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Abstract

In this work we report on the first application of the No-Core Gamow Shell

Model to study ab initio bound and unbound states in light nuclei. This model is

formulated in the complex energy plane by using a complete Berggren ensemble

which treats bound, resonant, and scattering states on equal footing. The reso-

lution of the many-body Schrödinger equation is performed with the technique

of the Density Matrix Renormalization Group.
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1 Introduction

In the last decade our knowledge of nuclei far from the valley of stability has radically
improved. This improvement has been a by-product of advances in both experi-
ment and theory. New experimental facilities that have already been built (RIBF at
RIKEN) or are being constructed (SPIRAL2 at GANIL, FAIR, FRIB at MSU) will
give us a better insight of areas in the nuclear chart that have never been explored,
pushing even further our knowledge at the limits of nuclear existence. At the same
time, the increase in computing power has made it possible to calculate properties
of nuclei in an ab initio fashion, using realistic interactions which reproduce nucleon-
nucleon scattering data. For few-body systems (A ≤ 4) methods such as Faddeev [1]
and Faddeev–Yakubovsky (FY) [2] provide an exact solution to the many-body prob-
lem. Methods such as the Green’s Function Monte Carlo (GFMC) [3], the Hyperspher-
ical Harmonics [4], the No-Core Shell Model (NCSM) [5], the Coupled-Cluster (CC)
approach [6] and more recently, the In-Medium Similarity Renormalization Group
method [7] and Dyson Self-Consistent Green’s Function method [8] have been applied
successfully for the ab initio description of light and medium mass nuclei.

Nuclei with large isospin which can be found in these remote regions, have at-
tracted a great deal of interest. They belong to the category of Open Quantum
Systems, inter-connected via the decay and reaction channels. These are very fragile
objects with small separation energies and very large spatial dimensions. The prox-
imity of the continuum affects their bulk properties (matter and charge distributions)
and their spectra. Phenomena such as the anomalous behavior of elastic cross-sections
and the associated overlap integral near threshold states in multi-channel coupling
(Wigner-cusps) [9] and the appearance of cluster correlations in the vicinity of the
respective cluster emission threshold [10], to mention a few, are all unique manifesta-
tions of the continuum coupling.

From the theoretical perspective, existing many-body methods have had to be gen-
eralized in order to construct approaches where both structure and reactions are uni-
fied to describe these exotic systems. Examples of these attempts are the Shell Model
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Embedded in the Continuum (SMEC) [11] and the Gamow Shell Model (GSM) [12,13]
in which nuclei are described as systems with a core above which valence nucleons
interact. The GSM, which is the most recent of these two approaches, is a gener-
alization of the Harmonic Oscillator (HO) shell model in the complex energy plane
using the Berggren ensemble [14]. Recent ab initio approaches such as the NCSM
coupled with the Resonating Group Method [15], the CC approach generalized in the
complex-energy plane using the Berggren basis [16] and the GFMC [17], have allowed
an ab initio description of bound and unbound states of nuclei.

In this work we introduce the No-Core Gamow Shell Model (NCGSM) [18] as
an alternative for ab initio calculations of weakly-bound and unbound states of light
nuclei using realistic interactions. We will show the basic ingredients of the NCGSM
and describe the many-body method namely, the Density Matrix Renormalization
Group (DMRG) technique, used to solve the many-body problem. We will then
present selected results obtained in this approach.

2 Formalism

The intrinsic Hamiltonian H for a nucleus with A nucleons is given by

H =
1

A

A∑

i<j

(~pi − ~pj)
2

2m
+

A∑

i<j

V NN
ij , (1)

where m is the nucleon mass, ~pi is the momentum of the nucleon i and V NN is a two-
body nuclear potential. In the NCGSM [18], the weakly-bound/unbound eigenstates
of H are obtained by using an expansion in the Berggren basis which allows to treats
bound, resonant and scattering states on equal footing. Let us consider a finite-
depth single-particle (s.p.) potential. Its eigenstates fulfill the Berggren completeness
relation which can be written as

∑

n=b,d

|un〉〈ũn| +

∫

L+

|uk〉〈ũk| dk = 1, (2)

where b are bound states, d are decaying resonant states and the integral along a
contour L+ represents the contribution from the non-resonant scattering continuum,
see Fig. 1. By discretizing the integral in (2), a discrete set of s.p. states can be
obtained from which one constructs the many-body basis in which the Hamiltonian H

is diagonalized. Due to the inclusion of resonant states and complex-continuum states,
the representation of H in the (many-body) Berggren basis is complex-symmetric.
The dimension of the Hamiltonian matrix grows rapidly with the number of discretized
continuum states and nucleons and as a consequence, advanced numerical methods
that can handle large non-Hermitian matrices must be used. In the context of the
GSM, it has been shown that the DMRG method is an efficient way to compute the
low-lying spectrum of the Hamiltonian at a low computational cost [13, 19]. In the
following, we describe the main features of DMRG applied to the NCGSM.

