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Abstract

Historic steps in the emergence, the derivation and the use of three-nucleon

forces, genuine and effective, for calculations of few-nucleon systems and of the

structure of heavier nuclei are recalled. The research focus is on few-nucleon

systems. The need of three-nucleon forces for a successful description of some

data and the remaining puzzles of other data, not explainable despite the inclu-

sion of three-nucleon forces, are discussed.
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1 Introduction

The shell-model theme of this conference is not my current research territory. I would
not have attended, would the conference not also celebrate James Vary with whom I
shared early stages of my carrier. I decided against a standard talk on actual research.
Instead, I want first to reflect on what drove our research then, before coming to the
Here and Now , which is the nuclear shell model for James and few-nucleon systems
for me.

I got to know James in 1970/71, when we were both postdocs in the nuclear theory
group of MIT. We started to collaborate on the challenge of that time, the derivation
of nuclear properties from the interaction between free nucleons. And that challenge
is still with us today, as this conference proves.

2 My personal view on the nuclear shell model,

then and now

Doing microscopic nuclear structure in 1970/71, i. e., calculating the properties of
nuclear matter, of doubly closed-shell nuclei and of simple shell-model systems in
terms of a realistic two-nucleon (2N) interaction, was a courageous enterprise: The
suggested 2N potentials were scary beasts, their short-ranged core was conceptually
unknown and, furthermore, it was parametrized in form of a strong repulsion which
had to be smoothened into the in-medium reaction matrix of Brueckner theory [1].

At that time, James’s and my common nuclear-structure playground was the shell-
model of 18O, described by an inert 16O core with two active neutrons outside the core.
The latter nucleons formed the active Hilbert space, the model space, consisting of
2s-1d states only, the corresponding effective interaction being the 2N reaction matrix,
modified by core-polarization, shown in Fig. 1(a); core polarization acts technically
as an effective interaction between the two active nucleons, though, physically, it
involves three nucleons. Kuo and Brown [2] had initiated this game and appeared to
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Figure 1: Strategies describing the contribution of core polarization to the effective
shell-model interaction. Plot (a) represents the contribution in calculations with an
inert core; plots (b) and (c) represent the same process when resolved in no-core
calculations. The vertical lines without an arrow stand for nucleons in the model
space, the horizontal wavy lines for the 2N Brueckner reaction matrix derived from
the 2N potential. In plot (a), the backward arrow indicates a hole state in the inert
core, the forward arrow is a particle state outside the core; plot (a) is an irreducible 2N
contribution to the effective interaction, irrespectively, if the particle state is within
or outside the model space. However, if the particle state is inside the model space of
a no-core calculation, the process is reducible into two subsequent interactions within
the model space, as plot (b) shows. In contrast, if the particle state is outside the
model space as in plot (c), the process remains irreducible within the model space
and is a part of an effective 3N contribution to the shell-model interaction.

have also closed the issue by their impressive achievement in describing data. But
our revolutionary minds were challenged. We improved the calculation by better
numerics [3] and found the numerical inadequacy of the effective interaction in use,
therefore the distortion of our names Vary, Sauer and Wong in the author list by the
community to Very sorry, wrong!; others [4, 5] challenged the whole shell-model
strategy of that time on more fundamental grounds than we did. This was the dark
moment of the early microscopic shell model.

Increasing computational capability of theoretical physics allowed a novel, more
physical shell-model strategy, e. g., the description of 18O without an inert 16O
core [6, 7]: Use a model space, numerically manageable and physically large enough
for accommodating the considered physics phenomena realistically, accompanied by
a corresponding effective interaction, which should stay as simple as possible. This
fact is illustrated in Figs. 1(b) and 1(c) for the core-polarization contribution to the
effective shell-model interaction in the no-core description. Of course, in the search
for balance between model space and effective interaction the truncation of the full
Hilbert space to the active model space generally remains necessary in shell-model
calculations: The usually employed oscillator basis is advantageous for the symmetry
and geometry of finite nuclei, but awkward when having to build up the tail behavior
of single-particle states and when having to punch the correlation hole into the 2N
wave function. Thus, the truncation of Hilbert space remains physically severe and
makes effective many-body contributions to the interaction important. Even without
genuine 3N forces, effective ones arise as from core polarization, shown in Fig. 1(c).
This search for an efficient balance between Hilbert space and interaction is a basic
nuclear-structure problem also in a broader context outside the shell model; it is my
theme throughout this talk.

