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Abstract

A century of coherent experimental and theoretical investigations have un-

covered the laws of nature that underly nuclear physics. The standard model of

strong and electroweak interactions, with its modest number of input parame-

ters, dictates the dynamics of the quarks and gluons — the underlying building

blocks of protons, neutrons, and nuclei. While the analytic techniques of quan-

tum field theory have played a key role in understanding the dynamics of matter

in high energy processes, they encounter difficulties when applied to low-energy

nuclear structure and reactions, and dense systems. Expected increases in com-

putational resources into the exa-scale during the next decade will provide the

ability to numerically compute a range of important strong interaction processes

directly from QCD with quantifiable uncertainties using the technique of lattice

QCD. These calculations will refine the chiral nuclear forces that are used as in-

put into nuclear many-body calculations, including the three- and four-nucleon

interactions. I discuss the state-of-the-art lattice QCD calculations of quantities

of interest in nuclear physics, progress that is expected in the near future, and

the impact upon nuclear physics.
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1 Introduction

A nucleus is at the heart of every atom, and loosely speaking, is a collection of pro-
tons and neutrons that interact pairwise, with much smaller, but significant, three-
body interactions. We are fortunate to know that the underlying laws governing the
strong interactions result from a quantum field theory called quantum chromody-
namics (QCD). It is constructed in terms of quark and gluon fields with interactions
determined by a local SU(3) gauge-symmetry and, along with quantum electrodynam-
ics (QED), underpins all of nuclear physics when the five relevant input parameters,
the scale of strong interactions ΛQCD, the three light-quark masses mu, md and ms,
and the electromagnetic coupling αe, are set to their values in nature. It is remark-
able that the complexity of nuclei emerges from “simple” gauge theories with just five
input parameters. Perhaps even more remarkable is that nuclei resemble collections
of nucleons and not collections of quarks and gluons. By solving QCD, we are ex-
pecting to predict, with arbitrary precision, nuclear processes and the properties of
multi-baryon systems.

The fine-tunings observed in the structure of nuclei, and in the interactions be-
tween nucleons, are peculiar and fascinating aspects of nuclear physics. For the values
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of the input parameters that we have in our universe, the nucleon-nucleon (NN) inter-
actions are fine-tuned to produce unnaturally large scattering lengths in both s-wave
channels [described by non-trivial fixed-points in the low-energy effective field the-
ory (EFT)], and the energy levels in the 8Be-system, 12C and 16O are in “just-so”
locations to produce enough 12C to support life, and the subsequent emergence and
evolution of the human species. At a fundamental level it is important for us to
determine the sensitivity of the abundance of 12C to the light-quark masses and to
ascertain the degree of their fine-tuning.

Being able to solve QCD for the lightest nuclei, using the numerical technique of
lattice QCD (LQCD), would allow for a partial unification of nuclear physics. It would
be possible to “match” the traditional nuclear physics techniques — the solution of
the quantum many-body problem for neutrons and protons using techniques such as
No-Core Shell Model (NCSM), Green’s Function Monte Carlo (GFMC), and others,
to make predictions for the structure and interactions of nuclei for larger systems than
can be directly calculated with LQCD. By placing these calculations on a fundamental
footing, reliable predictions with quantifiable uncertainties can then be made for larger
systems.

2 Chiral nuclear forces

During the 1990’s, the nuclear forces were systematized by the hierarchy emerging
from the spontaneously broken chiral symmetries of QCD. The resulting small expan-
sion parameters are powers of the external momenta and powers of the light-quark
masses normalized to the scale of chiral symmetry breaking, as pioneered by Wein-
berg, first in the meson sector and then the multi-nucleon sector [1–3]. In addition to
generating nuclear forces that are consistent with QCD, this construction provides the
calculational advantage of parametric estimates of the systematic uncertainty intro-
duced by the truncation of the nuclear interactions at a given order in the expansion.
The actual ordering of contributions remains a subject of debate even today, with
Weinberg’s chiral expansion of the potential having its peculiar difficulties, as does
the KSW expansion of scattering amplitudes [4,5]. Calculations are being performed
at a sufficiently high order where the size of truncation errors is quite small. Wein-
berg’s ordering of operators based upon a chiral expansion of the n-body potentials
between nucleons has been carried out to N3LO, which includes contributions to the
three-body (starting at N2LO) and the leading four-body interactions (starting at
N3LO) (for a recent review see Ref. [6]).

