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Abstract

The exact treatment of nuclei starting from the constituent nucleons and
the fundamental interactions among them has been a long-standing goal in nu-
clear physics. In addition to the complex nature of nuclear forces, one faces the
quantum-mechanical many-nucleon problem governed by an interplay between
bound and continuum states. In recent years, significant progress has been made
in ab initio nuclear structure and reaction calculations based on input from QCD
employing Hamiltonians constructed within chiral effective field theory. In this
contribution, we first present a brief overview of recent achievements of various
ab initio nuclear reaction approaches and then focus on the newly developed
techniques, the no-core shell model with continuum (NCSMC) capable of de-
scribing simultaneously both bound and scattering states in light nuclei.
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1 Introduction

One of the central goals of nuclear physics is to come to a basic understanding of
the structure and dynamics of nuclei, quantum many-body systems exhibiting bound
states, unbound resonances, and scattering states, all of which can be strongly cou-
pled. Ab initio (i. e., from first principles) approaches attempt to achieve such a
goal for light nuclei. Over the past fifteen years, efficient techniques such as the
Green’s function Monte Carlo (GFMC) [1], ab initio NCSM [2], Coupled Cluster
Method (CCM) [3–5] or nuclear lattice effective field theory (EFT) [6] have greatly
advanced our understanding of bound-state properties of light nuclei starting from
realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. On the other
hand, a fully-developed fundamental theory able to address a large range of nuclear
scattering and nuclear reaction properties is still missing, particularly for processes
involving more than four nucleons overall. Better still, achieving a realistic ab initio
description of light nuclei requires abandoning the “traditional” separated treatment
of discrete states and scattering continuum in favor of a unified treatment of struc-
tural and reaction properties. The development of such a unified fundamental theory
of light nuclei is key to refining our understanding of the underlying forces across
the nuclear landscape: from the well-bound nuclei to the exotic nuclei at the bound-
aries of stability that have become the focus of the next generation experiments with
rare-isotope beams, to the low-energy fusion reactions that represent the primary
energy-generation mechanism in stars, and could potentially be used for future en-
ergy generation on earth.

In this contribution, we present a brief overview of the emerging field of ab initio
calculations of nuclear reactions in Section 2. In Section 3, we describe the recently
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introduced ab initio many-body approach to nuclear bound and continuum states,
the no-core shell model with continuum (NCSMC) that combines the resonating-
group method (RGM) [7] with the ab initio no-core shell model (NCSM) [8]. In
Section 4, we discuss recent applications of the NCSMC to the description of 7He
resonances, we investigate the 3N interaction effects in the nucleon-4He scattering,
we highlight the introduction of the three-body clusters in the description of 6He, and
present preliminary study of the continuum effects in the low-lying resonances of 9Be.
Conclusions are given in Section 5.

2 Ab initio approaches to nuclear reactions

Because of their importance nuclear reactions attract much attention, and there have
been many interesting new developments in the recent past. In this section we will
give a brief and non-exhaustive overview of the theoretical efforts devoted to ab initio
approaches to nuclear reactions, and in particular scattering of light nuclei.

By ab initio approaches we mean methods, in which all the nucleons involved in
the process are treated as active degrees of freedom, and the antisymmetrization of the
many-body wave functions is treated exactly. Further, the NN interactions among all
participating nucleons are realistic, i. e., describe accurately NN scattering and the
deuteron. Finally, the approximations used in the calculations should be controllable
in a sense that it should be feasible to arrive at or to extrapolate to an exact result
with a specified uncertainty. We note that, in general, the 3N force that provides a
realistic description of the three-nucleon system should also be considered in ab initio
calculations.

In the three- and four-nucleon sectors there has been remarkable progress over the
past decade: the Faddeev [9], Faddeev–Yakubovsky (FY) [10, 11], Alt, Grassberger
and Sandhas (AGS) [12, 13], hyperspherical harmonics (HH) [14], Lorentz integral
transform (LIT) methods [15–17], RGM [18], etc., are among the best known of
several numerically exact techniques able to describe reactions observables starting
from realistic NN and in some cases also 3N forces.

Going beyond four nucleons there are fewer ab initio or ab initio inspired methods
able to describe reactions observables starting from realistic forces. Only very recently
the Green’s function Monte Carlo (GFMC) [19], the no-core shell model combined
with the resonating group method (NCSM/RGM) [20,21] and the fermionic molecular
dynamics [22] have made steps in this direction.