At this special occasion, another paper with James and Pradhan of that early
time [8] comes to my mind, a paper whose idea still echos in modern shell-model ap-
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proaches: The core region of the 2N force — now in meson theory the realm of omega-
and rho-meson exchanges, in chiral effective field theory (EFT) the realm of two- and
many-nucleon contact contributions — was for us terra incognita which we wanted to
explore by the technique of short-ranged phase-equivalent off-shell variations, hoping
to stumble on a novel, more pleasing parametrization of the 2N potential. In retro-
spect, we did not learn anything about that unknown part of the 2N force, since we
were searching rather randomly in that paper. Our hope for information on the force
from nuclear structure was a naive illusion at that time. But that hope is still behind
the so-called ab exitu approach to the effective interaction [9] in no-core shell-model
calculations, and it is still behind the modern and really clever use of phase-equivalent
variations [10], in fact a smoothening procedure of the 2N potential — a similar strat-
egy as Brueckner theory used with its reaction matrix by the ladder summation of
highly excited states, — the prize to be payed being the rise of effective many-nucleon
interactions even without a proper truncation of Hilbert space.

The basic assumption of nuclear theory, before the advent of quantum chromody-
namics and still now, is: Rigid nucleons, the only active degrees of freedom in nuclei,
interact through genuine two-, three- and possibly many-nucleon forces according to
the rules of non-relativistic quantum mechanics. That assumption confronts us with
two distinct problems which in 1970/71 also defined different fields of research: First,
assuming a parametrization of nuclear dynamics, how can we solve the many-nucleon
problem throughout the periodic table? This is still the challenge for present-day
shell-model calculations. But second, more basic, how can we learn details about
those forces from some nuclear properties, if they are really reliably described theo-
retically? Our paper on phase-equivalent off-shell variations [8] mixed up both fields
of research, and therefore hopelessly dealt with too complex problems. The second
question is the field of few-nucleon systems. I chose that path of few-body physics for
my later research which I discuss next, but I shall remember, how my early research
with James influenced what I am doing today.

3 Few-nucleon systems

The many-body problem is for few-nucleon bound and scattering states conceptually
under control due to Faddeev [11] and Alt, Grassberger and Sandhas [12], and it is
getting, step-by-step, also calculationally under control by various numerical tech-
niques. My collaborators and me adopted integral equations in momentum space as
our numerical technique; compared to shell-model calculations of bound-state sys-
tems, the calculations are quite tricky for few-nucleon scattering due to singularities,
though the singularities are integrable; they arise from open inelastic channels. Re-
sults shown later on are obtained by that technique. The latest important technical
achievements were the inclusion of the Coulomb interaction between protons (p) in
the scattering equations [13], a stumbling block for the theoretical description during
decades, and the description of 4N scattering above the four-particle breakup thresh-
old [14]. On the experimental side, there is a multitude of data, especially now data
of reactions with polarized particles. From those data one can hope to get more and
more information on nuclear forces. I describe that project in its important steps.

3.1 Choice of dynamics

The form of the nuclear dynamics to be tested has to be specified. We had to decide
on our form, when pion factories were en vogue; the inclusion of pion production
and absorption was necessary: Thus, the important active degrees of freedom to be
considered were, besides the nucleon (N), the pion (π) and the Delta-isobar (∆), which
strongly mediates π production in the 2N isospin-triplet partial waves; experimentally,
the ∆ isobar is observed as P33 πN resonance; single-π production dominates well
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Figure 2: Hilbert space for the description of nuclear phenomena at low and interme-
diate energies. Compared with the purely nucleonic one, it is expanded by sectors, in
which one N is turned into a ∆ isobar and one π is added to the N ’s. πN scattering
is described in the corresponding Hilbert space of baryon number one. The 2N reac-
tions without and with a single π are described in the corresponding Hilbert space of
baryon number two.

above 2π- and 3π-production thresholds. The chosen Hilbert space is shown in Fig. 2;
in fact, the choice of an expanded Hilbert space is conceptually based on the same
strategy which the no-core shell model took when including the physically important
core degrees explicitly in the active model space: Active degrees of freedom belong
to the Hilbert space, they cannot be simulated well by a complicated Hamiltonian.
That strategy [15] allows a unified description of nuclear phenomena at low and at
intermediate energies, e. g., the simultaneous description of 2N reactions, elastic and
inelastic with single-π production and absorption.