During the last several years, nuclear structure calculations have been performed
with the chiral nuclear forces, leading to both postdictions and predictions for nuclei
to a given order in the expansion, and compared with experiment, e. g., see Fig. 1.
The nuclear forces that are presently used in such calculations are constrained by ex-
perimental measurements of NN scattering and light nuclei. As the desired precision
increases, which requires working to higher orders in the expansion, the number of
required experimental constraints increases. Eventually, there are too few experimen-
tal constraints to practically reduce the systematic uncertainty below some level in
any given calculation. However, LQCD calculations are expected to provide a way to
constrain the nuclear forces beyond what is possible with experiment, and hence to
further reduce the systematic uncertainties in nuclear structure calculations. Beyond
providing direct calculations of important quantities, LQCD calculations of the light
nuclei and nuclear forces can

1. verify experimental constraints and/or reduce the uncertainties in the con-
straints imposed by experiment,

2. constrain components of the nuclear forces that are inaccessible to experiment,
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Figure 1: NCSM calculations of lowest-lying levels in 7Li and 8B using chiral nuclear
forces [7]. Image is reproduced with the permission of P. Maris.

for instance the light-quark mass dependences which dictates some of the multi-
pion vertices, and multi-neutron forces,

3. constrain counterterms at higher orders in the expansion to further reduce the
systematic uncertainties.

3 Lattice QCD

LQCD is a technique in which space-time is discretized into a four-dimensional grid
and the QCD path integral over the quark and gluon fields at each point in the grid is
performed in Euclidean space-time using Monte Carlo methods. A LQCD calculation
of a given quantity will deviate from its value in nature because of the finite volume
of the space-time (with L3 × T lattice points) over which the fields exist, and the
finite separation between space-time points (the lattice spacing, b). However, such
deviations can be systematically removed by performing calculations in multiple vol-
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umes with multiple lattice spacings, and extrapolating using the theoretically known
functional dependences on each. Supercomputers are needed for such calculations
due to the number of space-time points and the Monte Carlo evaluation of the path
integral over the dynamical fields. In order for a controlled continuum extrapola-
tion, the lattice spacing must be small enough to resolve structures induced by the
strong dynamics, encapsulated by bΛχ ≪ 1 where Λχ is the scale of chiral symme-
try breaking. Further, in order to have the hadron masses, and also the scattering
observables, exponentially close to their infinite-volume values, the lattice volume
must be large enough to contain the lightest strongly interacting particle, encapsu-
lated by mπL & 2π where mπ is the mass of the pion and L is the extent of the
spatial dimension of the cubic lattice volume (this, of course, can be generalized to
non-cubic volumes). Effective field theory (EFT) descriptions of these observables
exist for bΛχ . 1 [the Symanzik action and its translation into chiral perturbation
theory (χPT) and other frameworks] and mπL & 2π (the p-regime of χPT and other
frameworks). The low-energy constants in the appropriate EFT are fit to the results
of the LQCD calculations, which are then used to take the limit b → 0 and L → ∞.
Computational resources devoted to LQCD calculations are becoming sufficient to be
able to perform calculations at the physical values of the light quark masses in large
enough volumes and at small enough lattice spacings to be relevant, but the majority
of present day calculations are performed with pion masses of mπ & 200 MeV. There-
fore, most calculations require the further extrapolation of mq → mphys

q , but do not
yet include strong isospin breaking or electromagnetism. In principle, the gauge-field
configurations that are generated in LQCD calculations can be used to calculate an
enormous array of observables, spanning the range from particle to nuclear physics.
In practice, this is becoming less common, largely due to the different scales relevant
to particle physics and to nuclear physics. Calculations of quantities involving the
pion with a mass of mπ ∼ 140 MeV are substantially different from those of, say, the
triton with a mass of M(3H) ∼ 3 GeV, and with the typical scale of nuclear exci-
tations being ∆E ∼ 1 MeV. Present day dynamical LQCD calculations of nuclear
physics quantities are performed with mπ ∼ 400 MeV, lattice spacings of b ∼ 0.1 fm
and volumes with spatial extent of L ∼ 4 fm.