Among the recent developments in the A = 4 scattering and reaction calcula-
tions we highlight the new capability to include properly the Coulomb interaction
in momentum space [12, 13] and to include the three-nucleon interaction in the p-3H
Faddeev–Yakubovsky configuration space calculations [11]. A benchmark for the n-3H
low-energy elastic cross section calculation has been performed by the FY, AGS and
HH methods using different NN potentials [23]. The main conclusion of this work
is the failure of the existing NN forces to reproduce the n-3H total cross section.
Remarkable recent results are the p-3He scattering calculations performed using the
hyperspherical harmonic basis, which demonstrated that the new NN plus 3N in-
teractions derived within chiral effective field theory (EFT) reduce noticeably the
discrepancy observed for the Ay observable [24]. Further, with the same Hamilto-
nian, the low-energy total n-3H cross section calculated by the HH method was found
in improved agreement with the data [25].

In a ground-breaking development, the AGS method has been generalized to cal-
culations of the n-3H scattering above the four-nucleon breakup threshold [26]. This
allowed to calculate the elastic cross section of 14.1 MeV neutrons. This is in par-
ticular important as such high-energy neutrons are produced in the deuteron-triton
fusion.
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The first ab initio scattering calculation for a system with A > 4 was performed
within the GFMC approach. The n-α low-lying Jπ = 3/2− and 1/2− P -wave res-
onances as well as the 1/2+ S-wave non-resonant scattering below 5 MeV center of
mass (c.m.) energy were obtained using the AV18 NN potential with and without the
three-nucleon force, chosen to be either the Urbana IX or the Illinois-2 model [19].
The results of these calculations revealed sensitivity to the inter-nucleon interaction,
and in particular to the strength of the spin-orbit force. New developments of the
GFMC applications to nuclear reactions include calculations of spectroscopic overlaps
for light nuclei [27] and calculations of the asymptotic normalization constants (ANC)
by integral relations with the variational Monte Carlo (VMC) wave functions [28].

The FMD approach has been applied quite successfully to the description of the
radiative capture cross section (S-factor) of the 3He(α,γ)7Be reaction important for
astrophysics. The FMD calculations describe new experimental data both at low
energy (below 100 keV) as well as at high energy (from 1 MeV to 2.5 MeV) [29].

As an interesting theoretical development to the many-body scattering, we men-
tion the approach based on the variational description of continuum states in terms of
integral relations [30] that may be used to directly apply the bound-state many-body
techniques to scattering. A variation of this approach has been explored in the A = 5
scattering in Ref. [31]. Further, the use of bound-state methods to calculate scattering
properties with possible applications for lattice calculations has been investigated in
Ref. [32].

There are also some recent attempts to describe the nuclear scattering in an ef-
fective field theory approach. In particular, the pionless EFT combined with the
RGM was successfully applied to three- and four-nucleon bound state and scattering
calculations [33].

In a big jump in mass number, we note that the 17F low-lying states were recently
investigated within the coupled-cluster (CC) approach with the Gamow–Hartree–Fock
basis that incorporates effects of the continuum [34]. The calculation resulted in a
good description of the 1/2+ proton halo state in 17F. It was shown that the continuum
effects are essential to obtain these results and that the proton halo state single-
particle energy is not affected by short-range correlations in the nuclear interactions.

The CC theory has been recently combined with the LIT method to calculate the
photodisintegration of 4He and, in particular, the giant dipole resonance in 16O [35].

Using the Gamow–Hartree–Fock basis, the CCM was used for the first time to
calculate ab initio elastic proton scattering on a nucleus as heavy as 40Ca [36]. Elas-
tic scattering of a nucleon on a target nucleus can be computed from the one-nucleon
overlap functions. These are calculated within the CC theory. The obtained cross
sections at low-energy for elastic proton scattering on 40Ca were found in a fair agree-
ment with experiment.

As a completely new development, ab initio calculations of nuclear scattering and
reactions on the lattice has been explored in Ref. [37]. Adiabatic projection method
was implemented and tested in elastic fermion-dimer scattering in lattice effective
field theory. Such calculation corresponds to neutron-deuteron scattering in the spin-
quartet channel at leading order in pionless effective field theory. The method adapts
features of the resonating group method [7] in a similar fashion as in the NCSM/RGM
approach [38] discussed in the subsequent sections.