The Hamiltonian corresponding to the chosen Hilbert space was taken from meson
theory which was without alternative at that time. It is illustrated in Fig. 3, it
consists of a one-baryon piece, mediating πN scattering in the P33 partial waves —
a πN potential is to be added for the non-resonant partial waves — and mediating
π production and absorption, and it consists of two-baryon potentials derived from
all possible meson exchanges. That Hamiltonian has a particular characteristic for
the ∆ isobar [16]; it cannot be produced experimentally; the corresponding S-matrix
element is exactly zero; observables are the coupled πN states. For that ambitious
Hamiltonian we were able to do calculations in most of its aspects [15], e. g., for all
reactions in the two-baryon sector NN → NN , NN → dπ, NN → NNπ, dπ → dπ,
dπ → NNπ and dπ → NN up to 0.5 GeV c. m. energy — d standing for the deuteron.
But the Hamiltonian was not well tuned to low-energy 2N data and therefore was not
reliable enough for the description of few-nucleon systems at low energies, my more
recent research focus.

Figure 3: Hamiltonian describing the nuclear dynamics in the Hilbert space of Fig. 2.
The interactions are of two-baryon nature, coupling purely nucleonic channels with
those containing a ∆ isobar; the latter ones are coupled to the pionic channels by a
single-baryon vertex.
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Fujita–Miyazawa higher order 3N force

4N force

Figure 4: ∆-mediated 3N and 4N forces, consistent with each other and with the
2N interaction. The upper row shows examples for the arising 3N force, the Fujita-
Miyazawa process being the one of lowest order [18]. The lower row shows examples
for the arising 4N force. All possible meson exchanges are considered.

The explicit treatment of the ∆ isobar has an important and wanted effect; it yields
effective 3N , 4N and many-N forces; they are irreducible in the purely nucleonic
Hilbert sector, but are resolved into two-baryon pieces in the expanded Hilbert space
of Fig. 2. In standard meson theory and in standard EFT, 2N , 3N and many-N
potentials arise from freezing non-nucleonic degrees of freedom; but vice versa, as
done in the present approach, an important contribution to genuine 3N and many-N
forces can be resolved, when keeping the ∆-isobar degree of freedom explicitly. And
without active pions, i. e., without the one-baryon piece of Fig. 3, the Hamiltonian is
tuned well for the purposes of low energies [17], i. e., below π-production threshold.
The coupled two-baryon potential will be referred to as CDBonn + ∆; its purely
nucleonic reference potential is CDBonn, whose extension it is. Even that truncated
Hamiltonian provides consistent 2N , 3N and 4N forces, in general many-N forces,
for what Fig. 4 shows examples; their forms and strengths are fixed, they do not
allow any further tuning to 3N and 4N data; physicswise, those arising forces are still
incomplete, since other mechanisms leading to irreducible many-N forces besides the
∆-mechanism are left out.

I have discussed 3N and many-N forces from various angles. It is now appropriate
to come to a conclusive summary: There are genuine and effective nuclear forces.

The genuine forces are derived in the form of instantaneous potentials of a many-N
Hamiltonian in a complete Hilbert space for the quantum-mechanical description of
many-N systems; they incorporate accepted knowledge of the nuclear forces as the
one-π exchange tail; the remainder of the genuine 2N potential was phenomenological
in the early days, was later on derived from meson theory and is now usually derived
from EFT, i. e., from field theories with non-nucleonic degrees of freedom; in the
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step to the potential all non-nucleonic degrees are frozen; this step is non-unique.
In the same way, 3N and many-N potentials are not made by God, they are babies
of theoreticians and therefore in principle non-observable. When we loosely speak
that some experimental data signal the dynamic need of a contribution from the 3N
potential, we mean that in a chosen dynamic description the use of a 2N potential
alone is insufficient.

The effective forces are by-products of particular solution techniques for the nu-
clear many-nucleon problem in the frame work of non-relativistic quantum mechanics.
They arise when the complete Hilbert space has to be truncated, the arising 2N, 3N
and many-N forces then correct for that truncation; those forces are often energy-
dependent, i. e., time-delayed; the 2N reaction matrix of Brueckner theory is such an
energy-dependent 2N force, it is also dependent on the amount of truncation. The
effective forces also arise when the Hamiltonian is transformed to act dominantly in a
particular and convenient subspace, even without truncation, most conveniently in a
subspace of low momenta; they are by-products of a particular smoothing technique.
Effective 3N and many-N forces arise, even if the underlying Hamiltonian consists of
2N genuine forces only.

In structure calculations of heavier nuclei effective many-N forces arise in the
process of solving the nuclear many-body problem. In the description of few-nucleon
systems at low and intermediate energies genuine many-N forces can be simulated as
in Fig. 4 by keeping non-nucleonic degrees of freedom explicitly in the active Hilbert
space.