LQCD calculations are approached in the same way that experimental efforts use
detectors to measure one or more quantities — the computer is equivalent to the
accelerator and the algorithms, software stack, and parameters of the LQCD calcu-
lation(s) are the equivalent of the detector. The parameters, such as lattice spacing,
quark masses and volume, are selected based upon available computational resources,
and simulations of the precision of the calculation(s) required to impact the physical
quantity of interest, i. e. simulations of the LQCD Monte Carlos are performed. The
size of the computational resources required for cutting edge calculations are such that
you only get “one shot at it”. A typical work-flow of a LQCD calculation consists
of three major components. The first component is the production of an ensemble
of gauge-field configurations which contain statistically independent samplings of the
gluon fields resulting from the LQCD action. The production of gauge-fields requires
the largest partitions on the leadership class computational facilities, typically requir-
ing & 128K compute cores. Present-day calculations have nf = 0, 2, 2+1, 3, 2+1+1
dynamical light-quark flavors and use the Wilson, O(b)-improved-Wilson, staggered
(Kogut–Susskind), domain-wall or overlap discretizations, each of which have their
own “features”. It is the evaluation of the light-quark determinant (the determinant of
a sparse matrix with dimensions & 108×108) that consumes the largest fraction of the
resources. Roughly speaking, & 104 Hybrid Monte Carlo (HMC) trajectories are re-
quired to produce an ensemble of 103 decorrelated gauge fields, but in many instances
this is an under estimate. For observables involving quarks, a second component of
production is the determination of the light-quark propagators on each of the config-
urations. The light-quark propagator from a given source point (an example of which
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Figure 2: An example of (the real part of one component of) a light-quark propagator.
The (blue) “wall” corresponds to the anti-periodic boundary conditions imposed in
the time direction. Image is reproduced with the permission of R. Gupta.

is shown in Fig. 2) is determined by an iterative inversion of the quark two-point
function, using the conjugate-gradient (CG) algorithm or variants thereof such as
BiCGSTAB, or the most recently developed multi-grid (MG). During the last couple
of years, the propagator production codes have been ported to run on GPU machines
in parallel. GPU’s can perform propagator calculations faster than standard CPU’s
by an order of magnitude, and have led to a major reduction in the statistical un-
certainties in many calculations. There have been numerous algorithm developments
that have also reduced the resources required for propagator production, such as the
implementation of deflation techniques and the use of multi-grid methods. The third
component of a LQCD calculation is the production of correlation functions from the
light-quark propagators. This involves performing all of the Wick contractions that
contribute to a given quantity. The number of contractions required for computing a
single hadron correlation function is small. However, to acquire long plateaus in the
effective mass plots (EMPs) that persist to short times, Lüscher–Wolff type methods
involve the computation of a large number of correlation functions resulting from
different interpolating operators, and the number of contractions can become large.
In contrast, the naive number of contractions required for a nucleus quickly becomes
astronomically large (∼ 101500 for uranium), but symmetries in the contractions, and
new algorithms (e. g. Ref. [8]) greatly reduce the number of operations that must be
performed. A further consequence of the hierarchy of mass scales is that there is an
asymptotic signal-to-noise problem in nuclear correlation functions. The ratio of the
mean value of the correlation function to the variance of the sample from which the
mean is evaluated degrades exponentially at large times. However, this is absent at
short and intermediate times and the exponential degradation of the signal-to-noise
in the correlation functions can be avoided.

4 Cold nuclear physics with lattice QCD

Capability computing resources provided by leadership class computing facilities are
used to produce ensembles of gauge-field configurations, while capacity computing re-
sources, both those operated by USQCD and elsewhere are used to perform observable-
dependent calculations of correlation functions using these configurations. Thus the
capability resources enable a multitude of physics calculations to be accomplished
with the capacity resources. In the area of cold nuclear physics there is currently a
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well-defined set of goals, and a program in place to accomplish these goals, as de-
scribed in one of the 2013 USQCD Whitepapers [9]: Hadron Structure, Hadron

Spectroscopy, Hadronic Interactions, Nuclear Forces and Nuclei, and Fun-

damental Symmetries.