3 No-core shell model with continuum

In this section we briefly overview the newly introduced approach to nuclear bound
and continuum states, the no-core shell model with continuum [39, 40]. This ap-
proach adopts an extended model space that, in addition to the continuous binary-
cluster (A−a, a) NCSM/RGM states, with A−a and a nucleons in the heavier and
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the lighter cluster, respectively, encompasses also square-integrable NCSM eigen-
states of the complete A-nucleon system. Such eigenstates introduce in the trial wave
function short- and medium-range A-nucleon correlations that in the binary-cluster
NCSM/RGM formalism have to be treated by including a large number of excited
states of the clusters.

3.1 NCSM

The ab initio NCSM is a nuclear-structure technique appropriate for the description
of bound states or for approximations of narrow resonances. Nuclei are considered
as systems of A non-relativistic point-like nucleons interacting through realistic inter-
nucleon interactions. Translational invariance as well as angular momentum and
parity of the system under consideration are conserved. The many-body wave function
is cast into an expansion over a complete set of antisymmetric A-nucleon harmonic
oscillator (HO) basis states containing up to Nmax HO excitations above the lowest
possible configuration:

|ΨJπT
A 〉 =

Nmax
∑

N=0

∑

i

cNi |ANiJπT 〉. (1)

Here, N denotes the total number of HO excitations of all nucleons above the mini-
mum configuration, JπT are the total angular momentum, parity and isospin, and i
additional quantum numbers. The sum over N is restricted by parity to either an
even or odd sequence. The basis is further characterized by the frequency Ω of the
HO well and may depend on either Jacobi relative or single-particle coordinates. In
the former case, the wave function does not contain the center of mass (c.m.) mo-
tion, but antisymmetrization is complicated. In the latter case, antisymmetrization
is trivially achieved using Slater determinants, but the c.m. degrees of freedom are
included in the basis. The HO basis within the Nmax truncation is the only possible
one that allows an exact factorization of the c.m. motion for the eigenstates, even
when working with single-particle coordinates and Slater determinants. Calculations
performed with the two alternative coordinate choices are completely equivalent.

Square-integrable energy eigenstates expanded over the Nmax~Ω basis, |ANiJπT 〉,
are obtained by diagonalizing the intrinsic Hamiltonian, Ĥ = T̂int + V̂ ,

Ĥ |AλJπT 〉 = Eλ |AλJ
πT 〉, (2)

where T̂int is the internal kinetic energy operator and V̂ is the NN or NN+3N
interaction. We note that with the HO basis sizes typically used (Nmax∼10−14),
the |AλJπT 〉 eigenstates lack correct asymptotic behavior for weakly-bound states
and always have incorrect asymptotic behavior for resonances.

3.2 NCSM/RGM

In the NCSM/RGM [38, 41], the ansatz of Eq. (1) for the A-nucleon wave function
is replaced by an expansion over antisymmetrized products of binary-cluster channel
states |ΦJπT

νr 〉 and wave functions of their relative motion

|ΨJπT
A 〉 =

∑

ν

∫

dr r2
γν(r)

r
Âν |Φ

JπT
νr 〉 . (3)

The channel states |ΦJπT
νr 〉 contain (A−a)- and a-nucleon clusters (with a<A) of

total angular momentum, parity, isospin and additional quantum number I1, π1, T1, α1

and I2, π2, T2, α2, respectively, and are characterized by the relative orbital angular
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momentum ℓ and channel spin ~s = ~I1 + ~I2:

|ΦJπT
νr 〉 =

[

(

|A− a α1I
π1

1 T1〉 |a α2I
π2

2 T2〉
)(sT )

Yℓ(r̂A−a,a)
](JπT ) δ(r − rA−a,a)

rrA−a,a
. (4)

The channel index ν collects the quantum numbers {A − a α1I
π1

1 T1; a α2I
π2

2 T2; sℓ}.
The intercluster relative vector ~rA−a,a is the displacement between the clusters’ cen-
ters of mass and is given in terms of the single-particle coordinates ~ri by:

~rA−a,a = rA−a,a r̂A−a,a =
1

A− a

A−a
∑

i=1

~ri −
1

a

A
∑

j=A−a+1

~rj . (5)

The cluster wave functions depend on translationally invariant internal coordinates
and are antisymmetric under exchange of internal nucleons, while the intercluster
antisymmetrizer Âν takes care of the exchange of nucleons belonging to different
clusters.

