǫ0E − qB)

e(B2 − E2)

− (ǫ0E − qB)2 − (B2 − E2)(−ǫ20 + 1 + q2)

e(B2 − E2)3/2

× ln

{

ǫ0E − qB +
√

(B2 − E2)(−ǫ20 + 1+ q2)
√

(ǫ0E − qB)2 − (B2 − E2)(ǫ20 + 1 + q2)

}

, (13)

where ǫ0 = ε0/m and q = pz/m.
For different q’s function w = e−f gives the corresponding ionization probabilities.

The largest probability corresponds to smallest f , which occurs at momentum qm
determined by equation [14]

∂f(qm)

∂qm
= 0. (14)

Using Eq. (13) we find [12]

ρ(ǫ0 − ρqm)

1− ρ2
ln

{

ǫ0ρ− qm +
√

1− ρ2
√

−ǫ20 + 1+ q2m
√

(ǫ0 − ρqm)2 − 1 + ρ2

}

=

√

−ǫ20 + 1 + q2m
√

1− ρ2
. (15)
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Figure 3: Dissociation rate of J/ψ at eB0 = 15m2
π, φ = π/2 (in the reaction

plane), η = 0 (midrapidity) as a function of J/ψ transverse momentum in the Lab
frame p⊥.

This is an implicit equation for the extremal momentum qm = qm(ǫ0, ρ). Substitut-
ing qm into Eq. (13) one obtains f = f(ǫ0, ρ), which by means of Eq. (12) yields the
ionization probability. The quasi-classical approximation that we employed in this
section is valid inasmuch as f(qm) ≫ 1.

In the non-relativistic approximation we get a familiar result

f(qm) =
2m2(2ǫb)

3/2

3eE
g(γ), (16)

where g(γ) is the Keldysh function

g(γ) =
3τ0
2γ

[

1− 1

γ

(

τ20
γ2

− 1

)1/2
]

, (17)

and γ =

√
2ǫb

ρ is the adiabaticity parameter.

It is shown in Ref. [12] that the non-relativistic limit provides a very good approx-
imation to the dissociation rate. It also allows one to calculate the pre-exponential
factor [14–16]. The final result is depicted in Fig. 3 [13]. We also show the dis-
sociation rate of J/ψ for several values of the electric field E0 possibly induced by
the Chiral Magnetic Effect [6]. Note, that typical size of the medium traversed by
a J/ψ in magnetic field can be estimated very conservatively as a few fm. There-
fore, w ∼ 0.3−0.5 fm−1 corresponds to complete destruction of J/ψ’s. This means
that in the magnetic field of strength eB0 ∼ 15m2

π all J/ψ’s with p⊥ & 0.5 GeV are
destroyed independently of the strength of E0.

Angular distribution of J/ψ’s was discussed in detail in Ref. [13]. In the absence
of electric field E0, the dissociation probability peaks in the direction perpendicular
to the direction of magnetic field B0, i. e. in the reaction plane. Dissociation rate
vanishes in theB0 direction. The shape of the azimuthal distribution strongly depends
on quarkonium velocity: while at low V the strongest dissociation is in the direction
of the reaction plane, at higher V the maximum shifts towards small angles around
the B0 direction.
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4 Synchrotron radiation

As a second example, consider electromagnetic radiation by quark and anti-quarks
in plasma. QGP is transparent to the emitted electromagnetic radiation because its
absorption coefficient is suppressed by α2. Electromagnetic radiation by quarks and
antiquarks of QGP moving in external magnetic field originates from two sources:
(i) synchrotron radiation and (ii) quark and antiquark annihilation. It is argued in
Ref. [17] that contribution of annihilation channel is negligible, hence we focus on syn-
chrotron radiation. In strong magnetic field it is essential to account for quantization
of fermion spectra. Indeed, spacing between the Landau levels is of the order eB/ε (ε
being quark energy), while their thermal width is of the order T . Spectrum quanti-
zation is negligible only if eB/ε≪ T which is barely the case at RHIC and certainly
not the case at LHC (at least during the first few fm’s of the evolution).

Synchrotron radiation is a process of photon γ radiation by a fermion f with
electric charge ef = zfe in external magnetic field B: f(ef , j, p) → f(ef , k, q) + γ(k),
where k is the photon momentum, p, q are the momentum components along the
magnetic field direction and indices j, k = 0, 1, 2, ... label the discrete Landau levels
in the reaction plane. The Landau levels are given by

εj =
√

m2 + p2 + 2jefB, εk =
√

m2 + q2 + 2kefB. (18)

In constant magnetic field only momentum component along the field direction is
conserved. Thus, the conservation laws for synchrotron radiation read

εj = ω + εk, p = q + ω cos θ, (19)

where ω is the photon energy and θ is the photon emission angle with respect to the
magnetic field. Spectral intensity of angular distribution of synchrotron radiation by
a fermion in the j’th Landau state is given by [18]

dIj

dωdΩ
=

∑

f

z2fα

π
ω2

j
∑

k=0

Γjk

{

|M⊥|2 + |M‖|2
}

δ(ω − εj + εk), (20)

where Γjk = (1 + δj0)(1 + δk0) accounts for the double degeneration of all Landau
levels except the ground one. The squares of matrix elements M, which appear in
Eq. (20) can be found in Ref. [18] (our notations follow Ref. [19]).