4.1 The spectra and structure of the hadrons

Before calculations of nuclei can be sensibly undertaken, the mass and structure
of the nucleon must be reproduced in LQCD calculations. The spectrum of the
lowest-lying hadrons calculated with LQCD is shown in Fig. 3, from which we observe
that indeed LQCD is postdicting all of the light-hadron masses within uncertainties.
Beyond its mass, one property of the nucleon that is well known experimentally is
the forward-matrix element of the isovector axial current, gA. Significant effort has
been put into calculating gA with LQCD, a summary of which is shown in Fig. 4, but
the extrapolated LQCD value has consistently been smaller than the experimental
value. With calculations beginning to be performed at the physical pion mass, the
community is focused on understanding and quantifying the systematic uncertainties
in these calculations.

A central element of the physics program at JLab is to determine the excited spec-
tra of mesons and baryons, including searching for exotic states that are beyond the
naive nonrelativistic quark model of hadrons, but arise naturally in QCD. A critical
component of this program is the LQCD calculations of the spectra. They will play a
central role in interpreting and understanding the experimental measurements. The
spectra of such states is complicated by the presence of open multi-hadron channels
and significant formal developments remain to be put in place before rigorous state-
ments about the spectra can be made. Calculations at unphysical pion masses have
been performed by the JLab LQCD group, examples of which are shown in Fig. 5,
and remarkable progress has been made in the identification of states in these calcu-
lations. The aim is to have LQCD predict the exotic spectra of hadrons before, or at
the same time as, the GlueX experiment at JLab runs, targeting the 2018 milestone
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Image is reproduced with the permission of A. Kronfeld.



162 Martin J. Savage

Figure 4: A summary of LQCD calculations of gA [12]. Image is reproduced with the
permission of H.-W. Lin.

4.2 Meson-meson scattering

Multi-hadron LQCD calculations are significantly more challenging than single-hadron
calculations for a number of reasons, and systems involving baryons are even more
challenging. Meson-meson systems are the simplest multi-hadron systems, and im-
pressive progress has been made in the recent past, particularly when the LQCD
calculations are combined with χPT. There is little or no signal-to-noise problem
in such calculations and therefore highly accurate LQCD calculations of stretched-
isospin states can be performed with modest computational resources. Moreover,
the EFTs which describe the low-energy interactions of pions and kaons, including
lattice-spacing and finite-volume effects, have been developed to non-trivial orders
in the chiral expansion. The I = 2 pion-pion (π+π+) scattering length serves as a
benchmark calculation with an accuracy that can only be aspired to in other systems.
The scattering lengths for ππ scattering in the s-wave are uniquely predicted at LO
in χPT [14]:

mπ+aI=0
ππ = 0.1588, mπ+aI=2

ππ = −0.04537. (1)

While experiments do not directly provide stringent constraints on the scattering
lengths, a determination of s-wave ππ scattering lengths using the Roy equations has
reached a remarkable level of precision [15, 16]:

mπ+aI=0
ππ = 0.220± 0.005, mπ+aI=2

ππ = −0.0444± 0.0010. (2)

The Roy equations [17] use dispersion theory to relate scattering data at high energies
to the scattering amplitude near threshold. At present, LQCD can compute ππ
scattering only in the I = 2 channel with precision as the I = 0 channel contains
disconnected diagrams which require large computational resources. It is of great
interest to compare the precise Roy equation predictions with LQCD calculations,
and Fig. 6 summarizes theoretical and experimental constraints on the s-wave ππ
scattering lengths [16]. This is clearly a strong-interaction process for which theory
has somewhat out-paced the challenging experimental measurements.

Mixed-action nf = 2 + 1 LQCD calculations, employing domain-wall valence
quarks on a rooted staggered sea and combined with mixed-action χPT, have
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Figure 6: Constraints on threshold s-wave ππ scattering [16]. Image in the upper
panel is reproduced with the permission of H. Leutwyler.