With appropriate boundary conditions imposed on the wave functions of the rel-
ative motion γν(r), the expansion of Eq. (3) is suitable for describing bound states,
resonances and scattering states between clusters. For bound states, expansions (1)
and (3) are equivalent, although for well-bound systems where short-range A-body
correlations play a dominant role, the convergence of the eigenenergy would typically
be more efficient within the NCSM model space defined by Eq. (1).

The unknown relative-motion wave functions γν(r) are determined by solving the
many-body Schrödinger equation in the Hilbert space spanned by the basis

states Âν |Φ
JπT
νr 〉:

∑

ν

∫

dr r2
[

HJπT
ν′ν (r′, r) − EN JπT

ν′ν (r′, r)
] γν(r)

r
= 0, (6)

where

HJπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣

∣
Âν′ĤÂν

∣

∣

∣
ΦJπT

νr

〉

, (7)

N JπT
ν′ν (r′, r) =

〈

ΦJπT
ν′r′

∣

∣

∣
Âν′Âν

∣

∣

∣
ΦJπT

νr

〉

, (8)

are the Hamiltonian and norm kernels, respectively, and E is the total energy in the
c.m. frame.

3.3 NCSMC

The NCSMC ansatz for the many-body wave function includes both A-body square-
integrable and (A−a, a) binary-cluster continuous basis states according to:

|ΨJπT
A 〉 =

∑

λ

cλ |AλJ
πT 〉 +

∑

ν

∫

dr r2
γν(r)

r
Âν |Φ

JπT
νr 〉. (9)

The resulting wave function (9) is capable of describing efficiently both bound and
unbound states. Indeed, the NCSM sector of the basis (eigenstates |AλJπT 〉) provides
an effective description of the short- to medium-range A-body structure, while the
NCSM/RGM cluster states make the theory able to handle the scattering physics of
the system. In other words, with the expansion (9) one obtains the coupling of the
NCSM with the continuum. Clearly, the NCSMC model space is overcomplete, but
this is not a concern. We also note that, in principle, the expansion (9) can be further
generalized to include a three-cluster component suitable for the description of, e. g.,
Borromean halo nuclei and reactions with final three-body states [42].
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The discrete (cλ) and continuous (γν(r)) unknowns of the NCSMC wave function
are obtained as solutions of the coupled equations

(

HNCSM h̄

h̄ H

)(

c
χ

)

= E

(

1 ḡ
ḡ 1

)(

c
χ

)

, (10)

where χν(r) are the relative wave functions in the NCSM/RGM sector when working
with the orthogonalized cluster channel states [41]. These are related to the original
wave functions γν(r) of Eq. (9) by the relationship given in Eq. (20) of Ref. [40].

The NCSM sector of the Hamiltonian kernel is a diagonal matrix of the NCSM
energy eigenvalues Eλ (2),

(HNCSM )λλ′ = 〈AλJπT |Ĥ|Aλ′JπT 〉 = Eλ δλλ′ , (11)

while H is the orthogonalized NCSM/RGM kernel of Eq. (17) in Ref. [40]. Because
of the orthogonalization procedure, both diagonal blocks in the NCSMC norm kernel
are identities in their respective spaces. The coupling between square-integrable and
binary-cluster sectors of the model space is described by the cluster form factor

ḡλν(r) =
∑

ν′

∫

dr′ r′
2
〈AλJπT |Âν′ΦJπT

ν′r′ 〉 N
−

1

2

ν′ν (r′, r) (12)

in the norm kernel, and by the coupling form factor

h̄λν(r) =
∑

ν′

∫

dr′ r′
2
〈AλJπT |ĤÂν′ |ΦJπT

ν′r′ 〉 N
−

1

2

ν′ν (r′, r). (13)

in the Hamiltonian kernel.