The DMRG method was first introduced to overcome the limitations of the Wilson-
type renormalization group to describe strongly correlated systems with short-range
interactions [20]. More recently, the DMRG has been reformulated and applied to
finite Fermi systems [21], nuclear shell model [22–24], and open systems [19]. While
most of the DMRG studies have been focused on properties in strongly correlated
closed quantum systems characterized by Hermitian density matrices, systems involv-
ing non-Hermitian and non-symmetric density matrices can also be treated [19, 25].

Let us consider the application of the J-scheme DMRG in the context of the
NCGSM. The objective is to calculate an eigenstate |Jπ〉 of the Hamiltonian Ĥ with
angular momentum J and parity π. As |Jπ〉 is a many-body pole of the scattering
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Figure 1: Illustration of the Berggren completeness relation (2) in the complex
k-plane. The bound states are located on the positive imaginary axis. The weakly
bound halo states lie close to the origin. The positive-energy resonant states are lo-
cated in the fourth quadrant. Those with a small imaginary part can be interpreted
as resonances. The complex-k contour L+ represents the non-resonant scattering
continuum.

matrix of Ĥ , the contribution from non-resonant scattering shells along the continuum
contour L+ to the many-body wave function is usually smaller than the contribution
from the resonant orbits [12]. Based on this observation, the following separation
is usually performed [19]: the many-body states constructed from the single-particle
poles form a subspace A (the so-called ‘reference subspace’), and the remaining states
containing contributions from non-resonant shells form a complement subspace B (see
Fig. 2).

One begins by constructing states |k〉A forming the reference subspace A. All
possible matrix elements of suboperators of the GSM Hamiltonian Ĥ acting in A,
expressed in the second quantization form, are then calculated and stored and the
Hamiltonian is diagonalized in the reference space to provide the zeroth-order ap-
proximation |ΨJ〉

(0) to |Jπ〉. The scattering shells (lj), belonging to the discretized
contour L+, are then gradually added to the reference subspace to create the sub-
space B. This first stage of the NCGSM+DMRG procedure is referred to as the
‘warm-up phase’. For each new added shell, all possible many-body states denoted
as |i〉B are constructed and matrix elements of suboperators of the Hamiltonian H act-
ing on |i〉B are computed. By coupling states in A with the states |iB〉, one constructs
the set of states of a given Jπ. This ensemble serves as a basis in which the NCGSM

{kA}

{αB}

{(lj)s}

Figure 2: Schematic illustration of the
NCGSM+DMRG procedure during the sth

step of the warm-up phase. States {kA} from A,
previously optimized states αB, and states {(lj)s}
constructed by occupying the sth shell with n

particles are coupled to generate the new set of
states {kA ⊗ iB}

J = {kA ⊗ {αB ⊗ (lj)ns }}
J .
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Hamiltonian is diagonalized. The target state |ΨJ〉 is selected among the eigenstates
of Ĥ as the one having the largest overlap with the reference vector |ΨJ〉

(0). Then,
the desired truncation is performed in B by introducing the reduced density matrix,
constructed by summing over the reference subspace A [26]. In standard DMRG ap-
plications for Hermitian problems, where the eigenvalues of the density matrix are
real non-negative, only the eigenvectors corresponding to the largest eigenvalues are
kept during the DMRG process. Within the metric defining the Berggren ensemble,
the NCGSM density matrix is complex-symmetric and its eigenvalues are, in general,
complex. As a consequence, the truncation is done by keeping the eigenstates αB (the
‘optimized’ states) with the largest nonzero moduli of eigenvalue [19]. The trace of
the density matrix being equal to one, the truncation is done by keeping eigenstates
of the density matrix with the corresponding eigenvalue wα such that the condition

∣∣∣∣∣∣
1 −Re




Nρ∑

α=1

wα



∣∣∣∣∣∣
< ǫ (3)

is satisfied. The quantity ǫ in (3) can be viewed as the truncation error of the reduced
density matrix. The smaller ǫ, the larger number of eigenvectors must be kept. In
particular, for ǫ=0, all eigenvectors with non-zero eigenvalues are retained.

The warm-up phase is followed by the so-called sweeping phase, in which, starting
from the last scattering shell (lj)last, the procedure continues in the reverse direction
(the ‘sweep-down’ phase) until the first scattering shell is reached. The procedure
is then reversed and a sweep in the upward direction (the ‘sweep-up’ phase) begins.
The sweeping sequences continue until convergence for target eigenvalue is achieved.