predicted [18]
mπ+aI=2

ππ = −0.04330± 0.00042 (3)

at the physical pion mass. The agreement between this result and the Roy equation
determination is a striking confirmation of the lattice methodology, and a powerful
demonstration of the constraining power of chiral symmetry in the meson sector.
However, LQCD calculations at one or more smaller lattice spacings, and with dif-
ferent discretizations, are required to verify and further refine this calculation. The
ETM collaboration has performed a nf = 2 calculation of the I = 2 ππ scattering
length [19], producing a result extrapolated to the physical pion mass of

mπ+aI=2
ππ = −0.04385± 0.00028± 0.00038. (4)
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It is interesting to compare the pion mass dependence of the meson-meson scatter-
ing lengths to the current algebra predictions. In Fig. 7 (upper panel) one sees that
the I = 2 ππ scattering length is consistent with the current algebra result up to pion
masses that are expected to be at the edge of the chiral regime in the two-flavor sec-
tor. While in the two-flavor theory one expects fairly good convergence of the chiral
expansion and, moreover, one expects that the effective expansion parameter is small
in the channel with maximal isospin, the LQCD calculations clearly imply a degree
of cancellation between chiral logs and counterterms. However, as one sees in Fig. 7
(lower panel), the same phenomenon occurs in K+K+ where the chiral expansion is
governed by the strange quark mass and is therefore expected to be much more slowly
converging. This remarkable conspiracy between chiral logs and counterterms for the
meson-meson scattering lengths remains mysterious.

LQCD calculations of the meson-meson scattering phase-shifts are much less ad-
vanced than of the scattering length. This is because the calculation of the phase
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Figure 8: The π+π+ scattering phase-shift. The left panel shows the results of
the LQCD calculations below the inelastic threshold (|k|2 = 3m2

π) at a pion mass
of mπ ∼ 390 MeV [22]. The vertical (blue) line denotes the start of the t-channel
cut. The shaded region in the right panel shows the results of the LQCD calcula-
tion extrapolated to the physical pion mass using NLO χPT, while the points and
uncertainties corresponds to the existing experimental data. The vertical (red) line
corresponds to the inelastic threshold.

shift, δ(E), at a given energy, E, requires a LQCD calculation of the two-meson corre-
lation function at the energyE. Generally speaking, a given calculation can determine
the lowest few two-hadron energy eigenvalues for a given momentum of the center-
of-mass, and that multiple lattice volumes will allow for additional values of E at
which to determine δ(E). The first serious calculation of the s-wave (l = 0) I = 2 ππ
phase-shift was done by the CP-PACS collaboration with nf = 2 at a relatively large
pion mass [20], and more recently two groups have performed calculations at lower
pion masses [21, 22], the results of which are shown in Fig. 8. Further, in some nice
work by the Hadron Spectrum Collaboration (HSC), the first efforts have been made
to extract the d-wave (l = 2) I = 2 ππ phase shift [21]. One of the more exciting
recent results is the mapping out of the ρ-resonance at mπ ∼ 390 MeV from the π+π0

energy-levels using Lüscher’s method, as shown in Fig. 9 [23].
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with the permission of R. Edwards.
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4.3 Nuclear interactions

Calculations of the nucleon-nucleon scattering lengths have been successfully under-
way for the last decade [24–37] for a range of pion masses. Recently, LQCD cal-
culations have been performed at mπ ∼ 800 MeV that also provide the effective
ranges [38], the results of which are shown in Fig. 10. Also shown are fits to the ef-
fective range expansion (ERE), including the shape parameter. The scattering length
and effective range in the 3S1 channel determined from the NLO fit to the ERE are

mπa
(3S1) = 7.45+0.57

−0.53
+0.71
−0.49 , mπr

(3S1) = 3.71+0.28
−0.31

+0.28
−0.35 ,

a(
3S1) = 1.82+0.14

−0.13
+0.17
−0.12 fm, r(

3S1) = 0.906+0.068
−0.075

+0.068
−0.084 fm.

(5)

The shape parameter obtained from the NNLO fit to the ERE expansion is: Pm3
π =

2+5
−6

+5
−6. An interesting aspect of this result is that the ratio of scattering length to

effective range, a measure of the naturalness of the system, is ∼2, which is to be
compared with ∼3 at the physical quark masses. This leads one to speculate that
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the deuteron might be unnatural over a large range of quark masses and not just
close to the physical values, indicating that it is not finely tuned. This speculation
requires precise calculations at lighter quark masses to determine if this is, in fact,
the situation.