4 NCSM/RGM and NCSMC applications

4.1 7He resonances

The first demonstration of the power of the NCSMC approach was shown in an
investigation of 7He resonances [39,40]. The 7He nucleus is a particle-unstable system
with a JπT = 3/2− 3/2 ground state lying at 0.430(3) MeV [43,44] above the 6He+n
threshold and an excited 5/2− resonance centered at 3.35 MeV, which mainly decays
to α+3n (as discovered in the pioneering work of Ref. [45]). While there is a general
consensus on the 5/2− state, discussions are still open for the other excited states.
In particular, the existence of a low-lying (ER ∼ 1 MeV) narrow (Γ ≤ 1 MeV) 1/2−

state has been advocated by many experiments [46–50] while it was not confirmed
in several others [51–56]. The presence of a low-lying 1/2− state has been excluded
by a study on the isobaric analog states of 7He in 7Li [57]. According to this work,
a broad 1/2− resonance at ∼3.5 MeV with a width Γ ∼ 10 MeV fits the data the
best. Neutron pick-up and proton-removal reactions [53, 54] suggest instead a 1/2−

resonance at about 3 MeV with a width Γ ≈ 2 MeV.
From a theoretical point of view, 7He is an ideal system to showcase achieve-

ments made possible by a unified ab initio approach to nuclear bound and continuum
states such as the NCSMC. Since 7He is unbound, it cannot be reasonably described
within the NCSM. One could calculate its properties using the NCSM/RGM within
an 6He+n binary-cluster expansion. However, the 6He nucleus is weakly bound and
all its excited states are unbound. Consequently, a limitation to just a few lowest 6He
eigenstates in the NCSM/RGM expansion would be questionable especially because,
except for the lowest 2+ state, all other 6He excited states are either broad resonances
or simply states in the continuum. With the NCSMC these challenges are overcome.
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Figure 1: Dependence of the NCSM/RGM (a) and NCSMC (b) 6He+n phase
shifts of the 7He 3/2− ground state on the number of 6He states included in the
binary-cluster basis. The short-dashed green curve, the dashed blue curve and the
solid red curve correspond to calculations with 6He 0+ ground state only, 0+, 2+

states and 0+, 2+, 2+ states, respectively. The similarity-renormalization-group
(SRG) [58–61] N3LO [62,63] NN potential with Λ = 2.02 fm−1, the Nmax=12 basis
size and the HO frequency of ~Ω=16 MeV were used.

This is seen by studying the dependence of the 3/2− ground state (g.s.) phase
shifts on the number of 6He eigenstates included in the NCSM/RGM [panel (a)] and
NCSMC [panel (b)] calculations, shown in Fig. 1. Here, the channels are denoted
using the standard notation 2s+1ℓJ , e. g., 2P3/2 for the g.s. resonance, with the quan-
tum numbers s, ℓ and J defined as in Section 3.2, Eq. (4). We observe that the
NCSM/RGM calculation with the 6He target restricted to its ground state does not
produce a 7He 3/2− resonance (the phase shift does not reach 90 degrees and is less
than 70 degrees up to 5 MeV). A 2P3/2 resonance does appear once n+6He(2+1 ) chan-
nel states are coupled to the basis, and the resonance position further moves to lower
energy with the inclusion of the second 2+ state of 6He. On the contrary, the NCSMC
calculation with only the ground state of 6He already produces the 2P3/2 resonance.
In fact, this NCSMC model space is sufficient to obtain the 7He 3/2− g.s. resonance
at about 1 MeV above threshold, which is lower than the NCSM/RGM prediction
of 1.39 MeV when three 6He states are included. Adding the first 2+ state of 6He
generates a modest shift of the resonance to a still lower energy while the 2+2 state
of 6He has no significant influence [see Fig. 1, panel (b)]. We further observe that
the difference of about 0.7 MeV between the NCSM/RGM and NCSMC results for
the resonance position is due to additional correlations in the wave function brought
about by the 7He eigenstates that are coupled to the neutron-6He binary-cluster states
in the NCSMC. Indeed, such A = 7 eigenstates (in the present calculation four 3/2−

states, of which only the 3/2−1 produces a substantial effect on the 2P3/2 resonance)
have the practical effect of compensating for higher excited states of the 6He target
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Figure 2: NCSM/RGM (a) and NCSMC (b) 6He+n diagonal phase shifts (except
6P3/2, which are eigenphase shifts) as a function of the kinetic energy in the center
of mass. The dashed vertical area centered at 0.43 MeV indicates the experimental
centroid and width of the 7He ground state [43, 44]. In all calculations the lowest
three 6He states have been included in the binary-cluster basis.