In the context of heavy-ion collisions the relevant observable is the differential
photon spectrum. For ideal plasma in equilibrium each quark flavor gives the following
contribution to the photon spectrum:

dN synch

dtdΩdω
=

∑

f

∫ ∞

−∞

dp
efB(2Nc)V

2π2

∞
∑

j=0

j
∑

k=0

dIj

ωdωdΩ
(2− δj,0) f(εj) [1− f(εk)], (21)

where 2Nc accounts for quarks and antiquarks each of Nc possible colors, and (2−δj,0)
sums over the initial quark spin. Index f indicates different quark flavors. V stands
for the plasma volume. f(ε) is a statistical factor. The δ-function appearing in
Eq. (20) yields a constraint on the quark’s momentum

p∗± =

{

cos θ (m2
j −m2

k + ω2 sin2 θ)

±
√

[

(mj +mk)2 − ω2 sin2 θ
][

(mj −mk)2 − ω2 sin2 θ
]

}

/

(2ω sin2 θ), (22)

where m2
j = m2 + 2jefB, m2

k = m2 +2kefB. Inspection of Eq. (22) reveals that this

equation has a real solution only in two cases

(i) mj −mk ≥ ω sin θ, or (ii) mj +mk ≤ ω sin θ. (23)
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Figure 4: Spectrum of synchrotron radiation by u quarks at eB = m2
π, y = 0, φ = π/3:

contribution of 10 lowest Landau levels j ≤ 10; several cutoff frequencies are indicated.
Adopted from Ref. [17].

The first case is relevant for the synchrotron radiation while the second one for the
one-photon pair annihilation. Accordingly, allowed photon energies in the j → k
transition satisfy

ω ≤ ωs,jk ≡ mj −mk

sin θ
=

√

m2 + 2jefB −
√

m2 + 2kefB

sin θ
. (24)

No synchrotron radiation is possible for ω > ωs,jk (see Fig. 4). In particular, when
j = k, ωs,jk = 0, i. e. no photon is emitted. The reason is clearly seen in the frame
where p = 0: since εj ≥ εk, constraints (18) and (19) hold only if ω = 0.

Substitution of (20) into Eq. (21) yields the spectral distribution of the synchrotron
radiation rate per unit volume

dN synch

V dtdΩdω
=

∑

f

2Ncz
2
fα

π3
efB

∞
∑

j=0

j
∑

k=0

ω(1 + δk0)ϑ(ωs,ij − ω)

∫

dp
∑

±

δ(p− p∗±)
∣

∣

p
εj

− q
εk

∣

∣

×
{

|M⊥|2 + |M‖|2
}

f(εj)[1 − f(εk)], (25)

where ϑ is the step-function.
The natural variables to study the synchrotron radiation are the photon energy ω

and its emission angle θ with respect to the magnetic field. However, in high en-
ergy physics particle spectra are traditionally presented in terms of rapidity y (which
for photons is equivalent to pseudo-rapidity) and transverse momentum k⊥. k⊥ is a
projection of three-momentum k onto the transverse plane. These variables are not
convenient to study electromagnetic processes in external magnetic field. In particu-
lar, they conceal the azimuthal symmetry with respect to the magnetic field direction.
The change of variables is performed using formulas

ω = k⊥ cosh y, cos θ =
sinφ

cosh y
. (26)

Because dy = dkz/ω the photon multiplicity in a unit volume per unit time reads

dN synch

dV dt d2k⊥dy
= ω

dN synch

dV dt d3k
=

dN synch

dV dt ωdωdΩ
(27)
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Figure 5: Azimuthal average of the synchrotron radiation spectrum of u, d, s quarks
and their corresponding antiquarks compared to the experimental data from Ref. [20]
divided by V t = 25π fm4 (dots) and V t = 9 × 25π fm4 (stars); eB = m2

π, y = 0.
Lower line: T = 200 MeV, upper line: T = 250 MeV. Adopted from Ref. [17].

Figure 4 displays the spectrum of synchrotron radiation by u quarks as a function of k⊥
at fixed φ [17]. At midrapidity y = 0, Eq. (26) implies that k⊥ = ω. Contribution of d
and s quarks is qualitatively similar. At eB ≫ m2, quark masses do not affect the
spectrum much. The main difference stems from the difference in electric charge. In
Fig. 4 only the contributions of the first ten Landau levels are displayed. The cutoff
frequencies ωs,jk can be clearly seen and some of them are indicated on the plot for
convenience.

In order to compare the photon spectrum produced by synchrotron radiation to the
photon spectrum measured in heavy-ion collisions, the u, d and s quarks contributions
must be summed up. Furthermore, the experimental data from Ref. [20] should be
divided by V t, where t is the magnetic field relaxation time. The volume of the plasma
can be estimated as V = πR2t with R ≈ 5 fm being the nuclear radius. The results are
plotted in Fig. 5. It is seen that synchrotron radiation gives a significant contribution
to the photon production in heavy-ion collisions at low kT ’s. This is the region where
conventional models of photon production fail to explain the experimental data.

5 Summary

High intensity and long life-time of electromagnetic field produced in relativistic heavy
ion collisions indicate its phenomenological significance. In this presentation I dis-
cussed only two examples. It is clear however that the electromagnetic field changes
the very structure of quark-gluon plasma and leaves hardly any observable unaffected.
The ongoing experimental programs at RHIC and LHC can shed more light on the
properties of hot nuclear matter in intense electromagnetic field.
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