4.4 Nuclei

Perhaps some of the most important LQCD calculations of late are those of the ground
states of the light nuclei, including the deuteron, 3He, 4He and light hypernuclei.
Fig. 11 shows the binding energy of the deuteron, 3He and 4He [34, 36, 37] as a
function of the pion mass. Not only is it exciting to see nuclei emerge from QCD for a
range of the light-quark masses, such calculations are crucial in dissecting and refining
the chiral nuclear forces. However, it is clear that calculations at lighter pion masses
are required, including at the physical pion mass. A summary of the energy-levels
at the flavor SU(3) symmetry point found in the s-shell nuclei and hypernuclei [36]
is shown in Fig. 12. These energy levels are elements of SU(3) irreps which allowed,
in some cases, e. g., the H-dibaryon, the hypertriton and 4

ΛΛHe, for distinct energy
levels with the same spin and parity to be determined. Such calculations will become
somewhat more complicated at lighter quark masses when the up and down quarks
are not degenerate with the strange quark.

The calculations of NPLQCD and those of Yamazaki et al. are already shedding
light on how the ground-state energies of the light nuclei approach their values at the
physical light-quark masses. They are all bound at the heavier light-quark masses
and become less bound as the quarks become lighter. In the case of the dineutron,
which is bound at mπ ∼ 800 MeV, it becomes unbound at some intermediate value
of the pion mass, giving rise to a neutron-neutron system with an infinite scattering
length.
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Figure 11: The deuteron (upper panel), 3He (lower left panel) and 4He (lower right
panel) binding energies from nf = 2 + 1 LQCD calculations [34, 36, 37].
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Figure 12: A compilation of the energy levels in light nuclei and hypernuclei in the
limit of flavor SU(3) symmetry (with spin and parity Jπ) calculated by NPLQCD [36]
at a pion mass of mπ ∼ 800 MeV.

One of the interesting aspects of the nuclear forces to explore is the tensor inter-
action, responsible for the mixing between the S-wave and D-wave channels in the
deuteron channel. There is a series of LQCD calculations that can be performed
that will permit an extraction of the SD mixing parameter, ǫ1, using Lüscher’s
method [39–41], see Ref. [42].

4.4.1 Roadblocks of the past

It is important to understand how a few of the past roadblocks to progress in this area
have been recently overcome. One of the roadblocks of the past was/is the “signal-
to-noise problem” that afflicts states other than the pion. This problem is seen most
simply in the single-nucleon correlation function, generated with a three-quark source
and a three-quark sink. The variance of this correlation function is dictated by a 3-
quark 3-anti-quark source and a 3-quark 3-anti-quark sink, which overlaps with both
the NN and 3π intermediate states (and all others with the appropriate quantum
numbers). At large times, the variance correlation function is dominated by the 3π
intermediate state, while the single nucleon correlation function is dominated by the
single nucleon, giving rise to an exponentially degrading signal. However, at interme-
diate times, the behavior of the “signal-to-noise” is determined by the overlap of the
variance sinks and sources onto the intermediate hadronic states. The momentum
projection onto single nucleon blocks, that NPLQCD is currently using, provides a
volume suppression of the 3π intermediate state compared to the NN state. Thus,
there is an intermediate time interval in which the signal-to-noise ratio is not expo-
nentially degrading. It is in this time interval, dubbed the “Golden Window”, that
plateaus for the low-lying energy levels in light nuclei can be identified. Unfortu-
nately, the window shrinks as the number of nucleons is increased, and so further
developments will be required to go to much larger nuclei.

A second roadblock that inhibited progress in LQCD calculations of nuclei was the
number of Wick contractions required to form a correlation function. A system con-
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taining Nu up quarks and Nd down quarks requires Nu!Nd! Wick contractions, which
is a rapidly growing number as one moves beyond the nucleon. It was recognized that
recursion relations relating the Wick contractions in systems with N mesons can be
related to those with N − 1 mesons [43]. Further, somewhat more sophisticated algo-
rithms [8, 44] have been developed for the multi-baryon systems that greatly reduce
the computing resources required to perform the contractions. These have led to very
efficient calculations of the s-shell nuclei and hypernuclei, moving beyond the s-shell
requires extensions of these works, and new ideas are required to calculate heavier
nuclei.