omitted in the NCSM/RGM sector of the basis.
The NCSM/RGM and NCSMC phase shifts for the n+6He five P -wave and

the 2S1/2 channels are shown in Fig. 2. All curves have been obtained including
the three lowest 6He states (i. e., the 0+ ground state and the two lowest 2+ excited
states) within the Nmax = 12 HO basis. The model space of the NCSMC calculations
[panel (b)] additionally includes ten 7He NCSM eigenstates. The dashed vertical area
centered at 0.43 MeV indicates the experimental centroid and width of the 7He ground
state [43, 44]. As expected from a variational calculation, the introduction of the ad-
ditional square-integrable A-body basis states |AλJπT 〉 [i. e., going from panel (a)
to panel (b) of Fig. 2] lowers the centroid values of all 7He resonances. In particu-
lar, the 3/2− ground and 5/2− excited states of 7He are pushed toward the 6He+n
threshold, closer to their respective experimental positions. The resonance widths
also shrink toward the observed data as we discuss below.

Computed widths Γ and resonance energies ER are reported in Table 1, together
with the available experimental data. From an experimental standpoint, the situation
concerning the 1/2− resonance is not clear as discussed in the beginning of this section
and documented in Table 1. While the centroid energies determined in the experi-
ments of Refs. [53,54] and [57] are comparable, the widths are very different. Within
the present determination of ER and Γ, the NCSMC results are in fair agreement
with the 1/2− properties measured in the neutron pick-up and proton-removal reac-
tions experiments of Refs. [53] and [54]. Our calculations definitely do not support the
hypothesis of a low-lying (ER ∼ 1 MeV) narrow (Γ ≤ 1 MeV) 1/2− resonance [46–50].
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Table 1: Experimental and theoretical values for the resonance centroids and widths
in MeV for the 3/2− ground state and the 5/2− and 1/2− excited states of 7He.
Calculations are carried out as described in Fig. 2 and in the text.

Jπ
experiment NCSMC NCSM/RGM NCSM

ER Γ Ref. ER Γ ER Γ ER

3/2− 0.430(3) 0.182(5) [44] 0.71 0.30 1.39 0.46 1.30
5/2− 3.35(10) 1.99(17) [64] 3.13 1.07 4.00 1.75 4.56
1/2− 3.03(10) 2 [53] 2.39 2.89 2.66 3.02 3.26

3.53 10 [57]
1.0(1) 0.75(8) [47]

4.2 Nucleon-4He scattering with chiral NN+3N interactions

The ab initio no-core shell model/resonating-group method has now been extended to
include 3N interactions for the description of nucleon-nucleus collisions [65]. The ex-
tended framework was then applied to nucleon-4He elastic scattering using similarity-
renormalization-group evolved nucleon-nucleon plus three-nucleon potentials derived
from chiral effective field theory. Up to six excited states of the 4He target were
included in the NCSM/RGM calculations. Significant effects from the inclusion of
the chiral 3N force were found, e. g., it enhances the spin-orbit splitting between
the 3/2−and 1/2− resonances and leads to an improved agreement with the phase
shifts obtained from an accurate R-matrix analysis of the five-nucleon experimental
data. Calculated phase shifts compared to the R-matrix analysis of experimental data
in the energy range up to the d-3H threshold are shown in Fig. 3. The 2P3/2 resonance
position is overestimated. The probably reason is the omition of higher excited states
of 4He and of the other closed channels, e. g., d-3H, in the calculations. The omitted
states and channels can be effectively included by the NCSMC coupling to the 5He
eigenstates (obtained within the NCSM). Work in this direction is under way.

4.3 6He as a 4He+n+n three-body cluster

The NCSM/RGM technique has also been generalized to the three-body cluster dy-
namics [42]. The solution of the three-cluster Schrödinger equation was obtained by
means of hyperspherical harmonic expansions on a Lagrange mesh [67,68]. In Ref. [42],
the first 4He+n+n investigation of the g.s. of the 6He nucleus was presented based on
a NN potential that yields a high-precision fit of the NN phase shifts and ab initio
four-body wave functions for the 4He cluster obtained consistently from the same
Hamiltonian. Within this approach, one gets the appropriate asymptotic behavior of
the wave functions. This is demonstrated in Fig. 4 showing the ground-state wave
function of 6He. A two-peak shape distribution is found in the ground-state probabil-
ity distribution. One peak corresponds to a “di-neutron” configuration in which the
neutrons are close together (about 2 fm apart from each other) while the 4He core
is separated from their c.m. at a distance of about 3 fm. Whereas the second peak,
corresponding to the “cigar” configuration, represents an almost linear structure in
which the two neutrons are far from each other (about 5 fm apart) and the alpha
particle lies almost in between them at ∼1 fm from their center of mass. Moreover,
the present formalism combined with the appropriate scattering boundary conditions
gives access to the ab initio study of resonant states of two-neutron halo nuclei (such
as the excited states of 6He) as well as to scattering problems involving channels with
three fragments. Three-cluster NCSM/RGM 4He+n+n scattering calculations with
the aim to study the 6He low-lying resonances are currently under way. Further, a
generalization to include the NCSMC coupling is also under way.
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Figure 3: Comparison of the n-4He (a) and p-4He (b) phase-shifts (1S1/2, 2P1/2, 2P3/2