3 Selected results

We now show few results obtained with the NCGSM+DMRG approach and we start
here with the ground state in 4He. Obviously this system is well-bound and can
be described using an expansion in a HO basis without including continuum states.
Nevertheless, using an expansion in the Berggren basis in that case allows to test
our approach by comparing with exact results obtained in the Faddeev–Yakubovsky
approach [1]. The two-body interaction V NN in (1) is chosen as the Argonne υ18
interaction renormalized with the Vlow−k method [27] with a sharp momentum cut-
off Λ = 1.9 fm−1. Using this renormalization scheme allows a decoupling between
high-momentum and low-momentum degrees of freedom and as a consequence, im-
proves the convergence of nuclear structure calculations [27]. We include s1/2, p3/2,
p1/2, d3/2, d5/2, f7/2, f5/2, g9/2, g7/2 shells for protons and neutrons. For the par-
tial waves with angular momentum l ≤ 1, the s.p. basis is generated by performing
Gamow–Hartree–Fock (GHF) [12] calculations. In this case, the GHF potential has
a neutron and proton bound state in the s1/2 channel at respectively −26.290 MeV
and −24.453 MeV. The rest of s and p shells are taken along the contour on the
real k-axis which extends up to 4 fm−1 and is discretized with 18 points. For shells
with l ≥ 2, we take the HO basis functions given by a HO potential with a ra-
dius b = 1.5 fm and we include 5 d, 3 f and 3 g s.p. states for both protons and
neutrons. Results for the g.s. energy in 4He are shown in Fig. 3 as a function of
the iteration of the NCSM+DMRG method for a truncation ǫ = 10−6. One can see
that, as the middle of the third sweep is reached, the energy has converged and the
corresponding value is

ENCGSM = −29.15 MeV,

whereas the exact result in the FY approach [1] is

EFY = −29.19 MeV.
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Figure 3: Energy of the ground state in 4He as a function of the number of step (Nstep).
Comparison of the NCGSM with the FY result with the Vlow−k Argonne υ18 interac-
tion.

The largest Hamiltonian matrix one has to deal with in the NCSM+DMRG has a
dimension Dmax ∼ 6000 whereas a direct resolution of the NCSM Hamiltonian matrix,
that is for ǫ = 0, would require to diagonalize a matrix of dimension 6,230,512 in J-
scheme. The difference between our theoretical result and the experimental binding
energy Eexp = −28.30 MeV, is due to higher-order terms in the nuclear interactions,
such as three-nucleon forces, which are not included in the Hamiltonian (1).

We now show results for the 5He nucleus which is a challenge for any many-
body theory because of its unbound character. In particular, both the ground and
first excited states are many-body resonances. Because of these characteristics, the
complex energy formulation of the NCGSM using the Berggren ensemble is a perfect
tool for its description. Indeed, in our formalism the resonance parameters (g.s.
energy with respect to 4He and the width) will be identified as the eigenvalues of the
complex-symmetric Hamiltonian matrix. The position of the resonance will then be
the real part of the energy, while the imaginary part is related to the width by the
formula: Γ = −2ℑm(E). We use here the N3LO interaction renormalized by Vlow−k

with a cutoff Λ = 1.9 fm−1. For l ≤ 1, the s.p. basis for protons and neutrons are
generated by the GHF potential. In the l = 0 partial wave there are two bound states
at E = −23.290 MeV and E = −23.999 MeV for respectively neutron and proton.
The GHF potential has a p3/2 s.p. resonance with a real part of energy 1.193 MeV
and a width 1267 keV. In order to fulfill Berggren completeness, the p3/2 contour is
taken in the fourth-quadrant of the complex k-plane (see Fig. 1) whereas the s1/2
and p1/2 contours are chosen along the real-k axis. For states with l ≥ 1, the s.p.
states are given by HO basis functions as previously for 4He. In Figs. 4, 5 we show
the NCGSM+DMRG convergence pattern, for a truncation ǫ = 10−6, of the real and
imaginary parts of the g.s. energy in 5He. In the middle of the third sweep, the energy
has converged to

ℜe(ENCGSM) = −26.31 MeV, ℑm(ENCGSM) = −0.2 MeV.

The real part lies at about 1 MeV above the experimental total binding energy [28]
and as previously, the difference with the experimental binding energy is due to omit-
ted higher-order terms in the nuclear interactions. For this truncation, the largest
Hamiltonian matrix that needs to be diagonalized during the DMRG iterations has a
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Figure 4: Real part of the energy of the ground state in 5He as a function of the
number of step (Nstep) using the chiral N3LO interaction renormalized by by Vlow−k

with Λ = 1.9 fm−1.
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Figure 5: Imaginary part of the energy of the ground state in 5He as a function of the
number of step (Nstep) using the chiral N3LO interaction renormalized by by Vlow−k

with Λ = 1.9 fm−1.

dimension Dmax ∼105, whereas in the case of the full diagonalization i. e. for ǫ = 10−6,
the Hamiltonian matrix has a dimension ∼ 3 × 109.

4 Summary

We have presented an ab initio approach to describe bound/unbound light nuclei us-
ing the framework of the No-Core Gamow Shell Model (NCGSM). By working in the
Berggren ensemble, the NCGSM allows bound, resonant and scattering states to be
treated on equal footing. The numerical solutions of the many-body Schrödinger equa-
tion are obtained by applying the Density Matrix Renormalization Group (DMRG)
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method. We have shown results for the ground state in 4He (bound nucleus) and the
many-body ground state resonance in 5He. This work serves as a proof of principle
of the application of the Berggren’s basis in a NCSM framework. In the future, we
plan to apply the NCGSM+DMRG to study the structure of weakly bound/unbound
light systems as for instance the very exotic systems in the hydrogen isotopic chain.
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