4.5 The bridge between LQCD and nuclear structure

One of the points of discussion that came up during this presentation was how to
optimally couple the results of LQCD calculations to nuclear structure calculations.
Given the expertise in the nuclear structure community, it makes little sense for
LQCD theorists to “go it alone” and attempt to calculate the entire periodic table.
It makes much more sense for the LQCD theorists to produce sets of quantities that
can be handed to the nuclear structure theorists who use them in their machinery to
determine the periodic table. The question is what are the optimal quantities to pass
along from LQCD.

It seems that the minimal set of quantities that could be passed along are the
energy eigenvalues for a given system. LQCD calculations of the energy spectrum of
an A-nucleon system could be performed in multiple lattice volumes, with multiple
lattice spacings and at multiple light-quark masses, and handed to the the nuclear
structure theorists who in turn reproduce the energies by tuning the chiral interac-
tions. These tuned interactions are then used to calculate processes in the contin-
uum. This methodology was used to calculate the nΣ− interactions at the physical
pion mass using χPT [45]. The chiral interactions were tuned to reproduce the finite-
volume energy levels determined in a series of LQCD calculations, and then used to
calculate the scattering phase shift at the physical pion mass. Progress in this di-
rection is starting to be made, as demonstrated in recent calculations by Nir Barnea
and collaborators [46], by using the ground state energies of the deuteron, dineutron
and 3He at mπ ∼ 800 MeV to reproduce the 4He ground state using the pionless
EFT.

5 Summary and final comments

I have summarized the rapid progress that is being made in developing LQCD into
a reliable calculational tool for low-energy nuclear physics. It holds the promise to
directly connect the structure and properties of nuclei with QCD, and to enable a
refinement of the chiral nuclear forces that are used as input into nuclear structure
calculations. At present, the ground states of the s-shell nuclei and hypernuclei are
being calculated at unphysically heavy light-quark masses, but within the next few
years, such calculations at mπ ∼ 140 MeV will be performed (if hardware and soft-
ware resources increase as expected). Within the next five years, the spectrum and
interactions of the lightest nuclei and hypernuclei will be postdicted or predicted with
fully-quantified uncertainties.

It is worth emphasizing that the LQCD effort in the US relies heavily on SciDAC
funding to support the scientists who develop and optimize the software to run on the
rapidly evolving computational hardware, e. g., GPU-accelerated compute nodes that
comprise Titan at ORNL, or the BG/Qs at ANL and LLNL. Further, the effort re-
quires ongoing access to both capability computing resources on leadership-class com-
puting facilities, and capacity computing obtained from NERSC, XSEDE, through
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Figure 13: Multigrid is a recent algorithmic development to be implemented in LQCD
calculations [47]. The horizontal (orange) cost estimates (that I have added to the
original figure) provide one example of what is possible for a given production scenario.
Parts of this image [48] are reproduced with the permission of B. Joo.

USQCD and at local compute clusters. Ongoing software (see Fig. 13) and hardware
support are critical to progress in this area.

Ideally, one would start with a LQCD calculation and predict all of the quantities
of interest in low-energy nuclear physics. Presently, we are not in a position to do
this, even if significantly more computing resources were provided to the program.
While Lüscher provided the formalism to relate the two-body S-matrix directly to
two-particle energy levels inside a cubic volume with the fields subject to periodic
boundary conditions [39, 40], which has since been understood and generalized to
the two-nucleon systems, e. g. Ref. [41], such formalism is complicated to apply in
coupled-channels systems [49–51]. Further, the formalism is not in place for the three-
and higher-body sectors, but progress is being made in such systems [52, 53].

In closing, great progress is being made to reliably determine and refine the nuclear
forces directly from QCD using lattice QCD.

Happy Birthday James: James Vary is one of the first nuclear theorists I met
when I arrived in the United States to enter the PhD program at Caltech in the mid
1980’s. I recall James taking the time to talk physics with me during his stay. His
detailed knowledge of, and passion for, important problems of the day left a lasting
impression on me. Despite having been able to chat with, and even collaborate with,
James since that time, when I learned that this conference was in part to celebrate
James’s 70th birthday, I was taken aback as it seems like yesterday that he was in his
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early 40’s (and I was in my early 20’s), and he has retained the same passion and
energy for science. I should also add that James is responsible for me remembering
the value of ~c! Happy 70th!!
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