and 2D3/2 waves) within the largest considered model space including the first six low-
lying resonant states of the 4He (g.s., 0+0, 0−0, 2−0, 2−1, 1−1, 1−0) at Nmax = 13
to the experimental phase-shifts (purple crosses) obtained from an R-matrix analy-
sis [66]. Results for the NN+3N -full Hamiltonian are shown as red solid lines, those
for the NN + 3N -induced Hamiltonian as blue dashed lines. For further details see
Ref. [65]

4.4 Structure of 9Be

The structure of 9Be nucleus poses a challenge to ab initio approaches based on bound-
state techniques such as the NCSM. The positive parity resonances are in general
found too high compared to experiment and the splitting between the lowest 5/2−

and 1/2− resonances tends to be overestimated when 3N effects are included [69]. A
question is to which extend the continuum affects the 9Be resonances and the above
observations. NCSMC calculations with the chiral NN+3N interactions are now
under way to answer these questions. Here we discuss preliminary results obtained
using only a two-nucleon SRG-evolved NN interaction. The 9Be is studied as a system
of 8Be+n with g.s. and the 2+ state of 8Be included. The NCSMC coupling to the 9Be
NCSM eigenstates is taken into account. The n-8Be P -wave phaseshifts are shown
in Fig. 5. A good convergence with respect to the HO basis size is found. The 9Be
separation energy is overestimated by 1 MeV with the used NN potential, which then
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Figure 4: Three main components of the radial part of the 6He g.s. wave functions as
a dependence on the hyper-radius ρ for Nmax = 6, 8, 10, and 12. Further details can
be found in Ref. [42]

also results in a shift of the resonances to a lower energy compared to experiment and
even in a ∼100 keV binding of the 5/2− state. Still, some interesting conclusions can
be drawn even from these calculations. The splitting between the 5/2− and the 1/2−

resonance is reduced substantially when the continuum is included due to the shift
of the 1/2− P -wave resonance with the 5/2− F -wave state position unaffected. The
positive-parity resonances, especially the 1/2+1 and the 3/2+1 S-wave resonances, are
dramatically lowered in energy when the continuum is taken into account.
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Figure 5: Preliminary results of n-8Be phase shifts showing 9Be P -wave resonances.
The SRG-N3LO NN potential with the evolution parameter Λ = 2 fm−1 was used.
The full (dotted) lines correspond to the Nmax = 10 (8) model space, respectively.
The HO frequency of 20 MeV was used.
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5 Conclusions

Great progress has been made in the development of ab initio approaches to nuclear
scattering, reactions and the description of weakly bound states. The accuracy of
few-body methods improved and their ability to treat non-local and three-nucleon
interactions has been extended. Nuclear reaction calculations with chiral forces are
now possible. The four-nucleon scattering calculations are now feasible even above
the breakup threshold. There are promising developments in methods applicable to
systems of more than four nucleons. Continuum effects can now even be investigated
in semi-magic nuclei beyond the p-shell.

We discussed in more details a new unified approach to nuclear bound and contin-
uum states, the NCSMC, based on the coupling of a square-integrable basis (A-body
NCSM eigenstates), suitable for the description of many-body correlations, and a
continuous basis (NCSM/RGM cluster states) suitable for a description of long-range
correlations, cluster correlations and scattering. This approach allows us to study
weakly bound systems as well as narrow and broad resonances. The inclusion of 3N
interactions in this formalism is under way. This opens new possibilities to perform
realistic calculations for p- and light sd-shell nuclei starting from chiral NN+3N
interactions.
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