3.2 Results for few-nucleon bound states

Hadronic and electromagnetic properties of 3H, 3He and 4He are calculated. The
effect of the 3N force on binding is sizable according to Ref. [19], its Fujita–Miyazawa
part [18] being the dominant contribution, usually twice the other 3N -force contribu-
tions. In contrast, the effect of the 4N force on binding is small, in fact, an order of
magnitude smaller than the 3N -force effect. This observation is the first solid confir-
mation of the general folklore on the hierarchy in many-N forces. Since the chosen
dynamics cannot be tuned anymore, the resulting binding energies still fail the ex-
perimental values slightly. That miss of binding is therefore carried to the thresholds
of reactions, a disadvantage for the description of 4N scattering close to thresholds.
In contrast, the experimental binding-energy difference between 3H and 3He is well
accounted for.

3.3 Results for few-nucleon reactions

The few-nucleon community is able to account for a very large amount of experimental
3N and 4N data at low energies, i. e., at energies up to the π-production threshold.
This is quite satisfying. The inclusion of Coulomb and of a 3N interaction is often
needed; I give an example for both effects. Besides those successes which are in
the overwhelming majority, there are, however, puzzles, i. e., there is a persistent
disagreement between theoretical prediction and data without any hint for a solution;
in fact that is the much more interesting situation, since we hope to learn from such
cases; I shall also give an example for such a puzzle. In the presented figures, the
predictions derived from the coupled-channel potential CDBonn +∆ with Coulomb,
indicated by ∆+Coulomb and by the red curves, are the most complete ones, including
the effect of Coulomb and of many-N forces mediated by the ∆ isobar simultaneously.
The predictions derived from the purely nucleonic reference potential CDBonn with
Coulomb, indicated by N + Coulomb and by the green curves, include the effect of
Coulomb, but leave out the effect of many-N forces mediated by the ∆ isobar; the
difference between red and green curves indicate the effect of many-N forces on the
considered observable. The predictions derived from the coupled-channel potential
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Figure 5: dp breakup at 130 MeV d energy. The Coulomb effect is quite pronounced
due to the correlation between the two protons in the final state. The angles of the
two outgoing p’s are fixed; their energies are constrained by the kinematical locus S.
There is no evidence for the need of a 3N force. The experimental data and the
theoretical predictions are from Ref. [20].

CDBonn + ∆ without Coulomb, indicated by ∆ and by blue curves, leave out the
effect of Coulomb, but include the effect of many-N forces mediated by the ∆ isobar;
the difference between red and blue curves indicate the effect of Coulomb on the
considered observable.

The inclusion of the Coulomb repulsion between the two p’s is necessary for the
successful description of 3N and 4N elastic scattering at low energies. But Fig. 5
shows that Coulomb can be quite important also at much higher beam energies, when,
in the breakup situation, the two outgoing p’s are strongly correlated at rather low
relative energies. Signals for the working of the 3N force in the considered dynamic
model are shown in Fig. 6.

A very long-standing puzzle is the spin observable Ay in elastic pd, but also in
elastic p3He scattering in a particular low-energy window. Another observable which
is extremely hard to describe is the total elastic neutron-3H (n3H) cross section. I
like to discuss a further puzzle arising at low-energy pd breakup in the space-star
kinematics. Data and the theoretical predictions are shown in Fig. 7. That space-star
kinematics was believed by experimentalists to show the effect of the 3N force most
strongly; in fact, that effect is not seen at all. At 13 MeV N lab energy there are
pd and nd data; since the nd experiments are especially difficult, the data were twice
remeasured, but appear now to be confirmed; the pd data were taken only once. There
is a sizable difference between pd and nd data; theory is unable to account for that
difference; the Coulomb effect is minor; if the data were true beyond any doubt, an
extremely large nuclear charge-asymmetry effect shows up. Such an effect appears,
however, conceptually rather unlikely.

3.4 Summary

In the past, the theoretical fields of nuclear structure and few-nucleon systems were
entirely disjoint with respect to research goals, to employed dynamics and to numerical
techniques used for solving the nuclear many-body problems. Research settled on
different banks of the river “nuclear theory”. That situation passed; there are now
interesting cross-overs between those fields as this conference in Iowa is witness for,
and the beautiful bridges of Iowa as the one of Fig. 8 are pictures for those cross-overs.
The talk discussed genuine and effective 2N and many-N forces, their appearance
and their different roles in nuclear-structure and in few-nucleon calculations. The
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Figure 8: One of the covered bridges of Iowa.

talk presented some examples for the achievements of few-nucleon theory, but also for
outstanding puzzles in the description of data.

At the end, I wish the man of honor at this conference, James Vary, further success
in his admirable engagement for the advancement of nuclear physics, which has been
and will be stimulating to others.

The shown results for few-nucleon systems were obtained in a long successful
collaboration with A. Deltuva and A. C. Fonseca, University of Lisbon, for which I
am very grateful.
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